QED calculation of the ground-state energy of Be-like ions

A. V. Malyshev, A. V. Volotka, D. A. Glazov,

I. I. Tupitsyn, V. M. Shabaev, and G. Plunien

Department of Physics Saint-Petersburg State University

December 1, 2014

Outline:

- Introduction and Motivation
- Theoretical Description and Numerical Procedure
- Summary and Outlook

Motivation

• Test of QED at strong fields

(along with investigations of H-, He-, Li-, and B-like ions)

Experiments:

H-like:	T. Stöhlker <i>et al.</i> ,	PRL, 2000;
	A. Gumbendze et al.,	FRE, 2005,
He-like	: A. Gumberidze <i>et al.</i> ,	PRL, 2004.
Li-like:	J. Schweppe <i>et al.</i> , C. Brandau <i>et al.</i> , P. Beiersdorfer <i>et al.</i> ,	PRL, 1991; PRL, 2003; PRL, 2005.
Be-like	: P. Beiersdorfer <i>et al.</i> , I. Draganić <i>et al.</i> ,	PRA, 1998; PRL, 2003;
B-like:	I. Draganić <i>et al.</i> , V. Mäckel <i>et al.</i> .	PRL, 2003; PRL, 2011:

• The ground-state energies of Be-like ions are of the great importance for mass spectrometry

J. Repp *et al.*, Appl. Phys. B, 2012; E. G. Myers, Int. J. Mass Spectrom., 2013.

QED in the Furry picture

 α^{4} α^{3} α^{2} α^{2} α $(\alpha Z)^{2} (\alpha Z)^{4} (\alpha Z)^{6} (\alpha Z)^{8}$

To zeroth-order approximation:

$$\left[-i\boldsymbol{\alpha}\cdot\nabla+\beta m+V_{\rm nuc}(\mathbf{r})\right]\psi_n(\mathbf{r})=\varepsilon_n\psi_n(\mathbf{r})$$

Interelectronic interaction and QED effects:

Interelectronic interaction	1	QED $\alpha (\alpha Z)^2$
Binding energy	\overline{Z}	Binding energy $\sim \alpha(\alpha z)$

In uranium: Z = 92, $\alpha Z \approx 0.7$

Binding energy of H-like uranium, in eV

- [†] Y. S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008.
- * V. A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006.
- [‡] A. Gumberidze, T. Stöhlker, D. Banaś *et al.*, PRL, 2005.

$2p_{1/2}$ -2s transition energy in Li-like uranium, in eV

Test of many-electron QED effects!

- [†] Y. S. Kozhedub, O. V. Andreev, V. M. Shabaev et al., PRA, 2008.
- * V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, PRL, 2006.

 $V_{\rm scr}$ describes approximately the electron-electron interaction effects

$$V_{
m nuc}(\mathbf{r}) \longrightarrow V_{
m eff}(\mathbf{r}) = V_{
m nuc}(\mathbf{r}) + V_{
m scr}(\mathbf{r})$$

To zeroth-order approximation:

$$\left[-i\boldsymbol{\alpha}\cdot\nabla + \beta m + \frac{V_{\text{eff}}(\mathbf{r})}{V_{\text{eff}}(\mathbf{r})}\right]\psi_n(\mathbf{r}) = \varepsilon_n\psi_n(\mathbf{r})$$

The extended Furry picture is used to accelerate the convergence of the perturbation series

• Local Dirac-Fock potential (LDF)

V. M. Shabaev, I. I. Tupitsyn, K. Pachucki et al., PRA, 2005.

• Kohn-Sham potential (KS)

W. Kohn and L. J. Sham, PRA, 1965.

• Perdew-Zunger potential (PZ)

J. P. Perdew and A. Zunger, PRB, 1981.

The screening potential partly accounts for the interelectronic interaction in the zeroth-order Hamiltonian

Contributions

• The interelectronic interaction diagrams

 First- and second-order QED diagrams

- Third- and higher-order electron-correlation contributions within the Breit approx. (the large-scale configuration-interaction Dirac-Fock-Sturm method)
- One-electron two-loop diagrams

Beyond external field approximation:

• Nuclear recoil (finite nuclear mass,
$$\sim rac{m}{M}$$
)

- Breit approx. (all orders in 1/Z)
- QED recoil effect in zeroth order
- Nuclear polarization (internal degrees of freedom)

Uranium (Z = 92): individual contributions, in eV

Contribution	LDF	KS	PZ
$E_{\rm Dirac}^{(0)}$	-320572.56	-320871.02	-321276.02
$E_{\rm int}^{(1)}$	-6637.37	-6338.62	-5933.84
$E_{\rm int,Breit}^{(2)}$	-20.87	-20.45	-23.97
$E_{\rm int,QED}^{(2)}$	2.04	1.96	2.05
$E_{\rm int,Breit}^{(\geq 3)}$	3.03	2.39	6.05
$E_{ m int,total}$	-327225.74	-327225.74	-327225.74
$E_{\rm QED}^{(1)}$	618.61	620.18	618.97
$E_{\rm ScrQED}^{(2)}$	0.73	-0.86	0.36
$E_{\rm QED}^{(2l)}$	-2.92	-2.92	-2.92
$E_{\rm QED,total}$	616.41	616.40	616.41
$E_{\rm Rec,Breit}$	0.60	0.60	0.60
$E_{\rm Rec,QED}$	0.56	0.56	0.56
$E_{\rm Nucl.Pol.}$	-0.45	-0.45	-0.45
$E_{ m total}$	-326608.62	-326608.63	-326608.63

Individual contributions to the binding energy of Be-like U (in eV)

Nucl.	This work	Other theory	NIST
$^{56}_{26}Fe$	-22102.960(45)	$-22103.37^{\rm a}$	-22102.1(1.8)
		$-22103.299^{\rm b}$	
		$-22102.98(8)^{c}$	
$^{132}_{54}Xe$	-100972.921(85)	$-100973.7^{\rm a}$	-100963(4)
		$-100973.75^{\rm b}$	
$^{184}_{74}{ m W}$	-198983.71(32)	$-198984.71^{\rm b}$	-198987(3)
$^{238}_{92}{ m U}$	-326608.6(1.2)	$-326608.5^{\rm b}$	-326600(300)

This work: A. V. Malyshev et al., arXiv:1410.1961 [physics.atom-ph]

- ^a M. F. Gu, At. Data Nucl. Data Tables, 2005.
- ^b M. H. Chen and K. T. Cheng, PRA, 1997.
- ^c V. A. Yerokhin, A. Surzhykov, and S. Fritzsche, PRA, 2014.

- The calculations of the ground-state binding energies of Be-like ions are performed in the range: 18 ≤ Z ≤ 96.
- The accuracy was significantly improved and the most precise theoretical predictions for the ground-state binding energies in Be-like ions have been obtained.
- Achieved accuracy allows tests of bound-state QED with Be-like ions on the level $\sim 0.2\%$, provided the corresponding experiments are performed to the required precision (FAIR facilities).

Outlook

High-precision QED calculations of

- Ionization potentials for the ground states of Be-like ions
- Ionization potentials for the valence electrons in the $1s^22s^22p_{1/2}$ and $1s^22s^22p_{3/2}$ states of B-like ions
- Binding energies of excited states in Be-like ions

Outlook

High-precision QED calculations of

- Ionization potentials for the ground states of Be-like ions
- Ionization potentials for the valence electrons in the $1s^22s^22p_{1/2}$ and $1s^22s^22p_{3/2}$ states of B-like ions
- Binding energies of excited states in Be-like ions

Thank You for Your attention!

