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1 Quantum field theory and Fractal calculus -

universal language of fundamental physics

The extended particle processes, we will describe in terms of QFT. As a con-
crete model, we take relativistic scalar field model with lagrangian

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − gϕn, µ = 0, 1, ..., D − 1 (1)

In the case

n =
2D

D − 2
(2)

the coupling constant g is dimensionless, and the model is renormalizable.
We take euklidian form of the QFT which unifies quantum and statistical
physics problems. The main objects of theory are Green functions - correlation
functions - correlators,

Gm(x1, x2, ..., xm) =< ϕ(x1)ϕ(x2)...ϕ(xm) >

=
∫
dϕ(x)ϕ(x1)ϕ(x2)...ϕ(xm)e−S(ϕ) (3)

where dϕ− invariant measure

d(ϕ+ a) = ϕ. (4)

For gaussian actions,

S = S2 =
∫
dxdyφ(x)A(x, y)φ(y) (5)

the QFT is solvable,

Gm(x1, ..., xm) =
δm

δJ(x1)...J(xm)
lnZ(J)|J=0,

Z(J) =
∫
dϕe−S2+J ·ϕ = e

1
4

∫
dxdyJ(x)A−1(x,y)J(y) (6)

Non trivial problem is to calculate correlators for non gaussian QFT
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1.1 Renormdynamics

In quantum perturbation calculations, we find the following corrections to the
classical lagrangian

∆L = (z − 1)
1

2
∂µϕ∂

µϕ− (zm − 1)
m2

2
ϕ2 − (zg − 1)gϕn. (7)

Corrected, effective, lagrangian become

L + ∆L = z
1

2
∂µϕ∂

µϕ− zm
m2

2
ϕ2 − zggϕ

n (8)

We can restor the classical form of the lagrangian, by corresponding renormal-
ization transformations,

ϕ⇒ z−1/2ϕ
m2 ⇒ z−1

m zm2

g ⇒ z−1
g zn/2g (9)

In the infinitezimal form they define the following renormdynamic motion
equations

µd

dµ
g =

d

dt
g ≡ ġ = β(g), t = ln(

µ

µ0

),

ṁ = η(g)m,

ϕ̇ = (
µ∂

∂µ
+ β(g)

∂

∂g
+ η(g)

m∂

∂m
)ϕ ≡ Dϕ = −1

2
γ(g)ϕ (10)

For correlators, renormdinamic equations are

(D +m
γ(g)

2
)Gm = 0, (11)

For renorminvariant quantities - renomintegrals of motion I,

İ = DI = 0, (12)

Solution of the renormdynamic equation for coupling constant, ḡ, is given in
the implicit form by the following integral∫ ḡ

g

dg

β(g)
= ln

µ̄

µ
≡ t (13)

The mass parameter running is given as

m = m̄ exp(−
∫ µ̄

µ

dµ

µ
η(g(µ))), (14)
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the correlator (renorm)dynamics is given as

Gn(p; g,m, µ) = exp(
n

2

∫ µ̄

µ

dµ

µ
γ(g(µ))) ·Gn(p; ḡ, m̄, µ̄) (15)

From dimensional considerations,

Gn(λp; g,m, µ) = λndϕ−DΦ(p; g,
m

λ
,
µ

λ
), (16)

so

(λ
∂

∂λ
+ µ

∂

∂µ
+m

∂

∂m
)Gn(λp; ...) = (ndϕ −D)Gn(λp; ...), (17)

Now we obtain the main equation of the scale dynamics of correlators

ǑGn(λp; g,m, µ) = 0,

Ǒ ≡ λ∂

∂λ
− β(g)

∂

∂g
− (η(g)− 1)

m∂

∂m
− n(dϕ +

γ(g)

2
) +D, (18)
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1.2 Renormdynamics of observable quantities in high
energy physics

Let us consider one particle semiinclusive distribution

F (p, n) =
dσn

d̄p
=

1

(n− 1)!

∫ n−1∏
i=1

d̄p′iδ(p1 + p2 − p− Σn−1
i=1 p

′
i)

·|Gn+2(p1, p2, p, p
′
1, p

′
2, ..., p

′
n−1; g(µ),m(µ)), µ)|2,

d̄p ≡ d3p

E(p)
, E(p) =

√
p2 +m2. (19)

From renormdynamic equation

DGn+2 =
γ

2
(n+ 2)Gn+2, (20)

We obtain

DF (p, n) = γ(n+ 2)F (p, n),
DF (p) = γ(< n > +2)F (p),
D < nk(p) >= γ(< nk+1(p) > − < nk(p) >< n(p) >),
DCk = γ < n(p) > (Ck+1 − Ck(1 + k(C2 − 1)))

F (p) ≡ dσ

d̄p
=

∑
n

dσn

d̄p
, < nk(p) >=

∑
n n

kdσn/d̄p∑
n dσn/d̄p

Ck =
< nk(p) >

< n(p) >k (21)

1.3 Universal scaling relations for multi particle cross
sections

From dimensional considerations, following combination of cross sections must
be universal function (Koba, Nielsen, Olesen, 1972)

< n >
σn

σ
= Ψ(

n

< n >
), (22)

similar relation for the inclusive cross sections is (Matveev, Sissakian, Slepchenko,
1975)

< n(p) >
dσn

d̄p
/
dσ

d̄p
= Ψ(

n

< n(p) >
) (23)

Let us find explicit form of the universal functions from renormdynamic equa-
tions. From the definition of the moments we have,

Ck =
∫ ∞

0
dxxkΨ(x), (24)
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so they are independent from different parameters,

DCk = 0 ⇒ Ck+1 = (1 + k(C2 − 1))Ck ⇒
Ck = (1 + (k − 1)(C2 − 1))...(1 + 2(C2 − 1))C2. (25)

Now we can invert momentum transform and find universal functions (Ernst,
Schmitt, 1976; Slepchenko, Sissakian, N.M. 1978)

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz,

C2 = 1 +
1

c
(26)

The value of parameter c can be measured from the dispersion low,

D =
√
< n2 > − < n >2 =

√
C2 − 1 < n >=

1√
c
< n > . (27)

1.4 Closed equation of renormdynamics for the gener-
ating function of the observables

Let us consider generating function of the topological crossections

F (h, g,m, µ) = Σn≥2h
nσn,

σn =
1

n!

dn

dhn
F |h=0; σ = F |h=1;

< n >=
d

dh
lnF |h=1, ... (28)

It is natural that for generating function we have closed renormdynamic equa-
tion (N.M. 1980)

(D− γ(
h∂

∂h
+ 2))F = 0,

F (h, g,m, µ) = F (h̄, ḡ, m̄, µ̄) exp(2
∫ µ̄

µ

dµ

µ
γ(ḡ(µ))),

h̄ = h exp(
∫ µ̄

µ

dµ

µ
γ(ḡ(µ))), m̄ = m exp(

∫ µ̄

µ

dµ

µ
η(ḡ(µ))),∫ ḡ

g

dg

β(g)
= ln

µ̄

µ
(29)
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1.5 Explicit form of Generating function in the case
KNO scaling

Let us find generating function in the case of KNO scaling. From the definition
of Generating function and using topological cross section from KNO, we find

F (h) =
∑
n

hn σ

< n >
Ψ(

n

< n >
) =

σ

< n >

∑
Ψ(

n

< n >
)hn

=
σ

< n >
Ψ(

δ

< n >
)
h2

1− h
, δ ≡ h

d

dh
, qδf(h) = f(qh), (30)

No we can find more concrete form of the generation function, with explisit
form of KNO function,

(
δ

< n >
)c−1 exp(−c δ

< n >
)
h2

1− h
= (

δ

< n >
(
q2h2

1− qh
)

1
c−1 )c−1, (31)

so

F (h)KNO =
cc

Γ(c)

σ

< n >
(

δ

< n >
(
q2h2

1− qh
)

1
c−1 )c−1

=
cc

(c− 1)c−1Γ(c)

σ

< n >c

q2h2

1− qh
(
2− qh

1− qh
)c−1,

q ≡ exp(− c

< n >
), δ ≡ hd

dh
(32)

Now, the question is: is F (1) = σ? Obviously not!? We expect that made
approximations, and KNO scaling take place for high energy and multiplicity,
so we can approximate the parameter q as

q = exp(− c

< n >
) = 1− c

< n >
. (33)

Now,

F (h)|h=1 = Aσ, A =
1

Γ(c)(c− 1)(c−1)
+O(1/ < n >) (34)

A = 1, if, c = 2. This way, we defined KNO function without free parameter,
and predict, that c = 2.
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1.6 Fractal calculus

There is an opinion that present day theoretical physics needs (almost) all
mathematics, and the progress of modern mathematics is stimulated by fun-
damental problems of theoretical and applied physics.

I would like to give a short history, background, and some applications
of the of the Fractal calculus (FC). Some speculations on the fine structure
constants and the prime numbers are given.

1.7 Real, p - adic and q - uantum fractal calculus

There is an opinion that present day theoretical physics needs (almost) all
mathematics, and the progress of modern mathematics is stimulated by fun-
damental problems of theoretical and applied physics.

I would like to give a short history, background, and some applications of
the Fractal calculus (FC). Some speculations on the fine structure constants
and the prime numbers are given.

2 Real, p - adic and q - uantum fractal calcu-

lus

Every (good) school boy/girl knows what is

dn

dxn
= ∂n = (∂)n, (35)

but what is its following extension

dα

dxα
= ∂α , α ∈ < ? (36)

2.1 Euler, ... Liouville, ... Holmgren, ...

Let us consider the integer derivatives of the monomials

dn

dxn
xm = m(m− 1)...(m− (n− 1))xm−n, n ≤ m,

=
Γ(m+ 1)

Γ(m+ 1− n)
xm−n. (37)

L.Euler (1707 - 1783) invented the following definition of the fractal derivatives,

dα

dxα
xβ =

Γ(β + 1)

Γ(β + 1− α)
xβ−α. (38)
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J.Liouville (1809-1882) takes exponent as a base function,

dα

dxα
eax = aαeax. (39)

J.H. Holmgren invented (in 1863) the following integral transformation,

D−α
c,x f =

1

Γ(α)

x∫
c

|x− t|α−1f(t)dt. (40)

It is easy to show that

D−α
c,x x

m =
Γ(m+ 1)

Γ(m+ 1 + α)
(xm+α − cm+α),

D−α
c,x e

ax = a−α(eax − eac), (41)

so, c = 0, when m + α ≥ 0, in Holmgren’s definition of the fractal calculus,
corresponds to the Euler’s definition, and c = −∞, when a > 0, corresponds to
the Liouville’s definition. Holmgren’s definition of the fractal calculus reduce
to the Euler’s definition for finite c, and to the Liouvill’s definition for c = ∞,

D−α
c,x f = D−α

0,xf −D−α
0,c f,

D−α
∞,xf = D−α

−∞,xf −D−α
−∞,∞f. (42)

We considered the following modification of the c = 0 case (N.M. 2003,[1]),

D−α
0,xf =

|x|α

Γ(α)

1∫
0

|1− t|α−1f(xt)dt

=
|x|α

Γ(α)
B(α, ∂x)f(x) = |x|α Γ(∂x)

Γ(α+ ∂x)
f(x),

f(xt) = tx
d

dxf(x). (43)

We can define also FC as

Dαf = (D−α)−1f =
Γ(∂x+ α)

Γ(∂x)
(|x|−αf),

∂x = δ + 1, δ = x∂ (44)

For the Liouville’s case,

Dα
−∞,xf = (D−∞,x)

αf = (∂x)
αf, (45)

∂−α
x f =

1

Γ(α)

∫ ∞

0
dttα−1e−t∂xf(x) =

1

Γ(α)

∫ ∞

0
dttα−1f(x− t)
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=
1

Γ(α)

∫ x

−∞
dt(x− t)α−1f(t) = D−α

−∞,xf. (46)

As an example, let us consider integer derivatives, α = −n,

Dn
0xf =

1

xn

Γ(∂x)

Γ(−n+ ∂x)
f

= x−n(−n+ ∂x)(−n+ 1 + ∂x)...(−1 + ∂x)f = ...
= x−n(−n+ 1 + x∂)xn−1∂n−1f = ∂nf = f (n). (47)

The integrals can be calculated as

D−nf = (D−1)nf, (48)

where

D−1f = x
Γ(∂x)

Γ(1 + ∂x)
f = x

1

∂x
f = x(∂x)−1f

= (∂)−1f =
∫ x

0
dtf(t). (49)

As another example, let us consider Weierstrass C.T.W. (1815 - 1897) frac-
tal function

f(t) =
∑
n≥0

anei(bnt+ϕn), a < 1, ab > 1. (50)

For fractals we have not integer derivatives,

f (1)(t) = i
∑

(ab)nei(bnt+ϕn) = ∞, (51)

but the fractal derivative,

f (α)(t) =
∑

(abα)nei(bnt+πα+ϕn), (52)

when abα = a′ < 1, is another fractal (50).

2.2 p - adic fractal calculus

p-adic analog of the fractal calculus (40) ,

D−α
x f =

1

Γp(α)

∫
Qp

|x− t|α−1
p f(t)dt, (53)

where f(x) is a complex function of the p-adic variable x, with p-adic Γ–
function

Γp(α) =
∫

Qp

dt|t|α−1
p χ(t) =

1− pα−1

1− p−α
, (54)
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was considered by V.S. Vladimirov [2].
The following modification of p-adic FC is given in [1]

D−α
x f =

|x|αp
Γp(α)

∫
Qp

|1− t|α−1
p f(xt)dt

= |x|αp
Γp(∂|xp|)

Γp(α+ ∂|x|p)
f(x). (55)

Last expression is applicable for functions of type f(x) = f(|x|p).

2.3 Fractal qalculus

Another important mathematical structure is q-calculus (qalculus), [3]. The
basic object of this calculus is q-derivative

Dqf(x) =
f(x)− f(qx)

(1− q)x
=

1− qx∂

(1− q)x
f(x), (56)

where either 0 < q < 1 or 1 < q <∞. In the limit q → 1, Dq → ∂x.
Now we define the fractal q-calculus,

Dα
q f(x) = (Dq)

αf(x)
= ((1− q)x)−α(f(x)+∑
n≥1

(−1)nα(α− 1)...(α− n+ 1)

n!
f(qnx)). (57)

For the case α = −1, we obtain the integral operator

D−1
q f(x) = (1− q)x(1− qx∂)−1f(x)

= (1− q)x
∑
n≥0

f(qnx). (58)

In the case of 1 < q <∞, we can give a good analytic sense to these expressions
for prime numbers q = p = 2, 3, 5, ..., 29, ..., 137, ... This is an algebra-analytic
quantization of the q-calculus and corresponding physical models. Note also,
that p-adic calculus is the natural tool for the physical models defined on the
fractal spaces like Bete lattice ( or Brua-Tits trees, in mathematical literature)
[4].

2.4 Fractal finite - difference calculus

Usual finite difference calculus (see, e.g. [5]) is based on the following (left)
derivative operator

D−f(x) =
f(x)− f(x− h)

h
= (

1− e−h∂

h
)f(x). (59)
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We define corresponding fractal calculus as

Dα
−f(x) = (D−)αf(x). (60)

In the case of α = −1, we have usual finite difference sum as regularization of
the Riemann integral

D−1
− f(x) = h(f(x) + f(x− h) + f(x− 2h) + ...). (61)

(I believe that) the fractal calculus (and geometry) are the proper language
for the quantume (field) theories, and discrete versions of the fractal calculus
are proper regularizations of the fractal calculus and field theories, [6].
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2.5 Hypergeometric functions

One of the interesting applications of the new calculus is the following repre-
sentation of the hypergeometric functions

F (α, β; γ;x) =
Γ(γ)

Γ(β)Γ(γ − β)

·
∫ 1

0
dttβ−1(1− t)γ−β−1(1− tx)−α

=
Γ(γ)

Γ(β)
Dβ−γ

0,1 (tβ−1(1− tx)−α)

=
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0
dttβ+x∂x−1(1− t)γ−β−1(1− x)−α

=
Γ(γ)

Γ(β)

Γ(β + x∂x)

Γ(γ + x∂x)
(1− x)−α

=
∑
n≥0

(α)n(β)n

(γ)nn!
xn

=
Γ(γ)

Γ(β)

Γ(β + x∂x)

Γ(γ + x∂x)

Γ(α+ x∂)

Γ(α)
ex, (62)

(α)δe
x =

Γ(α+ x∂)

Γ(α)
ex =

1

Γ(α)

∫ ∞

0
dttα−1+x∂xe−tex

=
1

Γ(α)

∫ ∞

0
dttα−1e−tetx =

∑
n≥0

(α)n

n!
xn

=
1

Γ(α)

∫ ∞

0
dttα−1e−(1−x)t = (1− x)−α. (63)

So

F (α, β; γ;x) =
Γ(α+ x∂)

Γ(α)

Γ(β + x∂)

Γ(β)

Γ(γ)

Γ(γ + x∂)
ex

=
(α)δ(β)δ

(γ)δ

ex (64)

with obvious any parameter generalization

F (α1, ...αp; β1, ...βq;x) =
Γ(α1 + x∂) · · · Γ(αp + x∂)

Γ(α1) · · · Γ(αp)

Γ(β1) · · · Γ(βq)

Γ(β1 + x∂) · · · Γ(βq + x∂)
ex

=
∑
n≥0

(α1)n · · · (αp)n

(β1)n · · · (βq)nn!
xn

=
(α1)δ · · · (αp)δ

(β1)δ · · · (βq)δ

ex (65)
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2.6 n-dimensional hypergeometric functions

Let us consider the following generalization of the previous integral represen-
tation of the hypergeometric function (62)

F (α, β1, β2; γ;x1, x2) =
Γ(γ)

Γ(β1)Γ(β2)Γ(γ − β1 − β2)
·∫

d2ttβ1−1
1 tβ2−1

2 (1− t1 − t2)
γ−β1−β2−1(1− t1x1 − t2x2)

−α

=
Γ(γ)

Γ(β1)Γ(β2)

Γ(β1 + δ1)Γ(β2 + δ2)

Γ(γ + δ1 + δ2)
(1− t1 − t2)

−α;

(1− t1 − t2)
−α =

1

Γ(α)

∫ ∞

0
duuα−1e−u(1−t1−t2)

=
∑

n1,n2≥0

(α)n1+n2t
n1
1 t

n2
2

=
(α)δ1+δ2

(α)δ1(α)δ2

(1− t1)
−α(1− t2)

−α

= (α)δ1+δ2e
t1+t2 (66)

So

F (α, β1, β2; γ;x1, x2) =
(α)δ1+δ2

(α)δ1(α)δ2

(γ)δ1(γ)δ2

(γ)δ1+δ2

F (α, β1; γ, x1)F (α, β2; γ;x2)

=
∑

n1,n2

(α)n1+n2(β1)n1(β2)n2

(γ)n1+n2n1!n2!
xn1

1 x
n2
2 (67)

where

1 ≥ t1 + t2 ≥ 0, t1, t2 ≥ 0, δ ≡ x∂ (68)

It is obvious n-dimensional generalization of these formulas.

2.7 Lauricella Hypergeometric functions (LFs)

For LFs (see, e.g. [Miller,1977]), we find the following formulas

FA(a; b1, ..., bn; c1, ..., cn; z1, ..., zn)

=
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c1)δ1 ...(cn)δn

ez1+...+zn

=
(a)δ1+...+δn

(a1)δ1 ...(an)δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T−1(a)F n

= Σm≥0
(a)m1+...+mn(b1)m1 ...(bn)mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...
zmn

n

mn!
,

14



|z1|+ ...+ |zn| < 1;
FB(a1, ..., an; b1, ..., bn; c; z1, ..., zn)

=
(a1)δ1 ...(an)δn(b1)δ1 ...(bn)δn

(c)δ1+...+δn

ez1+...+zn

=
(c1)δ1 ...(cn)δn

(c)δ1+...+δn

F (a1, b1; c1; z1)...F (an, bn; cn; zn)

= T (c)F n

= Σm≥0
(a1)m1 ...(an)mn(b1)m1 ...(bn)mn

(c)m1+...+mn

zm1
1

m1!
...
zmn

n

mn!
,

|z1| < 1, ..., |zn| < 1;
FC(a; b; c1, ..., cn; z1, ..., zn)

=
(a)δ1+...+δn(b)δ1+...+δn

(c1)δ1 ...(cn)δn

ez1+...+zn

=
(a)δ1+...+δn(b)δ1+...+δn

(a1)δ1 ...(an)δn(b1)δ1 ...(bn)δn

F (a1, b1; c1; z1)

...F (an, bn; cn; zn)
= T−1(a)T−1(b)F n = T−1(b)FA

= Σm≥0
(a)m1+...+mn(b)m1+...+mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...
zmn

n

mn!
,

|z1|1/2 + ...+ |zn|1/2 < 1;
FD(a; b1, ..., bn; c; z1, ..., zn)

=
(a)δ1+...+δn(b1)δ1 ...(bn)δn

(c)δ1+...δn

ez1+...+zn

=
(a)δ1+...+δn(c1)δ1 ...(cn)δn

(a1)δ1 ...(an)δn(c)δ1+...δn

F (a1, b1; c1; z1)

...F (an, bn; cn; zn)
= T−1(a)T (c)F n = T (c)FA = T−1(a)FB

= Σm≥0
(a)m1+...+mn(b1)m1 ...(bn)mn

(c1)m1 ...(cn)mn

zm1
1

m1!
...
zmn

n

mn!
,

|z1| < 1, ..., |zn| < 1. (69)

It is interesting problem to find integral representations of these hypergeo-
metric functions. As a first step in this direction, note that previous example
of two dimensional hypergeometric function was LFs - FD for n = 2, so for
general n, we have

FD(a, b1, ...bn; c;x1, ..., xn) =
Γ(c)

Γ(b1)...Γ(bn)Γ(c− b1 − ...− bn)
·∫

dnttb1−1
1 ...tbn−1

n (1− t1 − ...− tn)c−b1−...−bn−1·
(1− t1x1 − ...− tnxn)−a (70)

Next step is to find operators that transform one LF to another and express
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them in terms of integral transformation of the FC. We have

FN = TNDFD, N = A,B,C,

TAD = T−1(c) =
(c)δ1+...+δn

(c1)δ1 ...(cn)δn

TBD = T (a) =
(a1)δ1 ...(an)δn

(a)δ1+...δn

TCD = T−1(c)T−1(b) (71)

These operators reduce to the following one

(a)δf(x) =
Γ(a+ δ)

Γ(a)
f(x)

=
1

Γ(a)

∫ ∞

0
dtta−1e−tf(tx);

(a)−1
δ =

Γ(a)

Γ(δ + 1)
x1−aD1−a;

(a)−1
δ1+...+δn

= (a+ δ1 + ...+ δn−1)
−1
δn
...(a)−1

δ1
(72)

Monomials

Ψ(x1, ..., xn) = xm1
1 ...xmn

n , (73)

are eigenfunctions of the operator T (a)

T (a)Ψ(x1, ..., xn) =
Γ(a)

Γ(a1)...Γ(an)

Γ(a1 +m1)...Γ(an +mn)

Γ(a+m1 + ...+mn)
Ψ (74)

For generalized Euler B-function we have

Bn(a1, ..., an) =
Γ(a1)...Γ(an)

Γ(a1 + ...+ an)

=
∫ 1

0
dt1...dtnt

a1−1
1 ...tan−1

n δ(t1 + ...+ tn − 1), (75)

so, for analytic functions f(x1, ..., xn), when a = a1 + ...+ an,

T (a)f =
1

Bn(a1, ..., an)

∫ 1

0
dtnta1−1

1 ...tan−1
n

·δ(t1 + ...+ tn − 1)f(t1x1, ..., tnxn). (76)

Using this Bn− bien transformation, we obtain an integral formula for FB

FB(a1, ..., an; b1, ..., bn; c; z1, ..., zn) =
Γ(a1 + a2 + ...+ an)

Γ(a1)Γ(a2)...Γ(an)
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·
∫ 1

0
dntta1−1

1 ...tan−1
n δ(t1 + t2 + ...+ tn − 1)

·FD(a1 + ...+ an; b1, ..., bn; c; t1x1, ..., tnxn)

=
Γ(a1 + ...+ an)Γ(c)

Γ(a1)...Γ(an)Γ(b1)...Γ(bn)Γ(c− b1 − ...− bn)

·
∫ 1

0
dtnta1−1

1 ...tan−1
n δ(t1 + t2 + ...+ tn − 1)

·
∫ 1

0
dnyyb1−1

1 ...ybn−1
n (1− y1 − ...− yn)c−b1−...−bn

·(1− t1x1y1 − ...− tnxnyn)−(a1+...+an) (77)

2.8 Riemann ζ - function

Let us consider Riemann ζ - function,

ζ =
∑
n≥1

n−s (78)

Note, that

x∂xn = nxn, (x∂)−sxn = n−sxn, n ≥ 1, (79)

so

(x∂)−s
∑
n≥1

xn =
∑
n≥1

xn

ns
≡ ζ(s, x) = (H)−s x

1− x
,

H = x∂ (80)

than

H−s =
1

Γ(s)

∫ ∞

0
dtts−1e−tH , qHf(x) = f(qx), (81)

so

ζ(s) = ζ(s, 1) =
1

Γ(s)

∫ ∞

0
dtts−1 e−tx

1− e−tx
|x=1

=
1

Γ(s)

∫ ∞

0
dtts−1 1

et − 1
. (82)

Now we consider following finite sum

ZN(α) ≡
N∑

n=1

eαn =
N∑

n=1

qn =
q(1− qN)

1− q
= q[N ]q, q = eα. (83)

Using the Liouville’s case of the fractal calculus, we obtain a compact repre-
sentation of the following Riemann ζ - function’s motivated finite sums

ζN(s) =
N∑

n=1

n−s =
dβ

dαβ
ZN(α)|α→0, β = −s (84)
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3 Field theory applications of FC

Let us consider the following action

S =
1

2

∫
Qv

dxΦ(x)Dα
xΦ, v = 1, 2, 3, 5, ... (85)

Q1 is real number field, Qp, p - prime, are p-adic number fields. In the mo-
mentum representation

S =
1

2

∫
Qv

duΦ̃(−u)|u|αv Φ̃(u), (86)

Φ(x) =
∫

Qv

duχv(ux)Φ̃(u),

D−αχv(ux) = |u|−α
v χv(ux). (87)

The statistical sum of the corresponding quantum theory is

Zv =
∫
dΦe

− 1
2

∫
ΦDαΦ

= det−1/2Dα

= (
∏
u

|u|v)−α/2. (88)

3.1 String theory applications

For (symmetrized, 4-tachyon) Veneziano amplitude we have (see, e.g. [?])

Bs(α, β) = B(α, β) +B(β, γ) +B(γ, α)

=
∫ ∞

−∞
dx|1− x|α−1|x|β−1,

α+ β + γ = 1 (89)

For the p-adic Veneziano amplitude we take

Bp(α, β) =
∫

Qp

dx|1− x|α−1
p |x|β−1

p (90)

Now we obtain the N-tachyon amplitude using fractal calculus. We consider
the dynamics of particle given by multicomponent generalization of the action
(85), Φ → xµ. For the closed trajectory of the particle passing through N
points, we have

A(x1, x2, ..., xN) =
∫
dt

∫
dt1...

∫
dtNδ(t− Σtn)
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v(x1, t1;x2, t2)v(x2, t2;x3, t3)...v(xN , tN ;x1, t1)

=
∫
dx(t)Π(

∫
dtnδ(x

µ(tn)− xµ
n))exp(−S[x(t)])

=
∫

Π(dkµ
nχ(knxn))Ã(k)exp(−S), (91)

where

Ã(k) =
∫
dxV (k1)V (k2)...V (kN)exp(−S),

V (kn) =
∫
dtχ(−knx(t)) (92)

-vertex function.
Motion equation

Dαxµ − iΣkµ
nδ(t− tn) = 0, (93)

in the momentum representation

|u|αx̃µ(u)− iΣnk
µ
nχ(−utn) = 0 (94)

have the solution

x̃µ(u) = iΣkµ
n

χ(−utn)

|u|α
, u 6= 0, (95)

the constraint

Σnkn = 0, (96)

and the zero mod x̃µ
n(0), which is arbitrary. Integration in (91) with respect to

this zero mod gives the constraint (96). On the solution of the equation (93)

xµ(t) = iD−α
t Σnk

µ
nδ(t− tn)

=
i

Γ(α)
Σnk

µ
n|t− tn|α−1, (97)

the action (85) takes value

S = − 1

Γ(α)
Σn<mknkm|tn − tm|α−1,

Ã(k) =
∫

ΠN
n=1dtnexp(−S) (98)

In the limit, α→ 1, for p-adic case we obtain

xµ(t) = −ip− 1

p lnp
Σnk

µ
nln|t− tn|,

S[x(t)] =
p− 1

p lnp
Σn<mknkm ln|tn − tm|,
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Ã(k) =
∫

ΠN
n=1dtnΠn<m|tn − tm|

p−1
p lnp

knkm . (99)

Now in the limit p→ 1 we obtain the proper expressions of the the real case

xµ(t) = −iΣnk
µ
nln|t− tn|,

S[x(t)] = Σn<mknkm ln|tn − tm|,
Ã(k) =

∫
ΠN

n=1dtnΠn<m|tn − tm|knkm . (100)

Note that, by fractal calculus and vector generalization of the model (85),
fundamental string amplitudes were obtained in N.M. 1988, [7].

3.2 Field theory and condensed state physics applica-
tions

In various applications of the renormgroup (RG) method [8, 9], for fractal
space-time with dimension d = n− 2ε, the RG β−function is

β(α, ε) = β(α)− εα. (101)

For any given α (and corresponding scale a), there is the value of ε (fractal
dimension), with

β(α, ε) = 0, ε = β(α)/α, d = n− 2β(α)/α. (102)

In the region of scales with linear β(α) function, we have self similar fractal
space-time, or corresponding physical fields live on the fractal subspace of the
space-time manifold.

One loop perturbative value of β(α) in quantum electrodynamics [10] is

β(α) = β1α
2, β1 =

1

3π
, (103)

so

ε =
1

3π

1

137
= 77.5× 10−5, d = 3.998 < 4. (104)

For one loop perturbative QCD,

β1 = − 9

4π
, (105)

and if we take, e.g., α=0.1,

d = 4.001 > 4. (106)

Fractal dimension of the subspace occupied by a physical field ϕ(x) can be
measured by correlation function

< ϕ(x)ϕ(y) >∼ |x− y|2−d. (107)
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For macroscopic phenomena (e.g. Ball Lightning) we can consider mathe-
matical models of fractals in 4 dimensional space-time manifolds. For hadronic
phenomena (like Fair Ball) we should consider more than 4 dimensional man-
ifolds. One of the possible mechanisms of the sonoluminescence (see e.g. [12])
can be the dimensional phase transition with decreasing scale of the babbles
from the phase with d < 4, to the phase with d > 4.

3.3 Standard Model of Fundamental Interections and
Beyond

After the unification of electro-magnetic and weak interactions in Gleshow-
Weinberg-Salam model with gauge group U(1) × SU(2), [11] a next step is
a unification of electro-magnetic, weak and strong interactions (with gauge
group SU(3)) in a Grand Unification Theory (GUT ), with a simple group G
with one coupling constant g, [11]. A bridge between the electro-magnetic
scale 100 GeV and grand unification scale 1016GeV (Planck scale 1019GeV )
can be provided by supersymmetry [13]. At the scale of unification M, the
U(1), SU(2) and SU(3) coupling constants are equal to g. In Supersymmetric
Generalization of the Standard Model of Fundamental Interactions [15],

α−1
u = 26.3± 1.9± 1.0 (108)

Note that, in this interval, the only prime number is 29. Our proposal is
that the (ultraviolet asymptotic) value α−1

uv is 29.0.., which corresponds to
the (infrared asymptotic) value of the electro-magnetic fine structure constant
α−1 = 137.0...

3.4 Low energy unification

According to the resent (non-) perturbative calculations in QCD, strong cou-
pling constant rise from perturbative to the maximum value of order 2 and
then decrease to the value of order 1 at the scales reached in the lattice cal-
culations. In QED with magnetic monopoles, we have Dirac quantization of
the electric -e, and magnetic -g, charges, eg = 1, so, at the self-dual point,
e = g = 1,

αe = αg =
1

4π
' 0.1 (109)

We propose, that at the self-dual point, and corresponding energy scale, we
have low energy unification of the strong and electro-magnetic coupling con-
stants. It is very interesting to test this possibility with nonperturbative cal-
culations.

Besides that, nonperturbative β−functions define corresponding fractal di-
mensions according to equation (102).
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3.5 Some observations on the coupling constants values

For the dual-symmetric (inverse) value of the electro-magnetic(-strong) inter-
action fine structure constants low energy unification, we have

α−1
D = 4π = 12.57 ' 13

= 22 + 32 = | ± 2± 3i|2 = | ± 3± 2i|2 (110)

For the corresponding higher energy unification value, we have

α−1
GUT = 29

= 22 + 32 + 42 = | ± 2i± 3j ± 4k|2 = ... (111)

where i, j, k are quaternionik unit vectors.
For the electromagnetic fine structure coupling constant, we have

α−1 = 137.0... (112)

For the corresponding twin prime number, we have

139 = 22 + 32 + 42 + 52 + 62 + 72

= | ± 2i± 3j ± 4k ± 5l ± 6n± 7m|2 (113)

where i, j, k, l, n, m are oktvian unit vectors.

3.6 p-adic deformations of classical theories

The electromagnetic fine structure constant

α =
e2

h̄c
(114)

contains (unifies) three fundamental quantities, electron charge e, Plank’s con-
stant h̄, and light velocity c. We usually take units as h̄ = 1, c = 1, but we can
take as well, e = 1, c = 1, h̄ = 137, 0... or e = 1, h̄ = 1, c = 137.0... In this
system of units, h̄ = 137.0...(or c = 137.0...) and quantum perturbation theory
may be p-adic convergent(, correspondingly, relativistic theory, considered as
an expansion in powers of c = 137, is p-adic theory). In this mathematical
sense, the quantum theory is p-adic (phase or part of the unified) theory. Real
phase or part is usual classical (relativistic) theory. The same consideration
on the scale (level) of GUT , in units, g = 1, c = 1, gives a p-adic conver-
gent quantum theory with h̄ = 29. We can consider relativistic and quantum
theories as p-adic deformations of classical theory.
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4 Solution of the Schrödinger equation in terms

of the Feynman continual integrals

A quantum system can be described by corresponding Schrödinger equation

ih̄
d

dt
|ψ >= Ĥ|ψ >, (115)

where |ψ >= |ψ(t) > is the state vector from the state Hilbert space and

Ĥ = H(p̂, x̂) (116)

is an operator-Hamiltonian. In the case of nonrelativistic particle the operator
is

Ĥ = T̂ + V̂ =
p̂2

2m
+ V (x̂), (117)

the fundamental bracket is

[x̂, p̂] = x̂p̂− p̂x̂ = ih̄. (118)

The configuration space form of Eq. (115) is

ih̄
∂ψ(x, t)

∂t
= Ĥψ(x, t), (119)

where

ψ(x, t) =< x|ψ(t) > (120)

and Hamiltonian is

Ĥ = − h̄2

2m

d2

dx2
+ V (x). (121)

In the momentum space, we have

ih̄
∂ψ(p, t)

∂t
= Ĥψ(p, t), (122)

where

ψ(p, t) =< p|ψ(t) > (123)

and Hamiltonian is

Ĥ =
p2

2m
+ V (i

d

dp
). (124)
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With proper normalization,

1 =< ψ(t)|ψ(t) >=< ψ(t)|
∫
dx|x >< x|ψ(t) >

=
∫
dxψ∗(x, t)ψ(x, t) =

∫
dx ρ(x, t) = 1

1 =< ψ(t)|
∫
dp|p >< p|ψ(t) >

=
∫
dp ψ∗(p, t)ψ(p, t) =

∫
dp ρ(p, t) >= 1, (125)

where

ρ(x, t) = ψ∗(x, t)ψ(x, t) (126)

and

ρ(p, t) = ψ∗(p, t)ψ(p, t) (127)

are the probability densities of finding the particle at the point x and p corre-
spondingly.

The formal solution of Eq. (115) is

|ψ(t) >= U(t)|ψ0 >, (128)

where

U(t) = exp (− i

h̄
tĤ). (129)

The main steps made (maid in Qt) are the following:

U(t) = (U1/N)N = (UTUV )N +O(1/N), (130)

where

U1/N = U(τ) = exp (−θĤ) = exp (−θT̂ )exp (−θV̂ ) +O(1/N2)

= UTUV +O(1/N2), θ =
i

h̄
τ, τ =

t

N
. (131)

Then, for a corresponding matrix element we have (see Appendix)

< xn+1|U(τ)|xn >∼ exp (θ(
m

2
(
xn+1 − xn

τ
)2 − V (xn))) +O(1/N2) (132)

and

< xout|U(t)|xin >=
∫
dx0dx1dx2...dxN < xout|xN >< xN |U(τ)|xN−1 > .
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. < xN−1|U(τ)|xN−2 > ... < x1|U(τ)|x0 >< x0|xin >

∼
∫
dx1dx2...dxN−1exp (

i

h̄
τ

N−1∑
n=0

(
m

2
(
xn+1 − xn

τ
)2 − V (xn))) +O(1/N),

x0 = xin, xN = xout. (133)

This finite dimensional integral representation of the matrix element is in
the ground of the functional (continual) integral formulation of the quantum
theory.
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5 Density of states description of the statisti-

cal systems

If we take the trace of the transition amplitude

< out|exp(− i

h̄
Ĥ)|in >, (134)

∑
sn

< sn|U(t)|sn >=
∑
n,m

< sn|Em >< Em|sn > exp(− i

h̄
Em)

=
∑
Em

N(Em)e−βEm =
∫ ∞

0
dEρ(E)e−βE = ρ(Ec)e

−βEc = e−βF = Z(β),

F = Ec − TS, S = lnρ(Ec), ∂S/∂E = T−1 = β (135)

For density of states we have

ρ(E) =
∑
Em

N(EM)δ(E − EM) =
∑
m

δ(E − Em) = tr(E − Ĥ)

=
1

2πih̄

∫ +∞

−∞
dte

i
h̄

tEtr(e−
i
h̄

tĤ) (136)

Note, that in this type of expressions, we clearly see the origin of the energy -
time uncertainty relation, ∆E∆t ∼ 2πh̄.

If there are besides of the energy other integrals of motion, N1, ..., Nk,

ρ(E,N1, ..., Nk) = tr(δ(E − Ĥ) δ(N1 − N̂1) ... δ(Nk − N̂k)) (137)

5.1 High energy, Barion number, Temperature,..., ap-
proximation

Let us take the hamiltonian form of the functional integral

tre−
i
h̄

tĤ =
∫

x(0)=x(t)

dxdp

2πh̄
e

i
h̄

∫ t

0
(pẋ−H(p,x)) (138)

For higher energy, small time and static approximation we have

ρ(E) =
1

2πih̄

∫ +∞

−∞
dte

i
h̄

tEtr(e−
i
h̄

tĤ)

=
1

2πih̄

∫ +∞

−∞
dte

i
h̄

tE
∫ dxdp

2πh̄
e−

i
h̄

tH(p,x) =
∫ dxdp

2πh̄
δ(E −H(p, x))

=
∫ dx

2πh̄

2m√
2m(E − V (x))

(139)

The number of states

N =
∫
dEρ(E) =

∫ dxdp

2πh̄
(140)
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Exercise: Show that for harmonic oscillator,

H(p, x) =
p2

2m
+
kx2

2
,

ρ(E) =

√
m

k
= ω−1;

N(E) =
∫ E

0
dEρ(E) =

E

h̄ω
(141)

5.2 Exactly solvable model with maximal temperature

As we have seen, at high energy and temperature, we have classical statistical
description

Z(β) =
∫ dDxdDp

(2π)D
e−βH(p,x) = (

m

2πβ
)D/2

∫
dDxe−βV (x) (142)

For potential of the form

V (x) = 0, 0 ≤ |x| ≤ a,

= b · ln |x|
a
, |x| > a, (143)

we have

Z(β) = (
m

2πβ
)D/2 ΩD

D

aDβb

βb−D
(144)

So the temperature of the system is restricted by condition

T = β−1 < b/D ≡ TH (145)

Statistical energy of the system is

E = Ec = −∂lnZ(β)

∂β

=
D/2− 1

β
+

1

β −D/b
(146)

The case when E = 0 corresponds to a self supporting, non expending, no
collapsing state of the system at the temperature

βN =
2

b
(
D

2
− 1) =

D

b
− 2

b
< βH (147)

Note, that normal temperature is positive, corresponds to the stable state,
for D > 2, and decrees with dimension, from infinity to zero. So it is easy
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(easier)to crate higher dimensional normal states. The volume of the system
is

Vc =

∫
dxdpV e−βH∫
dxdpe−βH

=
ΩD

D

∫ a
0 dxx

2D−1 +
∫∞
a dxx2D−1(a

x
)bβ

Z(β)

=
ΩD

D
aD bβ −D

2(bβ − 2D)
, VN =

V (a)

D + 2
(148)

The volume has positive value, for T > T2 = b/D or T < T1 = b/2D, TN > T2.
This Normal state can not be reached by rising continually temperature of

the system. In the corresponding realistic models, e.g. for a heavy nucleus,
we can obtain such a state in high energy collisions. To this kind of physical
states may be ascribed ball lightning. Probably famous Tunguska Event was
a Big ball lightning explosion.
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5.3 n-field or toy standard model of condensed state
and particle physics

One of the most popular nonlinear model of the higher energy physics and
condensed state physics the n-field model, is given by the following lagrangian

L =
1

2
∂µn

a∂µna, n2 = n2
1 + n2

2 + ...+ n2
N = 1,

a = 1, 2, ..., N ; µ = 0, 1, ..., D. (149)

The interaction parameter, coupling constant, can be invented in this way.
First we consider a constraint with this parameter,

n2 =
1

α
, (150)

than invent this constraint in the lagrangian by lagrange multiplier field, and
make scaling transformation of n-field,

L =
1

2
∂µn

a∂µna + λ(n2 − 1

α
) ⇒ 1

α
(
1

2
∂µn

a∂µna + λ(n2 − 1)). (151)

Now we can escribe the distinguished values of the fine structure constants

α−1 = 13; 29; 139, (152)

to the N = 2, 3, 6 and corresponding values of n-fields

13 = 22 + 32, 29 = 22 + 32 + 42, 139 = 22 + 32 + 42 + 52 + 62 + 72 (153)

It maybe better also to consider lattice dynamics with the following lagrangian
and corresponding lattice action

L =
1

2
(n(k + µ̂)− n(k)))2 + λ(n2 − 1

α
)

⇒ −
∑
k,µ

n(k + µ̂)n(k) + λ(k)(n(k)2 − 1

α
) (154)

We can further extend the constraint therm in the action inventing three dif-
ferent lagrange multipliers

S = −
∑
k,µ

n(k + µ̂)n(k) + λ1(k)(n1(k)
2 + n2(k)

2 − 13))

+λ2(k)(n3(k)
2 − 42)

+λ3(k)(n4(k)
2 + n5(k)

2 + n6(k)
2 − 10(10 + 1)))

⇒ − 1

α1

(
∑

k,µ,a=1,2

na(k + µ̂)na(k) + λ1(k)(n1(k)
2 + n2(k)

2 − 1))
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− 1

α2

(
∑
k,µ

n4(k + µ̂)n4(k) + λ2(k)(n4(k)
2 − 1))

− 1

α3

(
∑

k,µ,a=4,5,6

na(k + µ̂)na(k)

+λ3(k)(n4(k)
2 + n5(k)

2 + n6(k)
2 − 1)) (155)

In this form, the action contains also other possibilities of discrete dynamics
(phase) including

n2
1 = α1

−1 = 4, n2
2 + n2

3 = α2
−1 = 25 (156)

In some GUT models, this value of α2 is preferable as unification point
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5.4 Soliton solutions

Let us consider the following deformation of the N = 3 n-field model (Leese,
1991; Bogolubsky; N.M. 1997)

L = ∂µn
a∂µna −m2(1− n2

3), n
2 = n2

1 + n2
2 + n2

3 = 1,
a = 1, 2, 3; µ = 0, 1, ..., D. (157)

It is convenient to introduce new field variable

z =
n1 + in2

1 + n3

,

n1 =
z̄ + z

1 + |z|2
, n2 =

i(z̄ − z)

1 + |z|2
, n3 =

1− |z|2

1 + |z|2
. (158)

The n-field given by this expression is on the unit sphere. The new complex
variable z is not constrained any more. The lagrangian in z variable takes form

L = 4
|∂µz|2 −m2|z|2

(1 + |z|2)
. (159)

Corresponding motion equation is

(1 + |z|2)zµ
µ − 2z̄zµz

µ +m2(1− |z|2)z = 0. (160)

For radially symmetric solutions the motion equation takes the following form

(1 + |z|2)(∂2
τ − ∂2

η)z − 2z̄((∂τz)
2 − (∂ηz)

2) +m2r2(D−1)(1− |z|2)z = 0 (161)

where

τ =
t

rD−1
, η =

r2−D − r2−D
0

2−D
, D 6= 2

τ =
t

r
, η = ln

r

r0
, D = 2. (162)

If we consider variable mass parameter, so that

m(r)rD−1 = m0r
D−1
0 = const, (163)

dependence of the motion equation on the dimension of the space becomes
implicit through the variables τ and η. So, the D-dimensional problem reduces,
for example, to one-dimensional one. Now we have the following particle-like
solution of our motion equation

z(τ, η) = eiωτz(η),

z(η) = e±bη, b =
√
m2

0r
2(D−1)
0 − ω2. (164)
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In the case of D = 2,

z(t, r) = ei ω
r

t(
r

r0
)±b; (165)

when D = 3,

z(t, r) = ei ω
r2 te

±b( 1
r0
− 1

r
)

(166)

We can also consider 0 < D < 1,

z(t, r) = eiωr1−Dte±bη. (167)

For D = 1, η = x ∈ (−∞,+∞).
Note that, near conformal dimension, D = 2 + ε, we can interpret variable

mass as renormalized one,

m(r) = m0(
r

r0
)ε = zm0, z = 1 + εln(

r

r0
) + ... (168)
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5.5 Sphaleron solutions

Let us consider another modification of the n-field model

L = ∂µn
a∂µna − 2m2(1− n3), n

2 = n2
1 + n2

2 + n2
3 = 1,

a = 1, 2, 3; µ = 0, 1, ..., D. (169)

The lagrangian and motion equation, in z-field formulation are

L = 4
|∂µz|2 −m2(1 + |z|2)|z|2

(1 + |z|2)
,

(1 + |z|2)zµ
µ − 2z̄zµz

µ −m2(1 + |z|2)z = 0. (170)

For radially symmetric solutions the motion equation takes form

(1 + |z|2)(∂2
τ − ∂2

η)z)− 2z̄((∂τz)
2 − (∂ηz)

2)−m2r2(D−1)(1 + |z|2)z = 0. (171)

Motion equation, for variable mass of the type

mrD−1 = m0r
D−1
0 = b = const, (172)

has the following static solution (N.M. 2008 )

z = −sh(bη), n1(η) = −2sh(bη)

ch2(bη)
, n2 = 0, n3(η) =

2

ch(bη)
− 1 (173)

where

τ =
t

rD−1
, η =

r2−D − r2−D
0

2−D
, D 6= 2

τ =
t

r
, η = ln

r

r0
, D = 2. (174)

5.6 Energy of the Sphaleron

The energy functional is

H =
∫ r

r0

dxD4
|∂tz|2 + |∂xz|2 +m2(1 + |z|2)|z|2

(1 + |z|2)
, (175)

For the sphaleron solution we obtain

ESph = 4ΩD

∫ r

r0

drrD−12m2(r) =
8D

D − 2
V0m

2
0(1− (

r0
r

)D−2),

V0 = VD(r0) =
π

D
2

Γ(1 + D
2
)
rD
0 . (176)

For D = 2,

E = 16πm2
0r

2
0 · ln(

r

r0
) (177)

For D < 2, For the sphaleron solution we obtain

ESph =
8D

2−D
V0m

2
0((

r

r0
)2−D − 1) (178)
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6 Strings at higher energy, density, tempera-

ture

We can use for the thermodynamic description of the strings the formalism
developed in previous sections (N.M. 1987)

Z(β) = treβĤ = tr
∫ ∞

0
dEδ(E − Ĥ)e−βE

=
∫ ∞

0
dEρ(E)e−βE,

ρ(E) = trδ(E − Ĥ) =
1

2π

∫ +∞

−∞
dteitEtre−itĤ , (179)

where

tre−itĤ =
∫
Φ0=Φt

dΦeiS(Φ), (180)

Φ is string field.
In leading order in perturbative theory, string Hamiltonian, H, is direct

sum of the free - field Hamiltonians for each particle degree of freedom (of the
single - string Fock space).

The spectrum of a string (in perturbation theory) at a given high energy
has exponential degeneracy. For a single string of energy E the density of
states grows as

%(E) ∼ eβHE, (181)

where βH ∼ ls is of the order of the string length scale. Its entropy is

S(E) = ln ρ(E) ∼ βHE; (182)

effective temperature

1

T
=
∂S

∂E
∼ βH (183)

String theory manifests upper bound on the value of the temperature of the
string gas - Hagedorn temperature.

A limiting temperature was first observed in the dual theory of hadrons and
the first physical interpretation was offered in the QCD theory of hadrons. Here
instead of being an actual limiting temperature its presence suggests a change
in the relevant degrees of freedom. A change resulting in a phase transition
from composite objects to their constituents. The Hagedorn temperature in
hadronic systems is related to a deconfinement transition into new phase -
Gluquar(k) in which hadron liberate their quark-gluon constituents.

This QCD analogy is a recurrent theme when thinking about the funda-
mental strings of gravity and their possible constituents.
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Appendix

1. In the main text of this paper we used the following relation:

eεAeεBe−εAe−εB = eε2[A,B] +O(ε3). (184)

The relation

(1 + εA)(1 + εB)(1 + εA)−1(1 + εB)−1 = (1 + ε2[A,B]) +O(ε3)

= eε2[A,B] +O(ε3), (185)

also maybe useful.
2. For coordinate and momentum state vectors, correspondingly |x > and

|p >,

x̂|x >= x|x >, p̂|p >= p|p >,
< p|x >= ψx(p) =

1√
2πh̄

exp (− i

h̄
px), x̂ψx(p) = ih̄

∂

∂p
ψx(p) = xψx(p),

< x|y >=
∫
dp < x|p >< p|y >=

∫ dp

2πh̄
exp (

i

h̄
p(x− y))

= δ(x− y). (186)

Now we calculate the following matrix element

< xn+1| exp (−ap̂2)|xn > =
∫
dDp < xn+1|p >< p|xn > exp (−ap2)

=
∫ dDp

(2πh̄)D
exp (i

p(xn+1 − xn)

h̄
− ap2) =

AD

(2πh̄)D
exp (−(xn+1 − xn)2

4ah̄2 ), (187)

where in the case of the quantum mechanics of the particle, (131)

a = i
t

2mh̄N
(188)

A =
∫
dp exp (−ap2) =

√
π

a
. (189)
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