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Introduction

We’ll discuss some features of time dependent fields
on the basis of kinetic approach.

The low-momentum problem in the π-meson physics
will be considered as an example.
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Some kinetics of scalar filed with time dependent mass

The equation of motion

[∂µ∂
µ + m2(t)]ϕ(x) = 0.
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Some kinetics of scalar filed with time dependent mass

The equation of motion

[∂µ∂
µ + m2(t)]ϕ(x) = 0.

The Lagrange function is

L =
1

2
∂µφ∂µφ− 1

2
m2(t)φ2.

From the assumption of space homogeneity

ϕ(x) =
1√
V

∑
p

eipxϕ(p, t).

Then the oscillator-type equation of motion is follows

ϕ̈(±) + ω2(p, r)ϕ(±) = 0,

where ω(p, t) =
√

m2(t) + p2 is the one-particle energy. The symbols (±) correspond
to the positive and negative frequency solution, defined by its free asymptotics in the
infinite past (future)

ϕ(±)(p, t → ∓∞) ∼ e±iω∓t,

where ω∓ =
√

m2
∓ + p2 and asymptotic mass is m∓ = lim

t→∓∞
m(t).
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Some kinetics of scalar filed with time dependent mass

Quasi particle representation

ϕ(x) =
1√
V

∑
p

1√
2ω(p, t)

eipx
{

a(−)(p, t) + a(+)(−p, t)
}
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Some kinetics of scalar filed with time dependent mass

Quasi particle representation

ϕ(x) =
1√
V

∑
p

1√
2ω(p, t)

eipx
{

a(−)(p, t) + a(+)(−p, t)
}

and the generalized momenta

π(x) = − i√
V

∑
p

√
ω(p, t)

2
eipx

{
a(−)(p, t)− a(+)(p, t)

}
,

where a±(p, t) are the positive and negative frequency amplitudes.
This constraints are the basis of nonperturbative dynamics.
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where a±(p, t) are the positive and negative frequency amplitudes.
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The substitution into the Hamiltonian

H(t) =
1

2

∫
d3x{π2(x) + [∆ϕ(x)]2 + m2(t)ϕ2(x)}
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Some kinetics of scalar filed with time dependent mass

Quasi particle representation

ϕ(x) =
1√
V

∑
p

1√
2ω(p, t)

eipx
{

a(−)(p, t) + a(+)(−p, t)
}

and the generalized momenta

π(x) = − i√
V

∑
p

√
ω(p, t)

2
eipx

{
a(−)(p, t)− a(+)(p, t)

}
,

where a±(p, t) are the positive and negative frequency amplitudes.
This constraints are the basis of nonperturbative dynamics.

The substitution into the Hamiltonian

H(t) =
1

2

∫
d3x{π2(x) + [∆ϕ(x)]2 + m2(t)ϕ2(x)}

leads to diagonal form, which corresponds to the QPR,

H(t) =
1

2

∑
p

ω(p, t)
{

a(+)(p, t)a(−)(p, t) + a(−)(p, t)a(+)(p, t)
}
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Some kinetics of scalar filed with time dependent mass

The relevant equations of motion

ȧ(±)(p, t) =
1

2
∆(p, t)a(∓)(−p, t)∓ iω(p, t)a(±)(p, t),

where

∆(p, t) =
ω̇(p, t)

ω(p, t)
=

m(t)ṁ(t)

ω2(p, t)

is the transition amplitude between states with positive and negative energies.
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Some kinetics of scalar filed with time dependent mass

The relevant equations of motion

ȧ(±)(p, t) =
1

2
∆(p, t)a(∓)(−p, t)∓ iω(p, t)a(±)(p, t),

where

∆(p, t) =
ω̇(p, t)

ω(p, t)
=

m(t)ṁ(t)

ω2(p, t)

is the transition amplitude between states with positive and negative energies.
The canonical commutation relation

[ϕ(x), π(x′)]t=t′ = iδ(x− x′)

forms the standard commutation relation for time dependent creation and annihilation
operators

[a(−)(p, t), a(+)(p′, t)] = δpp′
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Some kinetics of scalar filed with time dependent mass

The corresponding Hamilton operator will be equal

H(t) =
∑
p

ω(p, t)

{
a(+)(p, t)a(−)(p, t) +

1

2

}
The equation of motion can be rewritten as the Heisenberg-type equation

ȧ(±)(p, t) =
1

2
∆(p, t)a(∓)(−p, t) + i

[
H(t), a(±)(p, t)

]
.
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Kinetic equation

The quasiparticle distribution function for the space homogeneous case

f(p, t) =< 0 | a(+)(p, t)a(−)(p, t) | 0 > .
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Kinetic equation

The quasiparticle distribution function for the space homogeneous case

f(p, t) =< 0 | a(+)(p, t)a(−)(p, t) | 0 > .

Using the equation of motion

ḟ(p, t) =
1

2
∆(p, t)

{
f (+)(p, t) + f (−)(p, t)

}
,

where auxiliary correlation functions is introduced

f (+)(p, t) =< 0 | a(+)(p, t)a(+)(−p, t) | 0 >,

f (−)(p, t) =< 0 | a(−)(−p, t)a(−)(p, t) | 0 > .
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Kinetic equation

The quasiparticle distribution function for the space homogeneous case

f(p, t) =< 0 | a(+)(p, t)a(−)(p, t) | 0 > .

Using the equation of motion

ḟ(p, t) =
1

2
∆(p, t)

{
f (+)(p, t) + f (−)(p, t)

}
,

where auxiliary correlation functions is introduced

f (+)(p, t) =< 0 | a(+)(p, t)a(+)(−p, t) | 0 >,

f (−)(p, t) =< 0 | a(−)(−p, t)a(−)(p, t) | 0 > .

Finally, the kinetic equation in integral form is

ḟ(p, t) =
1

2
∆(p, t)

t∫
t0

dt′∆(p, t)[1 + 2f(p, t)] cos[2θ(p; t, t′)],

where the dynamical phase is equal

θ(p; t, t′) =

t∫
t′

dτω(p, τ).
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Assumptions:

The following mechanisms are taken into account:
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Assumptions:

The following mechanisms are taken into account:

• σ-mesons decaying into 2π-mesons;

• inertial mechanism of σ-meson vacuum produc-
tion stipulated by fast change of its masses;

• and the cooling of the expanding system.
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Limitations

We use the limitations:
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Limitations

We use the limitations:

- the masses of σ-mesons are taken in framework
of NJL model.
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Limitations

We use the limitations:

- the masses of σ-mesons are taken in framework
of NJL model;

- the decay rate Γσ→ππ is calculated with zero den-
sity approximations in framework of σ-mesons.
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Scenario

We use simple hydrodynamic model (based on the Bjorken’s scenario) for
description the evolution of the system from initial stage to freeze out.

⇒ T (t)
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NJL model ⇒ Mσ(T )

and hence Mσ(T (t))
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The kinetics of σ − π subsystems

The kinetic equation for π-mesons:

ḟπ = Iex
π + Iσ→ππ

π ,

where

Iex
π = ḟ eq

π .

where f eq
π is an equilibrium Bose-Einstein distribution and

Iσ→ππ
π =

∫
dp1dp1

ωπ(p1, t)ωσ(p2, t)
Γσ→ππ(~p2,p,p1; t)×

×fσ(p2, t)[1 + fπ(p1, t)][1 + fπ(p, t)]×

×δ{ωσ(p2, t)− ωπ(p, t)− ωπ(p1, t)}δ(p2 − p− p1)

is the coming term in π-mesons subsystem and

ωα =
√

M 2
α + p2

α

where α = σ or π
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The kinetic equation for σ-mesons:

ḟσ = Iex
σ + Iσ→ππ

σ + Ivac
σ ,

where

Iex
σ = ḟ eq

σ .

where f eq
σ is an equilibrium Bose-Einstein distribution and

Iσ→ππ
σ = −

∫
dp1dp1

ωπ(p1, t)ωπ(p2, t)
Γσ→ππ(p,p1,p2; t)×

×fσ(p, t)[1 + fπ(p1, t)][1 + fπ(p2, t)]×

×δ{ωσ(p, t)− ωπ(p1, t)− ωπ(p2, t)}δ(p− p1 − p2),

is the lost term in σ-mesons subsystem



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The last term Ivac
σ in kinetic equation is the source term for the σ-meson creation, stipu-

lated by its mass change

Ivac
σ (p, t) =

1

2
∆σ(p, t)

∫ t

t0

dt′∆σ(p, t′)[1 + 2fσ(p, t′)] cos[2θσ(p; t, t′)],

where

∆σ(p, t) =
ω̇σ(p, t)

ωσ(p, t)
=

Mσ(t)Ṁσ(t)

ω2
σ(p, t)

is the transition amplitude between states with positive and negative energies and

θσ(p; t, t′) =

∫ t

t′
dt′′ωσ(p, t′′).
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Results
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