

Welcome to the Graphene Flagship website

This pilot action GRAPHENE-CA paves the road to the FET Flagship "Graphene-Driven Revolutions in ICT and Beyond" (GRAPHENE). The GRAPHENE flagship ambition is to bring together a focused, interdisciplinary European research community that aims at a radical technology shift in information and communication technology that exploits the unique properties of graphene and related two-dimensional materials. Graphene research is an example of an emerging translational nanotechnology where discoveries in academic laboratories are rapidly transferred to applications and commercial products. Graphene and related materials have the potential to make a profound impact in ICT in the short and long term: Integrating graphene components with silicon-based electronics, and gradually replacing silicon in some applications, allows not only substantial performance improvements but, more importantly, it enables completely new applications.

Luigi Colombo, Texas Instruments

Albert Fert, University Paris-Sud, Orsay

Andre (Konstantin) Geim, FRS

Konstantin Novoselov, FRS

Klaus von Klitzing, Braunschweig Technical Univ

Francisco (Paco) Guinea, Instituto de Ciencia de Materiales de Madrid

> Byung Hee Hong, Pohang University of Science and Technology

Graphene related groups (546)

	1 CHALMERS UNIVERSITY OF TECHNOLOGY	СИТ	Sweden
	2 THE UNIVERSITY OF MANCHESTER	UNIMAN	United Kingdom
	3 LANCASTER UNIVERSITY	UNILAN	United Kingdom
	4 THE UNIVERSITY OF CAMBRIDGE	UCAM_DENG	United Kingdom
	5 AMO GMBH	ΑΜΟ	Germany
	6 CATALAN INSTITUTE OF NANOTECHNOLOGY	ICN	Spain
	7 NATIONAL RESEARCH COUNCIL OF ITALY	CNR	Italy
	8 NOKIA OYJ	NOKIA	Finland
	9 EUROPEAN SCIENCE FOUNDATION	ESF	France

J. Kinaret

V. Falko

A. Ferrari

S. Roche

J. Kivioja

A. Helman

Графен: уникальный материал или напрасные ожидания?

Графен представляет собой плоский лист толщиной в один атом, образованный sp2-связанными углеродными атомами, плотно упакованными в кристаллическую решетку пчелиных сот... Графен можно рассматривать как предельную по размеру ароматическую молекулу, относящуюся к семейству полициклических ароматических углеводородов, называемых графенами. Wikipedia. Graphene

Молекулярно-кристаллический дуализм

Графен – 2D кристалл

Графен – молекула

Стратегия вычислительной графеники

Graphene possesses both 2D crystalline and peculiar molecular properties

Two theoretical approaches should be applied: •2D Solid state theory •Molecular theory

Main concepts of the solid-state theory of graphene:

- Atomically structured unit cell and/or supercell + periodic boundary conditions;
 DFT scheme applied to the cell and/or supercell;
- 3. Molecular dynamics + periodic boundary conditions to involve T-dependence;
- **4**. **k**-vector dependent electronic, magnetic, dynamic, mechanic properties.

В твердотельном подходе нет ничего необычного, что указывало бы на лабильность свойств графена

Main concepts of the molecular theory of graphene:

 Atomically structured molecule;
Both HF and DFT schemes applied to the molecule;

3. Molecular dynamics without periodic boundary conditions to involve T-dependence;

4. Molecular properties:

Electronic structure;

Chemical modification;

Magnetism;

Deformation as a mechanochemical reaction;

Vibration-induced mechanical transformation;

Donor-acceptor contribution into intermolecular interaction;

Электронно не насыщенная природа молекулы графена ('лишние' электроны) дает основания полагать, что именно в этом месте кроется загадка изменчивости свойств графена

Лекция 1: Молекулярная теория sp² наноуглеродов

- •Объекты;
- •Основные проблемы: наличие «лишних» электронов и взаимодействие между ними;
- •Теория «лишних» электронов;
- •Вычислительная реализация теории через системный компьютерный эксперимент

Odd electrons as the main problem of the sp² nanocarbons' electronics

The problem has existed since 1825 when Sir M.Faraday discovered benzene C_6H_6

1925г. Хюккель предложил гипотезу о пи-электронах

In 2010 Sir A.Geim and Sir K. Novoselov were awarded by the Nobel Prize for the benzenoid-based graphene

Odd electrons correlation

•Сегодня однодетерминантные вычислительные схемы на основе алгоритмов «открытой оболочки» Хартри-Фока или DFT являются единственной альтернативой *практически* значимых расчетов многоатомных систем (N_{at}>30-40);

•Для электронно-коррелированных систем полученные решения не являются точными (они смешаны по спину);

•Возникает вопрос: какую надежную информацию об электронно-коррелированной системе можно получить с помощью вычислительных схем UHF или UDFT?

Ответ 1

Приближение испорченной (broken) симметрии на основе UHF и UDFT вычислительных схем позволяет рассчитать точные значения энергий чисто спиновых состояний системы

$$E^{ps}(0) = E_B(0) + S_{\max}J$$

Обменный интеграл, или магнитная константа

$$J = \frac{E_B(0) - E(S_{\max})}{S_{\max}^2}$$

Ответ 2

Приближение испорченной (broken) симметрии на основе UHF и UDFT вычислительных схем позволяет рассчитать точные значения магнитной константы, которая лежит в основе количественного описания молекулярного магнетизма

$$J = \frac{E_B(0) - E(S_{\max})}{S_{\max}^2}$$

Магнетизм наноуглеродов

Основное состояние всех НУ синглетное, поэтому их намагничивание может быть только наведенным за счет примешивания выше лежащих высоко спиновых состояний к синглетному в результате, напрмер, приложения внешнего магнитного поля (эффект Ван Флека).

Эффективность примешивания определяется по теории возмущения энергетическим знаменателем, определяющим разность энергий чисто спиновых состояний, пропорциональную магнитной константе J.

Заметный магнитный отклик возможен только при $J \sim 10^{-2}$ - 10^{-3} kcal/mol

Ответ 3

Эффективно не спаренные электроны – новая характеристика sp² наноуглеродов

Single-determinant approx broken spin-symmetry approx (UHF and UDFT) Solution is spin-contaminated $C = \left\langle \hat{S}^2 \right\rangle - S(S+1)$ Loewdin symmetry dilemma: extra spin density effectively unpaired electrons $N_D = tr D(r|r')$ Hartree-Fock approximation $N_{D} = 2\left(\left\langle S^{2} \right\rangle - \frac{\left(N^{\alpha} - N^{\beta}\right)^{2}}{2}\right) \qquad N_{D} = \sum_{i=1}^{NORBS} D_{ij}, \qquad \text{molecular chemical susceptibility}$ $N_{DA} = \sum_{i \in A} \sum_{B=1}^{NAT} \sum_{i \in B} D_{ij},$ atomic chemical susceptibility No similar quantities in DFT

Answer 3

3. Effectively unpaired electrons are a physical reality

The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy

28 AUGUST 2009 VOL 325 SCIENCE

Leo Gross, 1* Fabian Mohn, 1 Nikolaj Moll, 1 Peter Liljeroth, 1,2 Gerhard Meyer1

Olympicene and experimental plotting of the effectively unpaired electrons distribution

Science Daily: May 28, 2012

'Chemical portrait' (RUDN-Moscow, June 1, 2012).

Atom-resolved STM image of a free standing graphene flake

A new solution to graphene production

Jonathan Coleman

A liquid phase process for making defect-free graphene in high yield could pave the way for superfast transistors.

24 November 2008, SPIE Newsroom. DOI: 10.1117/2.1200810.1336

N_{DA} distribution over atoms of (15,12) nanographene with non-terminated edges

N_{DA} distribution over atoms of a fragment cut off (15,12) nanographene with non-terminated edges

N_{DA} distribution over atoms of (15,12) nanographene with single-H-terminated edges

Ответ 4

Корреляция неспаренных электронов определяется длиной химической связи

Number of effectively unpaired electrons N_D in diatomic molecules and ethylene as a function of the distance between nuclei

Наноуглероды и их кремниевые аналоги

The creation of unpaired electrons in due course of the C=C bond stretching until breaking

Ответ 5

Открытый взгляд на химическое модифицирование наноуглеродов и его компьютерное моделирование

Полное число эффективно не спаренных электронов

$$N_D = 2\left(\left\langle S^2 \right\rangle - \frac{\left(N^{\alpha} - N^{\beta}\right)^2}{2}\right) \qquad N_D = \sum_{i, j=1}^{NORBS} D_{ij},$$

molecular chemical susceptibility

Парциальное число эффективно не спаренных электронов

$$N_{DA} = \sum_{i \in A} \sum_{B=1}^{NAT} \sum_{j \in B} D_{ij},$$

atomic chemical susceptibility

Химические портреты наноуглеродов

Наноуглеродные трубки

(5, 5) нанографен

Ответ 6 Механохимия и корреляция электронов

- •Статическая девормация как результат натяжения химических связей
- •Динамическая деформация как механохимическая реакция в результате приложения напряжения

Ответ 7 Топологические особенности наноуглеродов

Структурная нежесткость НУ как результата влияния корреляции электронов на connectivity и adjacency

Barrier of the dimer dissociation

Figure 4. Profile of the barrier of the C_{60} dimerization (Sheka, Shaymardanova 2011b).

1.
$$E_{cpl}^{tot}(R_{CC})$$
;

2.
$$E_{def}^{tot}(R_{CC})$$
 ;

3. $E_{\mathrm{cov}}^{\mathrm{tot}}(R_{CC})$.

Profile of the barrier of the $[C_{60}+(4, 4)]$ CNB dissociation (CNB 5).

- 1. $E_{cpl}^{tot}(R_{CC})$
- 2. $E_{def}^{tot}(R_{CC})$
- 3. $E_{\rm cov}^{tot}(R_{CC})$

Profile of the barrier of the $[C_{60}+(9, 8)]$ GNB dissociation (GNB 8).

- 1. $E_{cpl}^{tot}(R_{CC})$
- 2. $E_{def}^{tot}(R_{CC})$
- 3. $E_{\rm cov}^{tot}(R_{CC})$

Intermolecular C-C distance, A

Лекция 2: Коррелированные электроны графена

- •Как определить наличие корреляции;
- •Магнетизм графена;
- •Гидрирование графена;
- •Окисление и восстановление графена

Как определить, являются ли электроны коррелированными?

Критерий 1: рассогласованность энергий

$$\Delta E^{RU} \ge 0 \qquad \Delta E^{RU} = E^R - E^U$$

Критерий 2: появление эффективно не спаренных электронов

$$N_D \neq 0$$
 $N_D = trD \langle r' \rangle \neq 0$ $N_D = \sum_A D_A$

Критерий 3: рассогласованность квадрата спина $\Delta S^2 \ge 0$ $\Delta S^2 = S_U^2 - S(S+1)$

Применение корреляционных критериев к графеновым фрагментам разного размера

Table 1. Identifying parameters of the odd electrons correlation in graphene fragments

Fragment	Odd electrons	$\Delta E^{RU 1}$		N _D		▲ € ²	J^3
(n_a, n_z)	N _{odd}	kcal/mol	δE^{RU} % ²	e	$\delta N_D \%^2$	ΔS_U	kcal/mol
(5, 5)	88	307	17	31	35	15.5	-1.429
(7, 7)	150	376	15	52.6	35	26.3	-0.888
(9, 9)	228	641	19	76.2	35	38.1	-0.600
(11, 10)	296	760	19	94.5	32	47.24	-0.483
(11, 12)	346	901	20	107.4	31	53.7	-0.406
(15, 12)	456	1038	19	139	31	69.5	-0.324

Лишние электроны в графене коррелирован

Энергии чисто спинового синглетного состояния графеновых фрагментов

Table 2. Energies of singlet ground state of correlated graphenes¹, kcal/mol

Fragment (n_a, n_z)	$E^{R}(0)$	$E^{U}(0)$	$E^{PS}(0)$	ΔE^{RPS}	$\delta E^{RPS} \frac{2}{\%}$	$\Delta E^{\it UPS}$	$\delta E^{_{UPS}2}$ %
(5, 5)	1902	1495	1432	470	24.70	63	4.39
(7, 7)	2599	2223	2156	443	17.03	67	3.09
(9, 9)	3419	2778	2710	709	20.75	68	2.53
(11, 10)	4072	3312	3241	831	20.42	71	2.20
(11, 12)	4577	3676	3606	971	21.22	70	1.95
(15, 12)	5451	4413	4339	1112	20.40	74	1.70

~99% проводимых в настоящее время вычислений графена относятся к решениям с энергией $E^{R}(0)$

Магнетизм графена

Основное состояние графена синглетное, поэтому его магнетизм может быть только наведенным за счет примешивания выше лежащих высоко спиновых состояний к синглетному в результате, напрмер, приложения внешнего магнитного поля (эффект Ван Флека).

Эффективность примешивания определяется по теории возмущения энергетическим знаменателем, определяющим разность энергий чисто спиновых состояний, пропорциональную магнитной константе J.

Заметный магнитный отклик возможен только при J ~ 10⁻²-10⁻³ kcal/mol Магнитная константа J элементарной ячейки кристалла графена ~ 12 ккал/моль. Кристалл диамагнитен.

Вследствие корреляции электронов магнитная константа *J* графеновых фрагментов зависит от их линейных размеров. Оценки показывают, что значение *J* ~ 10⁻²-10⁻³ kcal/mol может быть достигнуто для графенового лепестка с линейными размерами 3-5 нм.

Fragment	Odd electrons	$\Delta E^{_{RU}1}$		N_D		∧ 6 €2	J^3
(n_a,n_z)	N _{odd}	kcal/mol	δE^{RU} % ²	e	$\delta N_D \%^2$	ΔS_U	kcal/mol
(5, 5)	88	307	17	31	35	15.5	-1.429
(7, 7)	150	376	15	52.6	35	26.3	-0.888
(9, 9)	228	641	19	76.2	35	38.1	-0.600
(11, 10)	296	760	19	94.5	32	47.24	-0.483
(11, 12)	346	901	20	107.4	31	53.7	-0.406
(15, 12)	456	1038	19	139	31	69.5	-0.324

Table 1. Identifying parameters of the odd electrons correlation in graphene fragments

При линейных размерах, превышающих длину свободного пробега электрона, электронные свойства графенового фрагмента квантуются и определяются свойствами элементарной ячейки, вследствие чего магнетизм исчезает.

Таким образом, магнетизм графена возможен только для наноразмерных графеновых фрагментов с линейными размерами в интервале 10-20 нм

Ferromagnetism in Hydrogenated Graphene Nanopore Arrays

K. Tada,¹ J. Haruyama,^{1,*} H. X. Yang,² M. Chshiev,² T. Matsui,³ and H. Fukuyama³ ¹Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan ²SPINTEC, CEA/CNRS/UJF-Grenoble 1/Grenoble-INP,38054, Grenoble cedex 9, France ³Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan (Received 4 August 2011)

FIG. 2. Magnetization of monolayer GNPAs [SM (5) [27]] with $\phi \sim 80$ nm and $W \sim 20$ nm for (a),(d) hydrogen-terminated edges; (b),(e) oxygen-terminated nanopore edges; and (c),(f) bulk graphene without nanopore arrays. dc magnetization was measured by a

Гидрирование графена

Chemical portraits of graphene (5, 5)

Odd electrons and nanochemistry of graphene

Chemical functionalization of graphene

2.Chemical modification : Stepwise transformation of graphene into graphane and 'teflon'

fluorination

Окисление графена

Step number

Step number

Восстановление оксида графена GO (b) (a) core Х X_{fr} VII

Выработка пула эффективно не спаренных электронов в процессе окисления графена

Лекция 3: Коррелированные электроны графена

- •Деформация графена как механохимическая реакция – одноосное растяжение;
- •Статическая деформация графена: химическое модифицирование и пузыри

Ответ 6

Деформация графена как прямое воздействие на корреляцию электронов в результате изменения межатомных расстояний

Динамическая деформация.

Деформация как механохимическая реакция. Механохмические внутрение координаты одноосного растяжения

Пошаговое растяжение в направлениях «зигзаг» и «кресло»

«Зигзаг»

«Кресло»

Деформация графена: мода «зигзаг»

∆L = 3.6 A

∆L = 5.3 A

ΔL = 6.7 A

Деформация графена: мода «зигзаг»

∆L = 7.4 A

∆L = 10.3 A

∆L = 11.5 A

∆L = 13.5 A

ΔL = 15.3 A

∆L = 17.0 A

∆L = 17.9 A

∆L = 19.1 A

ΔL = 19.7 A

∆L = 24.97 A ∆L = 22.1 A ∆L = 23.6 A

Деформация графена: мода «кресло»

∆L = 1.6 A

∆L = 0.5 A

∆L = 1.7 A

ΔL = 1.2 A

∆L = 3.0 A

Деформация, $\varepsilon = (L-L_0)/L$

Удлинение, $n \Delta L$, А

Трикотаже подобное разрушение графенового листа. Концевые атомы листа не терминированы

Мода «зигаг»

Мода «кресло»

Экспериментальное наблюдение разрушения

графена

C.Jin, H. Lan, L. Peng,K. Suenaga and S. Iijima Deriving Carbon Atomic Chains from Graphene, PHYS. REV. LETT. 102, 205501 (2009)

Морфология краев и топология механохимической реакции в гр

Table 1. Young's modules for (5,5) NGr with different configuration of edgeatoms, TPa

Mode	Bare edges	H ₁ -terminated edges	H ₂ - terminated edges
ʻzigzag'	1.05	1.09	0.92
'armchair'	1.06	1.15	0.95

Stress-strain dependences related to a set of molecules that predict mechanical behavior of chemically modified and structurally analogues of graphene

Strain ε

Stress-strain dependences related to a set of molecules that predict mechanical behavior of chemically modified and structurally analogues of graphene at zg deformation modes.

Strain *ɛ*

Molecular Young's moduli

	Ν	Molecule	Deformation		
			mode	Е, Тра	
	1	Benzene	ach	0,76	
			zg	0,99	
	2	Hexamethylene	ach	0,53	
		benzene	zg	0,81	
	3	Hexadihydro	ach	0,68	
		bornitride	zg	0,78	
	4	Hexamethyl	ach	0,48	
		hexafluoro cyclohexane	zg	0,61	
	5	Cyclohexane	ach	0,4	Ű
			zg	0,74	

Predicted stiffness' behavior:

Graphene>Bornitride>Fluorographene~Graphane.

The series follows the interrelation between squared frequencies of C-C and B-N stretching vibrations

Image N_{DA} maps and equilibrium structures of the bare-edge (5, 5) NGr molecule in due course of the first stage armchair-mode tensile deformation.

Image N_{DA} maps and equilibrium structures of the bare-edge (5, 5) NGr molecule in due course of the first stage zigzag-mode tensile deformation.

-0.4

-0.35

-0.3

- 0.25

- 0.2

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

Deformation of graphene and graphane as a mechanochemical reaction

Mechanical parameters of graphane and graphene

Species	Mode	ϵ (for σ_{cr})	$F_{cr}, N.10^{-9}$	$\sigma_{\rm cr}$, N/m ² ·10 ⁹	E, TPa
benzene	ach	0.29	19.62	120.47	0.76
	zg	0.22	19.18	97.13	0.99
cyclohexane	ach	0.44	15.69	93.76	0.4
	zg	0.36	14.99	74.57	0.74
(5,5) nanographEne	ach	0.18	54.56	119.85	1.09
	zg	0.14	47.99	106.66	1.15
(5,5) nanographAne	ach	0.3	43.41	74.37	$0.61_{\sigma}(0.54_{e})$
	zg	0.23	36.09	63.24	$0.57_{\sigma}(0.52_{e})$

Vibration-induced mechanical transformation

 $v_{C-C}^{CHXN} = \eta v_{C-C}^{BZN} \qquad \qquad \eta = \sqrt{E_{\sigma}^{CHXN} / E_{\sigma}^{BZN}}$

Table. Young's moduli and stretching C-C vibrations

Species	Def. mode	E_{σ}	η	v_{C-C}^{CHXN} , cm ⁻¹	v_{C-C}, cm^{-1}	η _{exd}
BZN	ach 79	0.76 0 99			1599 [24]	
CHXN	ach	0.40	1.38	1159	1070	1.49
	zg	0.74	1.16	1378	1388 [26]	1.15
				${\cal V}_{C-C}^{graphane},{ m cm}^{-1}$		
graphene	ach zg	1.09 1.15			1564 [26]	
graphane	ach zg	0.61 0.57	1.34 1.46	1167 1071	1330- 1000 [27]	1.18-1.60

Статическая деформация.

Деформация углеродного остова как результат химического модифицирования Гидрирование, окисление, фторирование

Atom number

C-skeletons without hydrogens

Электронноплотностное отражение изогнутости графенового каркаса

'Graphene under strain creates gigantic pseudo-magnetic field'

experiment

theory

N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie,
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley,
'Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles',

Science 30 July 2010 329: 544-547

APPLIED PHYSICS LETTERS 99, 093103 (2011)

Лекция 4: Молекулярная теория о подводных камнях графеники

- •Топология графена;
- •Неуглеродные аналоги графена;
- •«Рисованные структуры»

Основной вывод:

Свойства графена определяются не элементарной ячейкой кристаллической структуры, а следствиями корреляции его 'лишних' электронов в конкретном образце, находящемся в определенных внешних условиях

В результате, мы имеем дело с 'плывущим' по своим свойствам объектом, поэтому не вызывает особого удивления констатация грустных эмпирических фактов:

....Graphene edges determine the optical, magnetic, electrical, and electronic properties of graphene. In particular, termination, chemical functionalization and reconstruction of graphene edges leads to crucial changes in the properties of graphene, so control of the edges is critical to the development of applications in electronics, spintronics and optoelectronics. Up to date, significant advances in studying graphene edges have directed various smart ways of controlling the edge morphology. Though, it still remains as a major challenge since even minor deviations from the ideal shape of the edges significantly deteriorate the material properties...

M. Acik and Y. J. Chabal, Jap. Journ. Appl. Phys. 50 (2011) 070101

The odd electrons correlation turns out to be a very strong factor that greatly influences structural, chemical, magnetic, and mechanic properties of graphene and graphene-derived materials.

Наноструктурный и изменчивый характер молекулярного магнетизма графена создает практически непреодолимые трудности на пути разработки технологии его использования в спинтронике

Химическое модифицирование графена крайне неоднозначно и зависит от большого числа трудно контролируемых внешних параметров. Дополнительные трудности связаны с топохимическим характером реакций с участием графена The correlation is responsible for a highly sensitive topological behavior of graphene as well.

'zero' gradient GMAX is 0.1 kcal/mol

12x15gr

Gradient Energy Iterations ITN= 40 IFN= 49 F=0.44015339D+04 GMAX=-.671D+00 N=1034 TIME= 16480. ITN= 41 IFN= 50 F=0.44015338D+04 GMAX=-.653D+00 N=1034 TIME= 16896. ITN= 42 IFN= 51 F=0.44015337D+04 GMAX=-.672D+00 N=1034 TIME= 17210. Flat ITN= 238 IFN= 275 F=0.44015174D+04 GMAX=-.112D+01 N= 638 TIME= 12792 ITN= 239 IFN= 276 F=0.44015172D+04 GMAX=-.112D+01 N= 638 TIME= 13000. ITN= 240 IFN= 277 F=0.44015169D+04 GMAX=-.111D+01 N= 638 TIME= 14110. ITN= 546 IFN= 662 F=0.43998976D+04 GMAX=-.139D+00 N=1175 TIME= -21984. ITN= 547 IFN= 663 F=0.43998973D+04 GMAX=-.126D+00 N=1175 TIME= -21604. ITN= 548 IFN= 664 F=0.43998969D+04 GMAX= 0.957D-01 N= 158 TIME= -21046.Curved

Energy change 1.637 kcal/mol (0.0372%). Atoms number 400.

9x9gr

ITN= 29 IFN= 33 F=0.27780588D+04 GMAX=0.327D+00 N= 122 TIME=889.ITN= 30 IFN= 34 F=0.27780587D+04 GMAX=0.290D+00 N= 122 TIME=913.ITN= 31 IFN= 35 F=0.27780585D+04 GMAX=0.321D+00 N= 122 TIME=941. FlatITN= 69 IFN= 73 F=0.27780519D+04 GMAX=0.150D+01 N= 521 TIME=1838.ITN= 70 IFN= 74 F=0.27780518D+04 GMAX=0.152D+01 N= 521 TIME=1860.ITN= 71 IFN= 75 F=0.27780517D+04 GMAX=0.151D+01 N= 521 TIME=1876.ITN= 623 IFN= 686 F=0.27777699D+04 GMAX=-.313D-01 N= 454 TIME=-70950.ITN= 624 IFN= 689 F=0.27777699D+04 GMAX=0.296D-01 N= 545 TIME=-70877.ITN= 625 IFN= 690 F=0.27777698D+04 GMAX=0.276D-01 N= 421 TIME=-70861.Curved

Energy change 0.285 kcal/mol (0.0103%). Atoms number 190.

12x15gr planar

9x9gr planar

Sec.

Number of hydrogen pairs

Для генной нанотерапии форма играет ключевую роль

Опубликовано ssu-filippov в 16 октября, 2012 - 00:00

Исследователи из Северо-Западного университета и их коллеги из Университета Джонса Хопкинса (оба — США) нашли способ, позволяющий контролировать форму транспортных наночастиц, переносящих на себе ДНК-молекулы.

Это позволило доказать, что

именно форма наночастиц является ключевым фактором, который определяет терапевтическую активность всего комплекса. Результаты работы опубликованы в журнале Advanced Materials.

Для подтверждения первоначального предположения о ключевом значении формы транспортных наночастиц для терапевтической активности были проведены серии опытов на животных. В каждом эксперименте материал наночастиц и ДНК был абсолютно одинаковым, а различия состояли лишь в форме транспортных частиц: сферические, палочкообразные или волнообразные (червеобразные).

Оказалось, что

использование волнообразных наночастиц приводит к образованию в 1 600 раз большего числа генов в клетках печени, чем при других формах. Иначе говоря, приготовление наночастиц именно в форме «червей» обеспечит гораздо более эффективную доставку генетического терапевтического материала в раковые клетки, Not taking it into account generates numerous 'underwater stones' which are illustrated by a number of unrealistic predictions and explanations concerning graphene and its applications which are widely discussed by scientific community. Outside carboneous graphene science, the apotheosis of the misconceptions generated by ignoring the fundamental properties of sp2 electronic systems is achieved in the case of silicene.

Gradual radicalization of ethylene molecule in due course of C-C bond stretching

Π

6

Species	$N(N_2^2)$	$E^{R}(0)$	$E_B(0)$	$E^{PS}(0)$	N_D
Ι	2	54,50	48,95	39,02	0.88
II	6	144,51	121,25	108,67	2.68
III	60	1295,99	1013,30	996,64	62.48
IV a	96 (24)	2530,19	1770,91	1749,56	128
IV b	96	1943,14	1527,77	1505,48	95,7
V a	100 (20)	2827,73	1973,67	1958,54	115,05
V b	100	2119,60	1580,77	1559,64	100,12
VI a	60 (22)	1950,20	1359,44	1346,68	75,7
VI b	60	1253,39	1001,27	972,12	54,04

Table 14.1. Energies¹ in *kcal/mol* and the number of effectively unpaired electrons in sp^2 -configured siliceous species (see Fig.14.2) [15]

Note 1: Tabulated energies $E^{R}(0)$, $E_{B}(0)$ [or $E^{U}(0)$], and $E^{PS}(0)$ correspond to the heats of formation of the relevant states. The energy nominations see in Chapter 1. Note 2: Numbers N_{2} in parentheses are related to two-neighbor edge silicon atoms.

- .

Впервые получен образец силицена

Опубликовано ssu-filippov в 23 апреля, 2012 - 00:00

Впервые (возможно впервые) исследователи получили одноатомный слой кремния – материал, получивший по аналогии с графеном название «силицен» – (silicone).

Предполагается, что свойства нового материала должны во многом быть похожи на электронные свойства графена.

Более того, силицен должен гораздо проще интегрироваться с обычными электронными устройствами на основе кремниевых микросхем, что, в свою очередь, означает, потенциальные возможности для ускорения разработки сверхминиатюрных электронных систем.

Рис. 1. Силицен может быть проще интегрирован в электронные схемы на основе кремния. (Рисунок из Phys. Rev. Lett., 2012, DOI: 10.1103/PhysRevLett. 108.155501).

Small but Strong Lessons from Chemistry for Nanoscience**

Roald Hoffmann* A silicene interlude Angew. Chem. Int. Ed. 2013, 52, 93-103

We have graphene multilayers and the monolayer, and the intriguing physics of these. There is a growing literature out there of the Si analogue, silicene.[21] And that literature talks about silicene as if it were graphene. In part this is an attempt to live off graphene's mystique, but part comes out of lack of knowledge of chemistry.[22] I don,t often say something categorical, but I will say that a pristine free-standing single layer sheet of silicene (or a Si nanotube) will not be made. Silicene exists and will be made only on a support of some sort, metal or semiconductor.

The reason for this is, of course, the well-known kinetic and energetic instability of Si–Si double bonds (or partial double bonds, as in silicene). p Bonding is worth very little at the Si–Si single, s bond distances of approximately 2.35 . Si=Si bonds have to be protected sterically to be isolated.[23]

Small but Strong Lessons from Chemistry for Nanoscience**

Roald Hoffmann*

Angew. Chem. Int. Ed. 2013, 52, 93-103

Figure 1. Left: the optimized structure of a two-layer silicene; right: the corresponding graphene bilayer. Both are in AA stacking.

In contrast, boron-nitride analogues of sp² nanocarbons are free from the complications due to a complete saturation of their valence ability by covalent bonding.

Сверхрешетки, состоящие из "линий" адсорбированных пар атомов водорода на графене

Л. А. Чернозатонский¹⁾, П. Б. Сорокин, Е. Э. Белова, Й. Брюнинг⁺²⁾, А. С. Федоров*

Сверхрешетки, состоящие из "линий" адсорбированных пар атомов водорода на графене

Л. А. Чернозатонский¹⁾, П. Б. Сорокин, Е. Э. Белова, Й. Брюнинг⁺²⁾, А. С. Федоров*

J. Phys. Chem. C 2010, 114, 3225-3229

Nanoengineering Structures on Graphene with Adsorbed Hydrogen "Lines"

Leonid A. Chernozatonskii*,[†] and Pavel B. Sorokin^{†,‡,§}

Geometric arrangement of 2H-"lines" on graphene in nanoelectronic elements

Electronic superlattices and waveguides based on graphene: structures, properties and applications

Leonid A. Chernozatonskii¹ and Pavel B. Sorokin^{*, 1, 2, 3}

phys. stat. sol. (b) 245, No. 10, 2086-2089 (2008) / DOI 10.1002/pssb.200879578

The new class of quasi-2D superlattices based on graphene with periodically adsorbed hydrogen pairs was proposed. The *ab initio* DFT method was used for optimization of the atomic geometry and electronic structure of proposed structures. It was found that the superlattices band gap decreases nonmonotonically with distance between hydrogen pairs. Based on these results we hope that the graphene superlattices can be promising candidates for various nanotechnological applications especially as elements in nanoelectronic devices.

Top: view of a 2H-line graphene-based superlattice (2HG-SL); bottom: schemes of (4,0,k)-2HG-SLs (k = 1,2,3)

Linear hydrogen adsorbate structures on graphite induced by self-assembled molecular monolayers

Louis Nilsson ^a, Željko Šljivančanin ^b, Richard Balog ^a, Wei Xu ^a, Trolle R. Linderoth ^a, Erik Lægsgaard ^a, Ivan Stensgaard ^a, Bjørk Hammer ^a, Flemming Besenbacher ^a, Liv Hornekær ^{a,*}

b

STM image of the graphite surface after hydrogen exposure on the selfassembled monolayer structure of cyanuric acid (CyA) molecules. The bright linear protrusions are identified as rows of hydrogen dimers.

Small but Strong Lessons from Chemistry for Nanoscience**

Roald Hoffmann*

Angew. Chem. Int. Ed. 2013, 52, 93-103

Figure 1. Left: the optimized structure of a two-layer silicene; right: the corresponding graphene bilayer. Both are in AA stacking.

Алмазоподобный нанослой C₂H – диаман: моделирование структуры и свойств

Л. А. Чернозатонский⁺¹⁾, П. Б. Сорокин^{+*}, А. Г. Квашнин^{*}, Д. Г. Квашнин^{*}

Рис.1. Атомная структура: (a) – графана, (b) – диамана и (c) – диамана-II, (d) схема образования зародыша диамана на первоначально взятом биграфене – водородные атомы садятся с двух сторон, провоцируя "слипание" С-атомов, стоящих друг над другом, из соседних слоев

Phys. Status Solidi B 249, No. 8, 1550–1554 (2012) / DOI 10.1002/pssb.201147478

Determination of ultrathin diamond films by Raman spectroscopy

Leonid A. Chernozatonskii^{*,1}, Boris N. Mavrin², and Pavel B. Sorokin^{1,3}

The study of Raman spectra of recently predicted ultrathin diamond films (diamanes) with nanometer thickness, transformed from multilayered graphenes by the adsorption of hydrogen is presented. Here we studied the phonon spectra of diamane structures in detail by *ab initio* method, especially the Raman and infrared (IR) vibrational modes. In particular, two-layered diamanes display Raman peaks near 1110, 1260, 1320, 2860 cm⁻¹, and three-layered diamanes have a broad region (1110–1340 cm⁻¹) of Raman shifts and peaks near 2830–2860 cm⁻¹. The spectra are radically distinguished from the similar spectra of one to three layered graphenes and graphane.

Left side: Atomic structure and vibration pattern of optical modes of ultrathin diamond (diamane). Right: Phonon densities of the states of graphane and diamanes.