Супермагнетизм:

свойства и приложения. II Суперферромагнетизм.

nsnsP 2013

В.Н. Кондратьев

Киевский национальный университет имени Тараса

Шевченко, UA-03022 Киев, Украина

ЛТФ, ОИЯИ, 141980, Дубна Россия

--- SUPERPARAMAGNETS >

- MAGNETIC Nano-Crystals
 Transition metals if iron series
 Band Structure based shell model
- MAGNETISM of Super-Crystals
- Magnetodynamics of
 superferromagnets (SFM)
- Analytical Tools to probe **SFM**: MEAN VS STRONGEST SIGNALS FOR SELF-ORGANIZED CRITICALITY
- Implications to

magnetoresistive (MR) sensors

Size dependence of cluster magnetic moment per atom (measured in μ_B)

Ligand stabilized clusters

Exchange Coupling of dot supermoments

Insulator or semiconductor spacer Coupling \rightarrow mini-band splitting & modify s.p. level density

Possibility for coherent Bloch state from dot supermoment wave function in an array

Anderson localization

<u>Level fluctuations</u> $\equiv \Gamma / B \leq 2$ mini-band splitting

Coherent state of supermoments

Coupling constant

$$J = \int d\varepsilon \ \varepsilon \ \delta\rho \ (\varepsilon) f(\varepsilon - \mu)$$

Bloch function with quasienergy $\mathcal{E}_n = \mathcal{E}_{\overline{n}} + \Delta \mathcal{E}(\mathbf{k}) \qquad \Delta \mathcal{E}(\mathbf{k}) = \sum_{i=1}^{D} B_i \sin^2(k_i a_i)$

Quantum numbers $n=\{\underline{n},k\}$ quasimomentum in D dimensions k

$$B_i = 2\omega_e P_i$$

Band Quantum number <u>n</u> gives energy level in single dot

Level density change

$$\delta \rho^{c} = \int \prod_{i=1}^{D} d\left(\frac{k_{i}a_{i}}{2\pi}\right) \left[\rho\left\{\varepsilon - \Delta\varepsilon(\mathbf{k})\right\} - \rho\left\{\varepsilon\right\}\right]$$

Coupling constant

$$J = J_D \times J_B$$

Dot

$$J_{D} = (E_{F} - U) \hbar \left[\rho_{s}'(E_{F}) \omega_{s} + \rho_{\downarrow}'(E_{F}) \omega_{\downarrow} \right]$$

Barrier

$$J_{B} = \frac{\alpha}{\sin(\alpha)} \times \frac{2\pi^{2}}{m^{*}(\xi b)^{2}} \exp\left\{-\xi k_{F} b / \pi\right\}$$
$$\alpha = \pi T / T_{n} \qquad \qquad k_{F} = \sqrt{2m^{*}(U - E_{F})}$$

 $T_n = k_{\rm F} \hbar / m^* (\xi b)$

Ferromagnetic coupling -- JRandom fields $\{h_i\}$ of Gaussian distribution

$$W(h) = \exp\left\{-h^2 / R^2\right\} / R\sqrt{\pi}$$

numerical simulations Cumulative avalanche size distributions

Normalized size distributions

mean-field approximation

 $\chi = -dP / dH = [\chi_{NI}^{-1} - J]^{-1}$ magnetic susceptibility

$$\chi_{NI} = \sum_{n} W(b - b_n)$$

Magnetic phase diagram

avalanche size distribution: mean-field

 $D_{mf}(S) = Q(S)/S$ probability Q(S) of triggering S consequent jumps For $S \ll \Pi$ the Poissonian probability

$$d = J\chi_{NI} - 1 \qquad Q(S) = \exp\{-S(1+d)\}[S(1+d)]^S / S!$$

vicinity of critical conditions

$$|d| \ll 1 \longrightarrow D_{mf}(S) \sim S^{-3/2} \exp\{-Sd^2/2\}$$

the largest avalanche size

$$S_b^{mf} \approx (J\chi_{NI}/2) \Pi$$

Analytical tools for SO criticality

[VNK, Phys. Lett. A **354**, 217 (2006)] conditional moments $L_k = \sum_S S^k D(S)$

 $= L_1 / L_0$ mean avalanche size

$$L_k^{mf} \sim |d|^{1-2k} + const(d)$$

moments with $k \ge 1$ $d \to 0$ diverge at critical conditions,

MEAN *VERSUS* **STRONGEST** SIGNALS FOR SELF-ORGANIZED CRITICALITY

Giant magnetoresistance (GMR)

Cohamatia conversantation of the metabine of the d hands of the momentia

Relative resistance change as a function of the external magnetic field for Fe/Cr/Fe and 250A thick Fe film

Resistivity versus applied field for Fe/Cr multilayers

Sensor GMR – sensor array = high sensitivity Application of Receptor molecules on GMR and microbead Solution of microbeads and target molecules DC field to carry not attached beads away

- AC field -> Magnetisation of the beads -> sensing field is generated.
- Measure the electric resistance and compare to a reference GMR array

Magnetic bead criteria:

- High magnetisation to maximize the response of the sensor
- No clustering -> No remanent magnetisation

Microbeads composed of Fe, γ -Fe₂O₃, Fe₃O₄ superparamagnetic nanoparticles < 20nm dispersed in a polymer matrix.

Response in local field

Nanoparticles with Singlet-Triplet transition VNK, J.Phys.CS 129, 012013 (2008)

magnetic moment

Phase diagram Nanoparticles with Singlet-Triplet transition

Conclusions

MAGNETISM of Super-Crystals accounting for inter & intra Dot structures within Microscopic treatment

Band Structure based shell model well suited for Superparamagnets

Magnetodynamics of QD arrays Erratic jumps due to Magnetic Avalanches

Conditions of Self Organized Criticality

Universal Scaling

Analytical Tools: MEAN VS STRONGEST SIGNALS FOR SELF-ORGANIZED CRITICALITY

Lab on a Chip systems, MR sensors