

свойства и приложения.

I Суперпарамагнетизм.

nsnsP 2013

В.Н. Кондратьев

Киевский национальный университет имени Тараса Шевченко, UA-03022 Киев, Украина ЛТФ, ОИЯИ, 141980, Дубна Россия

- Thermodynamic Formalism mean field approximation Noble &transitional metals
- MAGNETIC Nano-Crystals Transition metals if iron series Band Structure based shell model
- FerroFluids

• •

Lab on a Chip systems

Thermodynamic Formalism

Potential
$$\Omega = -T \cdot \ln \mathcal{Z},$$

Particil function

$$\mathcal{Z} = \mathrm{Tr}(\exp\{-(\hat{\mathcal{H}} - \sum_{\mathrm{N}} \hat{N}_{\mathrm{N}}\lambda_{\mathrm{N}})/T\})$$

Magnetization

$$\mathcal{P} = M/V$$
 $M = -\left(\partial\Omega/\partial H\right)_{T,\lambda}.$

Magnetic susceptibility

$$\chi = (1/V) \Big(\partial M/\partial H \Big)_{T,\lambda} = -(1/V) \Big(\partial^2 \Omega/\partial H^2 \Big)_{T,\lambda}.$$

Number Density

 $N_{\rm N} = -\frac{\partial\Omega}{\partial\lambda_{\rm N}}$

$$\mathcal{D}_{\rm N} = N_{\rm N}/V)$$

To Canonical ensemble $F \approx \sum_{N} N_N \lambda_N + \Omega$

$$\begin{array}{ll} \text{Mean Field approximation}\\ \hat{h}_{\mathrm{N}} &= \frac{\hat{\mathbf{p}}_{\mathrm{N}}^{2}}{2m_{\mathrm{N}}} + V_{\mathrm{N}}(\mathbf{r}) + V_{\mathrm{so}}(\mathbf{r}) + \delta h_{\mathrm{N}}^{\mathrm{m}}\\ \text{Magnetic field } \boldsymbol{B}\\ &\delta h_{\mathrm{N}}^{\mathrm{m}} = -\mathbf{B}\hat{\mathcal{M}}_{\mathrm{N}} + \ \delta h_{\mathrm{o}}^{\mathrm{m}},\\ \text{Level deensity} &\rho_{\mathrm{N}}(\epsilon) = \sum_{\zeta} \delta(\epsilon - \epsilon_{\zeta}^{\mathrm{N}}) \end{array}$$

 $\Omega_{\rm N} = -T \int_{-\infty}^{\infty} \mathrm{d}\epsilon \ \rho_{\rm N}(\epsilon) \cdot \ln[1 + \exp\{(\lambda_{\rm N} - \epsilon)/T\}].$

Magnetization & susceptibility

Magnetic Field

Landau Diamagnetism

 $\epsilon_n \equiv (n + \frac{1}{2})\hbar\omega_c$ Landau levels

$$\Omega(H) = -k_B T \frac{Am}{\pi \hbar^2} \hbar \omega_c \sum_n \ln[1 + e^{\beta(\mu - \epsilon_n)}],$$

$$\chi_{dia}^{(3d)} = -\frac{e^2}{12\pi mc^2} \int_{-k_F}^{k_F} \frac{dk_z}{2\pi} = -\frac{e^2 k_F}{12\pi^2 mc^2}.$$

the iron series transition metals

 $n_{h}^{0} = 10 - n_{v} + n_{s}^{0}$

Magnetization $M \sim \mu_B n_h^0$

Demagnetizing energy

 $K_{\rm u}$ the uniaxial anisotropy constant μ_0 the vacuum permeability Ms the saturation magnetization.

Magnetization reversal hysteresis loop

Barkhausen noise originates from magnetization jumps

Simplified Barkhausen Noise Detection System

Field jump

Coil Current flux

Speaker noise

Photographic Scan of Barkhausen Emission Pulse

Giant magnetoresistance

Cohamatia conversation of the metabing of the d hands of the momentia

Relative resistance change as a function of the external magnetic field for Fe/Cr/Fe and 250A thick Fe film

Resistivity versus applied field for Fe/Cr multilayers

SUPERPARAMAGNETISM - A SIZE EFFECT

Magnetic Properties of Nanostructured Materials:

the iron series transition metals

 $n_h = n_h^0 - \delta n_s^D$

Superparamagnetic state VNK, H.O.Lutz, PRL **81** (1998) 4508

 $M \!\!\sim\!\! \mu_B \: n_h$

Shell Effects at Strong Magnetic Fields

 $n_{s}(\mu) = \int d\varepsilon \rho_{s}(\varepsilon) f(\varepsilon - \mu) \qquad \frac{\text{Electrons}}{f(x) - \left[1 + \exp\left\{\frac{x}{k_{B}T}\right\}\right]^{-1}}$

Level density
$$\rho = \sum_{n} \delta(\varepsilon - \varepsilon_{n}) = \rho^{sm} + \rho^{sh}$$

With Single particle levels ε_n filled up to the Fermi energy ε_F

the Hartree self-consistent mean fieldapproachin magnetic field : h

- Single particle Hamiltonian
- **H** = **H**_{MF} + (Magnetic terms)
- Landau–orbital $(l) \rightarrow -M(hl)$

HO level density: $H_{MF} = H_{HO}$

$$\rho^{sh} = \sum_{k=1} \cos\left(2\pi k\varepsilon/\omega\right) j_0\left(2\pi\eta k\varepsilon/\omega\right) \quad \times q^k$$

$$\eta = \omega_{\rm L} / \omega \qquad \qquad \omega_{\rm L} = \mu_{\rm B} H$$

Size dependence of cluster magnetic moment per atom (measured in μ_B) VNK, H.O.Lutz, PRL **81** (1998) 4508

FerroFluid

Lab on a chip Systems

with hydrophilic pattern

printed circuit board (PCB)

APPLICATIONS OF SUPERPARAMAGNETISM

Biomedical applications

- Detection: MRI Magnetic Resonance Imaging
- Separation: Cell-, DNA-, protein- separation, RNA fishing
- Treatment: Drug delivery, hyperthermia, magnetofaction

Other applications:

- Ferrofluid: Tunable viscosity
- Sensors: high sensitivity (GMR, BARCIII)
- Self Assambling

Particles with attached drug can be injected and guided through the body by application of an external field.

??? WHY SUPERPARAMAGNETIC PARTICLES ???

Size of the superparamagnetic particle:

Magnetic active core = 2-3 nm Coating (polymer, proteins, functional rest groups R) ~ 10 nm

Size of cell = 10 – 100 µm virus = 20 – 450 nm protein = 5 – 50 nm gene = 2* (10 - 100) nm²

Design of the particle:

Attachment of R -> Particles entre the cells

Particles can be recognized by the organism Drugs can be attached to the particle R influences the toxicity for the organism

Schematic principle of the on-chip DNA purification protocol. The sample in the binding buffer solution is injected onto the chip and mixed with a droplet of magnetic particles. These are extracted and wash in three stages, before the DNA is again eluted in the steps 5 and 6