Joint Institute for Nuclear Research International Intergovernmental Organization

Status of NICA/MPD at JINR

A.S. Sorin

Dubna International Advanced School on Theoretical Physics / DIAS-TH

X Winter School on Theoretical Physics

PHYSICS 30 January - 6 February, 2012 BLTP JINR, Dubna, Russia **AT THE LARGE HADRON COLLIDER**

Nuclotron-based Ion Collider fAcility (NICA)

PHOBOS RHIC BRAMMO

2nd generation HI experiments BES STAR/PHENIX@BNL/RHIC

NA51/SHINE Bean Super-conduction ments Time Projection

NA61@CERN/SPS

3nd generation HI experiments

CBM@FAIR/SIS-100/300 Fixed target, E/A=10-40 GeV, highest intensity

MPD@JINR/NICA.

Collider, $\sqrt{s_{NN}} = 4-11$ GeV, L~10²⁷ cm⁻²s⁻¹ for Au⁷⁹⁺

Highest baryon density at Lab

System of maximal net baryon (freeze-out) density is created in A+A collisions at NICA energies \rightarrow optimum for the compressed nuclear matter exploration

J.Randrup, J.Cleymans, 2006

Energy region covered by the JINR and GSI facilities

(in deutron energy, recalculated for E_{lab})

Nuclotron-based Ion Collider fAcility (NICA)

Exploration of the QCD phase diagram

- in-medium properties of hadrons & nuclear matter equation of state
- onset of deconfinement & chiral symmetry restoration
- phase transitions, mixed phase & critical phenomena
- local parity violation (P-odd effects)
- Spin physics
 - to shed light on the origin of spin
 - to define the nucleon spin structure

The planned data taking – 2017

QCD phase diagram: prospects for NICA

Energy Range of NICA The most intriguing and unexplored region of the QCD phase diagram:

Highest net baryon density

Onset of deconfinement phase transition

Discovery potential:
 a) Critical End Point (CEP)
 b) Chiral Symmetry Restoration

c) Hypothetic Quarkyonic phase

Complementary to the RHIC/BES, NA61/CERN, CBM/FAIR and Nuclotron-M experimental programs

Comprehensive experimental program requires scan over the QCD phase diagram by varying collision parameters: system size, beam energy and collision centrality

NICA: Nuclotron-based Ion Collider fAcility

- Flagship project at JINR
- Based on the development of the Nuclotron facility
- Optimal usage of the existing infrastructure
- Modern machine which incorporates new technological concepts
- First colliding beams 2017

NICA advantages:

- Energy range $\sqrt{s_{NN}} = 4-11$ GeV highest baryon density
- Available ion species: from p to Au
- ✤ Highest luminosity: Au+Au up to 10²⁷

1) Heavy ion colliding beams 197Au79+ x 197Au79+ at $\sqrt{s_{NN}} = 4$ 11 GeV (1 4.5 GeV/u ion kinetic energy) at L_{average}= 1E27 cm-2·s-1 (at $\sqrt{s_{NN}} = 9$ GeV)

2) Polarized beams of protons and deuterons in collider mode: $p\uparrow p\uparrow \sqrt{s_{pp}} = 12$ 27 GeV (5 12.6 GeV kinetic energy) $d\uparrow d\uparrow \sqrt{s_{NN}} = 4$ 13.8 GeV (2 5.9 GeV/u ion kinetic energy) $L_{average} \ge 1E30 \text{ cm-}2\cdot\text{s-}1 \text{ (at }\sqrt{s_{pp}} = 27 \text{ GeV})$

3) The beams of light ions and polarized protons and deuterons for fixed target experiments:

Li \div Au = 1 \div 4.5 GeV /u ion kinetic energy p, p[↑] = 5 12.6 GeV kinetic energy d, d[↑] = 2 5.9 GeV/u ion kinetic energy

4) Applied research on ion beams at kinetic energy from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)

The Cosmonaut Yi So-Yeon (South Korea) flies inside the yoke of Synhrophasotron JINR

NICA construction schedule

	2010	2011	2012	2013	2014	2015	2016			
ESIS KRION										
LINAC + channel										
Booster + channel										
Nuclotron-M										
Nuclotron-M \rightarrow NICA										
Channel to collider										
Collider										
Diagnostics										
Power supply										
Control systems										
Cryogenics										
MPD										
Infrastructure										
R&D Design Man	ufactrng	Moun	t.+comr	nis. C	ommis/c	pr Op	Operation			

MPD: tasks and challenges

- bulk observables (hadrons): 4p particle yields (OD, EOS)
- event-by-event fluctuation in hadron productions (CEP)
- \Box femtoscopic correlations involving π , K, p, Λ (OD)
- □ flows (directed, elliptic,...) for identified hadron species (EOS,OD)
- In multistrange hyperon production: yields & spectra (OD, EOS)
- □ electromagnetic probes (CSR, OD)
- hypernuclei (DM)
- Iocal parity violation (P-odd effects)
- OD Onset of Deconfinement
 CEP Critical End Point
 DM Dense Matter

CSR – Chiral Symmetry Restoration **EOS** – Equation Of State

Challenges:

- Vast nomenclature of colliding systems from p+p to Au+Au
- simultaneous observation of a variety of phenomena
- Small effects over large kinematical range, sensitivity to acceptance constrains ('correlations & fluctuations' studies)
- Pattern recognition in high track multiplicity environment

Active volume
 5 m (length) x 4 m (diameter)

• Magnet 0.5 T superconductor

Tracking

TPC & straw EndCapTracker & silicon pixels (IT) for vertexing

ParticleID

hadrons(TPC+TOF), π⁰,γ (ECAL), e⁺e⁻(TPC+TOF+ECAL)

Centrality & T0 timing ZDC FD

Hermeticity, homogenous acceptance (2π in azimuth), low material budget
 Excellent tracking performance and powerful PID
 High event rate capability and careful event characterization

Timetable of MPD construction and commissioning

Stage/Year		1		Γ	2		Γ	3		4		Τ	5			Total			
	Budget profile for MPD	1080		1	12500			15500		9300			2	2560			40940		
1	Experimental Hall	l			L			L						Τ					
	NICA Hall Construction	\gg																	
	Electricity,water & infrastructure	N.																	
	Crane(construction & certification)																		
2	Superconducting Magnet																		
	Magnet TDR and Tender																		
	Call for Tender-Yoke,SC,trim coils					-													
	Contracts signing			'	Ĩ.														
	Construction of Iron York & SC																		
	Transportation																		
	Cryogenics for Solenoid																		L
	Assembling & Commiss. of Solenoid																		L
	Field measurements																	_ ;	⊒∟
3	TPC]	∃□
	TPC Assembling workshop																	_ {	
	TPC Construction																	_ 7	╡Ĺ
	TPC tests] 7	
	TPC installation and Commissioning																		5
4	TOF																		⊒
	TOF Assembling area																		Ľ
	Test area of TOF mRPC																		3
	TOF Mass Production and test																	<u> </u>	2
	TOF installation & Commissioning																		
5	ECal modules production													Τ					
	ECal Assembling in sectors																		
	ECal installation & Commissioning																		
6	ZDC construction and installation																		
7	Electronics, Network and							Γ											
	DAQ production &implementation																		
	Control Room construction																		
	Slow Control system implementation																		
	Computing for Data taking & network												1						
8	Detector Assembling				Γ			Γ											
9	Commissioning and Cosmic Tests																		

Strange matter production in heavy ion collisions at the Nuclotron extracted beam: Baryonic Matter at Nuclotron (BM@N)

- Collaboration GSI-JINR (preparation of the joint experiment has started)
- The goal of the experiment is the systematic measurements of the observables for multistrange objects (Ξ⁻, Ω⁻, exotics) in Au-Au collisions in the energy domain of the Nuclotron extracted beam (up to 5 A GeV)

Baryonic Matter at Nuclotron (BM@N)

measurements of the multi-strange (Ξ, Ω, exotics) & hypernuclei in HI collisions
close to the threshold production in the region of high sensitivity to the models prediction

GIBS magnet (SP-41)

TS-target station, T0- start diamond detector, <u>STS - silicon tracker,</u> ST- straw tracker, DC- drift chambers, RPC- resistive plate chambers, ZDC- zero degree calorimeter, DTE – detector of tr. energy.

In the detector based on the sub-detectors developed for CBM, MPD & SPD Preparation of the joint GSI - JINR experiment Baryonic Matter at Nuclotron (BM@N) has started. The planned data taking - 2015

Time table of the experiment

Working package	2011	2012	2013	2014	2015	2016
Simulations						
Preparation of experimental site						
Installation beam line,						
Installation GIBS magnet						
Installation beam tube, beam monitors						
Construction prototype STS						
Construction SC magnet						
Construction straw tube tracker						
Construction TOF-RPC, T0				6		
Construction DAQ, slow-control						
Installation drift chambers						
Installation detectors, commissioning						

Phase 0 (2011) – The site preparation and simulation

•Phase 1 (2012-2014) – The detector construction

•Phase 2 (2015-....) - The data taking

Editorial board: D. Blaschke D. Kharzeev V. Matveev A. Sorin H. Stoecker O. Teryaev I. Tserruya N. Xu

Draft v 6.02 January 20, 2012

> SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

The NICA White Paper

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

NICA White Paper - Contents

(75 contributions)

- 1 Editorial (2)
- 2 General aspects (6)
- **3** Phases of QCD matter at high baryon density (11)
- 4 Hydrodynamics and hadronic observables (15)
- **5** Femtoscopy, correlations and fluctuations (8)
- **6** Mechanisms of multi-particle production (7)
- 7 Electromagnetic probes and chiral symmetry in dense QCD matter (7)
- 8 Local P and CP violation in hot QCD matter (7)
- 8 Cumulative processes (2)
- **10** Polarization effects and spin physics (4)
- **11 Related topics (3)**
- **12 Fixed Target Experiments (6) 13 List of Contributors**

Round Table Discussions on NICA/MPD@JINR

Round Table Discussion I: Searching for the mixed phase of strongly interacting matter at the JINR Nuclotron, *July 7 - 9, 2005* http://theor.jinr.ru/meetings/2005/roundtable/

Round Table Discussion II: Searching for the mixed phase of strongly interacting matter at the JINR Nuclotron: Nuclotron facility development JINR, Dubna, October 6 - 7, 2006 http://theor.jinr.ru/meetings/2006/roundtable/

Round Table Discussion III: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA JINR (Dubna), November 5 - 6, 2008, http://theor.jinr.ru/meetings/2008/roundtable/

Round Table Discussion IV: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA (White Paper) JINR (Dubna), September 9 - 12, 2009 http://theor.jinr.ru/meetings/2009/roundtable/

Round Table Discussion V: Searching for the mixed phase of strongly interacting QCD matter at the NICA: Physics at NICA (White Paper) JINR (Dubna), August 28, 2010 http://theor.jinr.ru/~cpod/Dubna_2010_program2.htm

Welcome to the collaboration!

Thank you for attention!