

Dubna International Advanced School on Theoretical Physics / DIAS-TH

X Winter School on Theoretical Physics

PHYSICS 30 January - 6 February, 2012 BLTP JINR, Dubna, Russia

T THE LARGE HADRON COLLIDER

Some notes about the PT series in the non-PT region

V.L. Khandramai

ICAS, Gomel State Technical University, Belarus

in collaboration with

D.V. Shirkov

BLTP, Joint Institute for Nuclear Research, Dubna, Russia

Motivation

This talk is motivated by the recent four-loop phenomenological analysis [Khandramai, Pasechnik, Shirkov, Teryaev, Solovtsova (PLB, 2012)] of

• the high precision Jefferson Lab (Newport News, USA) data on the Bjorken sum rule amplitude at low *Q* in the wide range *0.22 GeV <Q < 1.8 GeV* [Prok et al. (2009)] + old data SLAC (E80, E130, E142, E143, E154, E155), CERN (EMC, SMC), DESY (HERMES, COMPASS)

by using recently available

• **the four-loop expression** for the perturbative QCD contribution to the Bjorken sum rule [*Chetyrkin et al. (2010)*].

The aim of this talk is answer on question: how can the standard PT allows penetrate in the low-energy region?

The perturbative part of BSR

0.47
$$GeV^2 < Q^2 < 0.7 \ GeV^2$$

 $NLO: \chi^2_{d.o.f} = 27.4$
 $N^2LO: \chi^2_{d.o.f} = 14.9$
 $N^3LO: \chi^2_{d.o.f} = 735.8$

 $Q^2 > 0.7 \ GeV^2$ $NLO: \chi^2_{d.o.f} = 2.41$ $N^2LO: \chi^2_{d.o.f} = 0.88$ $N^3LO: \chi^2_{d.o.f} = 0.43$

Results of μ_4 -extraction with left border Q_{min}^2 [in GeV²]

	Q ² _{min}	μ_4/M^2 , GeV ²	χ²/D.o.f
NLO PT	0.5	-0.028±0.005	0.80
N ² LO PT	0.66	-0.014±0.007	0.59
N ³ LO PT	0.707	0.006±0.009	0.51

$$\Gamma_1^{p-n}\left(Q^2\right) = \frac{g_A}{6} C_{Bj}\left(Q^2\right) + \frac{\mu_4^{p-n}}{Q^2}$$

- The lower border shifts up to higher Q² scales with increasing of the PT expansion order.
- The coefficients of higher-twists μ₄ strongly changes from order to order
- The absolute value of μ₄ decreases with the order of PT and just at fourloop order becomes compatible to zero.

QCD scale parameter dependency

Results of μ_4 -extraction with different Λ

The PT does not lead to a stable results: the extracted coefficient μ_4 changes quite strongly between different orders of the PT expansion. The sensitivity to Λ -variation arises at higher PT orders.

The relative contributions

$$N_{[i]} = \frac{s_i \alpha_S^i}{\Delta_{[4]}^{Bj}} \qquad \Delta_{[n]}^{Bj} \left(\alpha_S\right) = s_1 \alpha_S + s_2 \alpha_S^2 + \dots + s_n \alpha_S^n$$

 $s_1 = 0.31831; s_2 = 0.36307; s_3 = 0.65197; s_4 = 1.8042$

 $c_{[5]}(g) = C(g) - 1 = 0.1875(g + 1! \cdot 1.094g^{2} + 2! \cdot (1.062)^{2}g^{3} + 3! \cdot (1.047)^{3}g^{4}) + 5.204g^{5}$

$$\Delta_{[4]}^{Bj}(\alpha_{s}) = 0.3183 \left(\alpha_{s} + 1! \cdot 1.141 \alpha_{s}^{2} + 2! \cdot (1.03)^{2} \alpha_{s}^{3} + 3! \cdot (0.982)^{3} \alpha_{s}^{4} \right)$$

Summary

- Natural boundary between the PT and non-PT regions can be considered as a Q ~ 1 GeV.
- For lower $Q \le 0.8$ GeV the four-loop PT contribution does not help to describe the data on BSR amplitude.
- The possible solution of this problem is to apply the Analytic Perturbative Theory. For an overview on the APT concept and results see [Shirkov, Solovtsov (2007)]

The Asymptotic Series «summation» is an Art