

Charm came as surprise but completed the picture

Quarks - "the building blocks of the Universe"

For unknown reasons Nature created 3 copies (generations) of quarks and leptons

The number of quarks increased with discoveries of new particles and have reached 6

Discovery History

Now we have a beautiful pattern of three pairs of quarks and three pairs of leptons. They are shown here with their year of discovery.

Matter and Antimatter

The first generation is what we are made of

Antimatter was created together with matter during the "Big bang"

Antiparticles are created at accelerators in ensemble with particles but the visible Universe does not contain antimatter

Quark's Colour

Baryons are "made" of quarks

$$
\begin{aligned}
& \Delta^{-}(d \uparrow d \uparrow d \uparrow) \\
& \Omega^{-}(s \uparrow s \uparrow s \uparrow) \quad ? \\
& \Delta^{++}(u \uparrow u \uparrow u \uparrow)
\end{aligned} \quad
$$

To avoid Pauli principle veto one can antisymmetrize the wave function introducing a new quantum number - "colour", so that

$$
\Delta^{-}=\varepsilon^{i j k}\left(d_{i} \uparrow d_{j} \uparrow d_{k} \uparrow\right)
$$

The Number of Colours

$>$ The x-section of electron-positron annihilation into hadrons is proportional to the number of quark colours. The fit to experimental data at various colliders at different energies gives

$$
N_{c}=3.06 \pm 0.10
$$

The Number of Generations

$$
N_{g}=2.982 \pm 0.013
$$

> Z-line shape obtained at LEP depends on the number of flavours and gives the number of (light) neutrinos or (generations) of the Standard Model

Quantum Numbers of Matter

$>$ Quarks

$$
\begin{aligned}
& Q_{L}=\binom{u p}{\text { down }}_{L} \\
& U_{R}=u p_{R} \quad \begin{array}{c}
\text { V-A } \\
D_{R}=d o w n_{R}
\end{array} \begin{array}{c}
\text { currents in } \\
\text { weak }
\end{array}
\end{aligned}
$$

$>$ Leptons
interactions

$$
\begin{aligned}
& N_{R}=v_{R} \text { ? } \\
& E_{R}=e_{R}
\end{aligned}
$$

3	2	$1 / 3$
3	1	$4 / 3$
3	1	$-2 / 3$

singlets

Electric charge
$Q=T_{3}+Y / 2$

The group structure of the SM

$$
\sum_{a=1}^{N_{A}}\left(T^{a} T^{\dagger a}\right)_{i j}=\delta_{i j} C_{F} \quad, \quad \sum_{i, j=1}^{N_{F}} T_{i j}^{a} T_{j i}^{\dagger b}=\delta^{a b} T_{F} \quad, \quad \sum_{a, b=1}^{N_{A}} f^{a b c} f^{* a b d}=\delta^{c d} C_{A}
$$

Casimir Operators
For SU(N)

$$
C_{A}=N_{C} \quad, \quad C_{F}=\frac{N_{C}^{2}-1}{2 N_{C}} \quad, \quad T_{F}=1 / 2
$$

Electro-weak sector of the SM

 $S U(2) \times U(1)$ versus $O(3)$3 gauge bosons 1 gauge boson
3 gauge bosons
After spontaneous symmetry breaking one has

2 massive gauge bosons
($\mathrm{W}^{+}, \mathrm{W}^{-}$) and 1 massless (Y)
> Discovery of neutral currents was a crucial test of the gauge model of weak interactions at CERN in 1973
> The heavy photon gives the neutral current without flavour violation

Gauge Invariance

Gauge transformation

$$
\bar{\psi}_{i}(x) \rightarrow \bar{\psi}_{j} \widehat{U}_{j i}^{+}(x)
$$

$$
\psi_{i}(x) \rightarrow \underset{\substack{\uparrow \\ \text { matrix }}}{\widehat{U}_{i j}(x) \psi_{j}=\operatorname{parameter}\left[i \alpha^{a}(x) T_{i j}^{a}\right] \psi_{j}} \quad a=1,2, \ldots, N
$$

Fermion Kinetic term

$$
\begin{aligned}
& i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x) \rightarrow i \bar{\psi}(x) \hat{U}^{+}(x) \gamma^{\mu} \partial_{\mu}(\widehat{U}(x) \psi(x)) \\
& =i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)+\bar{\psi}(x) \gamma^{\mu} \hat{U}^{+}(x) \partial_{\mu} \widehat{U}(x) \psi(x)
\end{aligned}
$$

Covariant derivative

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu} I+g A_{\mu}^{a} T^{a}=\partial_{\mu} \hat{I}+g \widehat{4}_{\mu} \quad \text { Gauge field }
$$

$$
\widehat{A}_{\mu}(x) \rightarrow \widehat{U}(x) \widehat{A}_{\mu}(x) \hat{U}^{+}(x)-\frac{1}{g} \partial_{\mu} \widehat{U}(x) \hat{U}^{+}(x) \quad \rightarrow \quad D_{\mu} \psi(x) \rightarrow \widehat{U}(x) D_{\mu} \psi(x)
$$

Gauge invariant kinetic term

$$
\overline{i \psi}(x) \gamma^{\mu} D_{\mu} \psi(x)
$$

$\left[D_{\mu}, D_{\nu}\right]=g \widehat{G}_{\mu \nu}=g\left(\partial_{\mu} \widehat{A}_{\nu}-\partial_{\nu} \widehat{A}_{\mu}+g\left[\widehat{A}_{\mu}, \widehat{A}_{\nu}\right]\right) \widehat{G}_{\mu \nu}(x) \rightarrow \widehat{U}(x) \widehat{G}_{\mu \nu}(x) \widehat{U}^{+}(x)$
Gauge field kinetic term

$$
-\frac{1}{4} \operatorname{Tr} \widehat{G}_{\mu v} \widehat{G}^{\mu V}
$$

Lagrangian of the SM

$$
\begin{gathered}
S U_{c}(3) \otimes S U_{L}(2) \otimes U_{Y}(1) \\
L=L_{g a u g e}+L_{Y \text { Yukawa }}+L_{\text {Higgss }}
\end{gathered}
$$

$$
\begin{aligned}
& L_{\text {gauge }}=-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}-\frac{1}{4} W_{\mu \nu}^{i} W_{\mu \nu}^{i}-\frac{1}{4} B_{\mu \nu} B_{\mu \nu} \\
& +i \bar{L}_{\alpha} \gamma^{\mu} D_{\mu} L_{\alpha}+i \bar{Q}_{\alpha} \gamma^{\mu} D_{\mu} Q_{\alpha}+i \bar{E}_{\alpha} \gamma^{\mu} D_{\mu} E_{\alpha} \\
& +i \bar{U}_{\alpha} \gamma^{\mu} D_{\mu} U_{\alpha}+i \bar{D}_{\alpha} \gamma^{\mu} D_{\mu} D_{\alpha}+\left(D_{\mu} H\right)^{\dagger}\left(D_{\mu} H\right)
\end{aligned}
$$

$$
L_{\text {Yukawa }}=y_{\alpha \beta}^{L} \bar{L}_{\alpha} E_{\beta} H+y_{\alpha \beta}^{D} \bar{Q}_{\alpha} D_{\beta} H+y_{\alpha \beta}^{U} \bar{Q}_{\alpha} U_{\beta} \widetilde{H}
$$

$$
L_{H i g g s}=-V=m^{2} H^{\dagger} H-\frac{\lambda}{2}\left(H^{\dagger} H\right)^{2}
$$

$$
\widetilde{H}=i \tau_{2} H^{\dagger}
$$

Fermion Masses in the SM

Direct mass terms are forbidden due to SU(2) invariance !

$$
\psi, \psi_{L}=\frac{1-\gamma^{5}}{2} \psi, \psi_{R}=\frac{1+\gamma^{5}}{2} \psi, \bar{\psi}=\psi^{+} \gamma^{0}, \psi^{c}=C \gamma^{0} \psi=i \gamma^{2} \psi^{*}
$$

Lorenz invariant Mass terms

$$
\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L} \quad \bar{\psi}_{L} \psi_{L}=\bar{\psi}_{R} \psi_{R}=0
$$

SU(2) doublet $\mathrm{SU}(2)$ singlet

$$
\bar{\psi}_{L}^{c} \psi_{L}+\bar{\psi}_{L} \psi_{L}^{c} \quad \bar{\psi}_{R}^{c} \psi_{R}+\bar{\psi}_{R} \psi_{R}^{c}
$$

Unless $\mathrm{Q}=0, \mathrm{Y}=0$

$$
\bar{V}_{R}^{c} V_{R}
$$

Majorana mass term

Spontaneous Symmetry Breaking

$S U_{c}(3) \otimes S U_{L}(2) \otimes U_{Y}(1) \rightarrow S U_{c}(3) \otimes U_{E M}(1)$

Introduce a scalar field with quantum numbers: $(1,2,1) \quad H=\binom{H^{+}}{H^{0}}$
With potential

$$
V=-m^{2} H^{\dagger} H+\frac{\lambda}{2}\left(H^{\dagger} H\right)^{2}
$$

Unstable maximum
At the minimum
$H=\binom{H^{+}}{H^{0}}=\left(\begin{array}{c}\text { v.e.v. scalar } \\ H^{+} \\ \mathrm{v}+\frac{S+i P}{\sqrt{2}}\end{array}\right)=\underset{\text { pseudoscalar }}{\exp \left(i \frac{\vec{\xi} \vec{\sigma}}{2}\right)\binom{0}{\mathrm{v}+\frac{S}{\sqrt{2}}} .}$

$$
\begin{aligned}
& \text { Gauge transformation } \\
& H \rightarrow H^{\prime}=\exp \left(i \frac{\vec{\alpha} \vec{\sigma}}{2}\right) H \xrightarrow{(\vec{\alpha}=-\bar{\xi})} H^{\prime}=\left(c_{0}^{0} \mathrm{~h}^{\text {higgs boson }} \frac{{ }^{2}}{15}\right)_{15}
\end{aligned}
$$

The Higgs Mechanism

Q: What happens with missing d.o.f. (massless goldstone bosons $\mathrm{P}, \mathrm{H}^{+}$or $\vec{\xi}$) ?
A: They become longitudinal d.o.f. of the gauge bosons $W_{\mu}{ }^{i}, i=1,2,3$
$\begin{array}{cc}\text { Gauge transformation } & \widehat{W} \mu \\ \alpha^{a}=-\xi^{a} & \rightarrow \mathrm{e}^{i \alpha^{a} \sigma^{a}} \widehat{W}_{\mu} \mathrm{e}^{-i \alpha^{a} \sigma^{a}}-\frac{1}{g} \partial_{\mu}\left(\mathrm{e}^{i \alpha^{a} \sigma^{a}}\right) \mathrm{e}^{-i \alpha^{a} \sigma^{a}} \\ \text { Longitudinal components }\end{array}$

$$
\alpha^{a}=-\xi^{a}
$$

Higgs field kinetic term $\left|D_{\mu} H\right|^{2}=\left|\partial_{\mu} H-\frac{g}{2} \widehat{W}_{\mu} H-\frac{g^{\prime}}{2} \widehat{B}_{\mu} H\right|^{2} \longleftarrow H=\binom{0}{\mathrm{v}}$

$$
\rightarrow \frac{1}{4}(0 \mathrm{v})\left(\begin{array}{cc}
\mathrm{gW}_{\mu}^{3}+\mathrm{g}^{\prime} B_{\mu} & \sqrt{2} \mathrm{gW}_{\mu}^{-} \\
\sqrt{2} \mathrm{gW}_{\mu}^{+} & -\mathrm{gW}_{\mu}^{3}+g^{\prime} B_{\mu}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{gW}_{\mu}^{3}+\mathrm{g}^{\prime} B_{\mu} & \sqrt{2} \mathrm{gW}_{\mu}^{-} \\
\sqrt{2} \mathrm{gW}_{\mu}^{+} & -\mathrm{gW}_{\mu}^{3}+g^{\prime} B_{\mu}
\end{array}\right)\binom{0}{\mathrm{v}}
$$

$$
\begin{array}{cl}
\Rightarrow & \frac{g^{2}}{2} \mathrm{v}^{2} W_{\mu}^{+} W_{\mu}^{-}+\frac{1}{4} \mathrm{v}^{2}\left(-g W_{\mu}^{3}+g^{\prime} B_{\mu}\right)^{2} \\
M_{W}^{2}=\frac{1}{2} g^{2} \mathrm{v}^{2} & \tan \theta_{W}=g^{\prime} / g \\
M_{Z}^{2}=\frac{1}{2}\left(g^{2}+\mathrm{g}^{\prime 2}\right) \mathrm{v}^{2} & M_{\gamma}=0
\end{array}
$$

$$
\begin{aligned}
& W_{\mu}^{ \pm}=\frac{W_{\mu}^{1} \mp W_{\mu}^{2}}{\sqrt{2}} \\
& \mathrm{Z}_{\mu}=-\sin \theta_{W} B_{\mu}+\cos \theta_{W} W_{\mu}^{3} \\
& \gamma_{\mu}=\cos \theta_{W} B_{\mu}+\sin \theta_{W} W_{\mu}^{3}
\end{aligned}
$$

The Higgs Boson and Fermion Masses

$$
\begin{aligned}
& H=\binom{0}{\mathrm{v}+\frac{h}{\sqrt{2}}} \rightarrow V=-m^{2} H^{\dagger} H+\frac{\lambda}{2}\left(H^{\dagger} H\right)^{2} \\
& \rightarrow V=-\frac{\lambda v^{4}}{2}+\lambda v^{2} h^{2}+\frac{\lambda v}{\sqrt{2}} h^{3}+\frac{\lambda}{8} h^{4} \quad \mathrm{v}^{2}=m^{2} / \lambda \\
& m_{h}=\sqrt{2} m=\sqrt{2 \lambda} \mathrm{~V} \\
& L_{\text {Yukava }}=y_{\alpha \beta}^{E} \bar{L}_{\alpha} E_{\beta} H+y_{\alpha \beta}^{D} \bar{Q}_{\alpha} D_{\beta} H+y_{\alpha \beta}^{U} \overline{Q_{\alpha}} U_{\beta} \widetilde{H} \\
& \alpha, \beta=1,2,3 \text { - generation index }
\end{aligned}
$$

Dirac fermion mass

$$
M_{i}^{u}=\operatorname{Diag}\left(y_{\alpha \beta}^{u}\right) \mathrm{v}, \quad M_{i}^{d}=\operatorname{Diag}\left(y_{\alpha \beta}^{d}\right) \mathrm{v}, \quad M_{i}^{l}=\operatorname{Diag}\left(y_{\alpha \beta}^{l}\right) \mathrm{v}
$$

$$
y_{\alpha \beta}^{N} \bar{L}_{\alpha} N_{\beta} \widetilde{H} \rightarrow M_{i}^{v}=\operatorname{Diag}\left(y_{\alpha \beta}^{N}\right) \mathrm{v} \quad \text { Dirac neutrino mass }
$$

Quark/Lepton Mixing

- The mass matrix is non-diagonal in generation space
- It can be diagonalized by field rotation Q -> Q'= V Q

$$
\begin{aligned}
& \bar{U} M_{U} U->\bar{U}^{\prime} V_{U}^{+} M_{U} V_{U} U^{\prime}=\bar{U}^{\prime} M_{U}^{\text {Diag }} U^{\prime} \\
& \bar{D} M_{D} D->\bar{D}^{\prime} V_{D}^{+} M_{D} V_{D} D^{\prime}=\bar{D}^{\prime} M_{D}^{\text {Diag }} D^{\prime}
\end{aligned}
$$

- Neutral Current:

$$
\bar{U} Z_{\mu} U->\bar{U}^{\prime} V_{U}^{+} Z_{\mu} V_{U} U^{\prime}=\bar{U}^{\prime} Z_{\mu} U^{\prime} V_{U}^{+} V_{U}=\bar{U}^{\prime} Z_{\mu} U^{\prime}
$$

- Charged Current

$$
\bar{U} W_{\mu} D->\bar{U}^{\prime} V_{U}^{+} W_{\mu} V_{D} D=\bar{U}^{\prime} W_{\mu} V_{U}^{+} V_{D} D^{\prime}
$$

Cabibbo-Kobayashi-Maskawa mixing matrix

$$
K=V_{U}^{+} V_{D}
$$

The (only) source of flavour mixing in the SM

CKM Matrix and Unitarity Triangle

$$
K=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

Two important properties

1. CP-violation due to a complex phase δ !
2. Unitarity triangle

$$
\begin{aligned}
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
& \Rightarrow V_{u b}^{*}+V_{t d}=s_{12} V_{c b}^{*}
\end{aligned}
$$

The Unitarity Triangle: all constraints

A consistent picture across a huge array of measurements

Comparison with Experiment

Global Fit to Data

	Measurement	Pull	$\begin{array}{ccccc} & \text { Pull } & \\ -3 & -2 & 0 & 1 & 2 \end{array}$
$\mathrm{m}_{\mathrm{z}}[\mathrm{GeV}]$	91.1875 ± 0.0021	. 05	
$\Gamma_{\mathrm{Z}}[\mathrm{GeV}]$	2.4952 ± 0.0023	-. 42	-
$\sigma_{\text {hadr }}^{0}$ [nb]	41.540 ± 0.037	1.62	
R_{1}	20.767 ± 0.025	1.07	
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{l}}$	0.01714 ± 0.00095	. 75	-
A_{e}	0.1498 ± 0.0048	. 38	-
A_{τ}	0.1439 ± 0.0042	-. 97	
$\sin ^{2} \theta_{\text {eff }}^{\text {lept }}$	0.2321 ± 0.0010	. 70	-
$\mathrm{m}_{\mathrm{w}}[\mathrm{GeV}]$	80.427 ± 0.046	. 55	-
R_{b}	0.21653 ± 0.00069	1.09	
R_{c}	0.1709 ± 0.0034	-. 40	-
$\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{~b}}$	0.0990 ± 0.0020	-2.38	
$\mathrm{A}_{\mathrm{fb}}^{\mathrm{O}, \mathrm{c}}$	0.0689 ± 0.0035	-1.51	
A_{b}	0.922 ± 0.023	-. 55	-
A_{c}	0.631 ± 0.026	-1.43	
$\sin ^{2} \theta_{\text {eff }}^{\text {lept }}$	0.23098 ± 0.00026	-1.61	
$\sin ^{2} \theta_{w}$	0.2255 ± 0.0021	1.20	
$\mathrm{m}_{\mathrm{w}}[\mathrm{GeV}]$	80.452 ± 0.062	. 81	
$\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$	174.3 ± 5.1	-. 01	
$\Delta \alpha_{\text {had }}^{(5)}\left(\mathrm{m}_{\mathrm{z}}\right)$	0.02804 ± 0.00065	-. 29	-
			$\begin{array}{lllllll}-3 & -2 & -1 & 0 & 1 & 2\end{array}$

Remarkable agreement of ALL the data with the SM predictions - precision tests of radiative corrections and the SM

Higgs Mass Constraint

Though the values of $\sin \vartheta w$ extracted from different experiments are in good agreement, two most precise measurements from hadron and lepton asymmetries disagree by 3σ

21

The SM and Beyond

The problems of the SM:

- Inconsistency at high energies due to Landau poles
- Large number of free parameters
- CP-violation is not unar
- The origin of the in where is the ${ }^{\text {Dark }}$ anclear

- Flavour mixing anawner of generations is arbitrary
- Formal unification ou ong and electroweak interactions

The way beyond the SM:

- The SAME fields with NEW interactions and NEW fields
$\leadsto \quad$ GUT, SUSY, String, ED
- NEW fields with NEW interactions

Compositeness, Technicolour, preons

We like elegant solutions

