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Basic notations of gravitational lens theory. Point like
lens case

Ds is a distance between a source and observer, Dd is a distance between
a lens and observer Dds. A plane passing through a gravitational lens (in
perpendicular direction to a vector between an observer and a lens) is called
the gravitational lens plane, similarly a parallel plane passing through source
is called as a the source plane. Thus we have gravitational lens equation

~η = Ds
~ξ/Dd −Dds

~Θ(~ξ), (1)

where vectors η, ξ are determined coordinates in source and lens plane
respectively but an angle is determined by the following relation for the
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point-like lens model (the Schwarzschild lens case)

~Θ(~ξ) = 4GM~ξ/c2ξ2. (2)

Vanishing the r.h.s (1) we obtain conditions when a source, lens and
an observer are on one straight line (η= 0). We have a corresponding
length in the lens plane ξ0 =

√
4GMDdDds/(c2Ds). ξ0 is called Einstein–

Chwolson radius. One can calculate the Einstein–Chwolson angle which is
θ0 = ξ0/Dd. Let us calculate θ0 values for some standard cases. If we
assume Ds À Dd, then

θ0 ≈ 2′′ × 10−3

(
GM

M¯

)1/2 (
kpc

Dd

)−1/2

.

If a lens is one of the closest galaxies with a mass M = 1012M¯, at
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a distance Dd = 100 kpc, then θ0 ≈ 200′′. If a lens is at a distance
1 kpc from observer in our Galaxy and a lens has a mass M = M¯, then
θ0 ≈ 2′′ × 10−3.

In dimensionless variables we have

~x = ~ξ/ξ0, ~y = Ds~η/(ξ0Dd),

~α = ~ΘDdsDd/(Dsξ0) (3)

then a gravitational lens equation has a form

~y = ~x− ~α(~x) (4)

or

~y = ~x− ~x/x2 (5)
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Solving it in respect to x, we obtain

~x± = ~y[1/2±
√

1/4 + 1/y2]. (6)

Therefore a distance between images may be easy obtained.

x+ = y

[
1
2

+
√

1
4

+
1
y2

]
, (7)

x− = y

[
−1

2
+

√
1
4

+
1
y2

]
, (8)

l = x+ + x− = 2y

√
1
4

+
1
y2

, (9)
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Figure 1: A point like lens is located in the origin (0,0). A point S is a
source position, V is an observer position.

It is easy to understand why we have two images for Θ ∼ 1/∆ (∆ is an
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impact parameter).
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Figure 2: A circular source and its images generated by a Schwarzschild lens.
An unit circumference with a center at (0,0) is a Schwarzschild —Chwolson
ring. A source radius is r = 0.1, a distance between the center of a source
and a lens position is d = 0.3.
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If y ¿ 1, then l ≈ 2, so a distance between images is about the
Schwarzschild —Chwolson diameter. Assume we have a small source near
the origin y ¿ 1. We have two images (x+ is outside the ring, x− is inside).
Images are stretching (in roughly 1/y rimes).

Let us study changes of source size in radial direction if source is located
at x−axis.
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Figure 3: d = 0.11.
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For y → 0

dx±

dy
=

1
2
± y√

4 + y2
=

1
2
± y

2
+ O(y2), (10)

so images are squeezing roughly in two times in comparison with a source.

10



Figure 4: d = 0.09.

Let us evaluate amplification for the gravitational lens model. If the A
is more than 1 we are speaking about gravitational lensing (focusing). Let
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us introduce angular variables, namely θ = ξ/D0, β = η/Ds, therefore
a ratio between a solid angle of images and sources is amplification factor.

∆ω0 is a solid angle for a source, ∆ω is a solid angle for images

µ =
∆ω

∆ω0
= | det

d~β

d~θ
|−1 = | det

d~y

d~x
|−1 (11)

since y = β/θ0, x = θ/θ0.

We choose coordinates that x2 = y2 = 0.

Evaluating Jacobians x± 7→y (in the point y= (y1, 0)),

we will denote such as µ± = |det dx±/d y |
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In this case only diagonal terms are non-vanishing, namely,

∂x1
±

∂y1
|(y1,0) =

1
2

(
1± y1√

4 + y1
2

)
, (12)

∂x2
±

∂y2
|(y1,0) =

1
2

(
1±

√
4 + y1

2

y1

)
, (13)

So,

µ± =
1
4

(
y1√

4 + y1
2

+

√
4 + y1

2

y1
± 2

)
, (14)

(15)
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Clearly, that a ratio of amplifications is determined by the relation

µ+

µ−
=

(√
4 + y1

2 + y1√
4 + y1

2 − y1

)2

, (16)

(17)

Let us consider µ± and their ratios for y1 → 0

µ+ =
1

2y1
+

1
2

+ O(y1), (18)

µ− =
1

2y1
− 1

2
+ O(y1), (19)

µ+

µ−
= 1 + y1 + O(y1

2). (20)
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In another limit y1 →∞ we have

µ+ = 1 + y1
−4 + O(y1

−6), (21)

µ− = y1
−4 + O(y1

−6), (22)
µ+

µ−
= y1

4 + O(y1
0). (23)

Warning: One has to use the Schwarzschild model in a careful way, since
in lensing by stars radius of star has to be smaller than x−, otherwise the
fainter image will disappear.

For gravitational lensing with galaxies transparent gravitational lens
models are better.
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A more simple explanation

It is possible to evade formal and cumbersome calculations if we use the
following assumption for a simplification of our analysis. We suppose that
the shape of any image is an ellipse (really the shapes of the images are more
complex figures, for example, for great amplifications the shapes remind
”Moon’s crescents”, although behind a gravitational lens the source image
is a circle). Both I1 and I2 are slightly squeezed along a line which connects
I1 D I2 and the images are extended in the perpendicular direction. The
ellipse square is determined by the following expression Ω = πab, where a
and b are the major and minor semiaxises respectively. Using proportionality
relations we find semiaxises a and b through parameters of a lens and a
source. So, the square of the first image is determined (in steradians) by
the following expression
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Ω1 = πϕ2
s ·

(
1
2

+
u

4
+

1
4u

)

and a square of the second image by the expression

Ω2 = πϕ2
s ·

(
−1

2
+

u

4
+

1
4u

)
,

where u =
√

1 + 4 · θ2
0θ
−2 is an auxiliary variable. Sizes and luminosities

of the images are different, but their total luminosity is greater than the
luminosity of an unlensed source S, actually

Ω1 + Ω2 =
1
2
πϕ2

s(u +
1
u
) > πϕ2

s. (24)

Really, the discovery of microlensing effects is based on the usage of the
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property. Since photons belonging to different spectral bands are deflected
identically in the gravitational field of a body D, therefore the amplification
is the same for different spectral bands.

The sum of luminosity of two images divided by undistorted luminosity
is called amplification factor and usually is denoted as A, so

A =
Ω1 + Ω2

πϕ2
s

.

If the impact parameter for a source S is small that is defined formally
as θ << θ0, then the parameter u is great and an amplification factor is

much greater than unity, or A =
θ0

θ
>> 1.

If θ → 0 or the source centre S, an observer O and a gravitational
lens D lie on a straight line, a total luminosity formally tend to infinity
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as Ω1 + Ω2 → ∞. We obtain the incorrect conclusion since we use the
incorrect assumption about shapes of images for small impact parameters
and approximate calculations of the semi-axis a and b.

If θ → 0 or the source centre S, an observer O and a gravitational
lens D lie on a straight line, the gravitational lens will form an image as
a luminous ring or so-called ”Einstein’s ring”. It has a radius θ0, a length
2πθ0 and a depth:

2φs
dθ1

dθ

∣∣∣∣
θ0

= φs

which is equal to a source radius. In other words, a solid angle Ω
corresponding to the ring on the celestial sphere is equal to 2πθ0φs. The
amplification factor is equal to 2π θ0

φs
for this case.

19


