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Only one metric theories

v

Only Riemann geometry

v

Only gravitational sector

» Some cosmological applications
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Lovelock gravity

D. Lovelock, J. Math. Phys. 12 (1971) 498
S= / d*xv/—gR

1
Gik = Rix — EgikR = Gik(8ik; ik, 1> Sik,im)

what is all possible tensors Aj in space-time with general
dimensions d which

> symmetric Ay = Aki
> A = Ai(8ik, Sik,1» Sik,Im)
» divergence free A%, =0
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the answer is

d n
i Ip1V1 ... hnVn arBr
k — Z anékalﬂl---anﬁn H R Hrvr
n=0 r=1

associated Lagrange density is

d n
L=v=g) anle Qn=200570% [[R*,,
n=0 r=1
where generalized Kronecker delta
ShY L. 5“;

H1V1...fnVn
6a1ﬁ1---0’n6n - det

Vn Vn
S . 8y
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where \/—gQ, — is total derivative up to D = 2n
it produce non-trivial contribution to the equations of motions only
beginning from D =2n+1

examples:
» Qg — A-term, non-trivial contribution in any non-trivial space

» Q — scalar curvature R, non-trivial contribution beginning
from D =3

» Q, — Gauss-Bonnet invariant G = RymR* ™ — 4Ry R'** + R2,
non-trivial contribution beginning from D =5
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» Q3 — third Euler density
Q3 = 8(—R3+ 12RR3 — 3RR%, —16R.*R,/R '+
+24Ry Rim R"™™ + 24Ry R™ R¥, . —
_4Rik /mRImjnRjn ik _ 8Ri/mk lenij ikn)’

non-trivial contribution beginning from D =7

» Q15 = —R™+ 79536629 additional terms! non-trivial
contribution beginning from D = 31

Lovelock gravity is multidimensional theory of gravity which is take
into account non trivial contribution from all possible Euler
densities.
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Starobinsky's inflation model

A.A. Starobinsky, Phys. Lett. B 91 (1980) 99

1
Rix — §gfkR = (Ti)

1 Im 1 2
(Ti) = 2880 o2 (R Ry — §RR,/< 58k RimR™ + 7 gikR")
m3 . 1 2
2R, 2gix R, — 2RR; —giR
*2880r 26( kT 2Bk K+ 28iR)
mo N + 11N1 + 62N; + 1411N, — 28Nyp
k:
27 60(4m)2 60(47)2
s N + 6Ny + 12N, + 6115 — 8Npp
k3 = — = — 2
60(4r)2 60(47)2
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pg = koH* + ks(2HH + 6HH? — H?)

6H? = p,

» Vacuum stability condition: k3 < 0
» Exist de Sitter solution for k» > 0

» Singularity problem may be solved for K = —1
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R? example

5:/d4X\/—7g(R+aR2).

1 1
2aV; ViR — (1 +2aR)Ry + g,'k[EOsz + 3R = 200R] = 0.

1
o

Eik = (14 2ap)gik-
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= 1. - 6 1 . ©?
R — =8xR= ————= | V;©V — =8 | VipV' — .
kT Bk (14 2a¢p)? ( PYkY T o8k [ Vet 604:|)

This correspond to the theory:
A o2
5= [t/ [ m

and the field equation for ¢:

. 2
(V;@V’cp + SD)} .
6a

60 (1 + 2ap)0p — 12a2V,oVip = .
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6a(1 + 200)(—p — 3HY) — 12022 = .

in the limit of large ¢

@ X —t
and from Einstein equation we find
1
H? = —
24a
— that is quasi de Sitter solution.
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Quadratic gravity

5= / d®x\/=g(R + aR® + bRy R™ + cRiymR™™),

simplification for D = 4
S= / d*xv/—g(R + aR? + bRy R™ + cRyymR™™ — ¢G) =

= / d*xv/=g(R + AR? + BRyR™).
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it is possible further simplification for conformally flat metric
Cikim =0

7 13 1
c2, = R? D — 6)R? —— =D+ —D?|R%

S = /d4X\/ —g(R + AR? + BC,'k/mCiklm).

so for cosmological applications:

S— /d4x¢?g(R+Z\R2).
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de Sitter stability in quadratic gravity

non trivial question for any high derivative theory

S= /d“x\/fg(R —NA).

[}
6H? = A

S = /d4x\/—g(R + AR? — A).
\(3
6H? + 12A (6HH Y 28H2H> —A

— de Sitter solution as in previous case, but it may be unstable due
to high derivatives
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to investigate stability of de Sitter solution rewrite equation of
motion in the form of dynamical system:

H=C,

' 1 [ 1 : | =

C =g [ L5 (A —6H2) +3H2 — 28H2H} = f(H, C).
stationary point — is de Sitter solution Hy = /%

it stable when A > 0

note: there are two different de Sitter solution: due to A-term and
due to gravitational sector
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f(R)-gravity

S= /d4x\/—gf(R) + Sm,
1
_Efgik + frRix — ViVifr + giOfr = Ti,
Ty =0,

30fgr —2f +fRR=0
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frR(Ro)Ro — 2f(Rp) = 0,

= R? - is degenerated case

1 fi
2 R

» fr > 0 — graviton is not ghost

» frr > 0 — scalaron is not tachyon

» additional possible condition: f(0) = 0 — vanish cosmological
constant

Cosmological constant A is a good candidate for dark energy (late
time accelerating), but not for inflation one.

Cosmological constant can not explain possible fantom regime

w < —1 for p = wp.
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Several examples

a(5)
» f(R) =R+ - M%“) -

> f(R) =R — BRs (1 — e R/R)

> S = [d*xy/=g[R+ f(R) + H(R)Ld]

with Ly = 2g*V,;oV e
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S= /d‘*x\/fgf(R).

S= /d‘*x\/fgf(R) = /d4x\/—g[f(>\) + u(R —\)].
Variation with respect to i and A give us correspondingly

AF (A
A=Ron= 8()\)

We may define potential V as
V(A 1) = F(A) — pA,

initial action take the form

5= / d*xy/~g[uR + V().
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We define x = In i and rescale to the metric gjx = eXgj,. This give
us next result

5—/d4x¢fg [F?— 35k OX OX

: “2XV/(\ )
58 Ak T e (A 1)

= fgr > 0 — graviton is not a ghost on quantum field theory level
1 2
_Efgik + frRik — ViVifr + gikOfr = £° Ti,
\

1 1 1
<Rik - 2Rgik> = w2 T+ §fgik +ViVifr —giOfg — EfRRgika

"

2 . . .
’;—R — effective gravitational constant, so

= fr > 0 — positivity of effective gravitational constant on classical
level
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—2f + frR + 30fgr = 0,
R = Rbackgr + (5R,
—fR(O)dR + 3fRR(O)D5R =0,
ikx—iwt

ug ~ € y

where w = (k2 4+ 112)Y/2, k =| k | and p is the mass of effective
scalar field (scalaron).

3frr(0)u? — fr(0) = 0.

frr > 0 — scalaron is not tachyon on quantum field theory level

frr > 0 — stability of cosmological perturbations
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fr > 0 — graviton is not a ghost

frr > 0 — scalaron is not tachyon
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High derivative theories

S= /d4x\/—gf(R, OR, (2R, ...,0%R)

f()\l,)\g,...,)\k,Ak+1), where )\1 = R, /\2 =0R ..

two different cases:

. _of
case 1: P = F(A1, A2y ey Ay Akt1)

case 2: 63:1 = F(A1, A2, ..., Ag) or

AL, A2y, Ay Ak1) = 8(A 155 A2, s M) Akrr + h( A1y, Az, o Ak)
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S= fd4X\/ _g[f()\la)Q? "'7)\/(1 )\k-‘rl) + M(R - )‘1)
+pa(OAr = A2) + o+ (DA = Akqa)]

variation over p;: A = Ajy1

variation over Agy1:

FOMLA2, o A .
OFA Ao, Mo Ait1) iy the case 1
O kt1 ’

Mk =
g(A1, A2, ..., Ak), inthe case 2

it may be solved in case 1: A\g11 = S\k+1(>\1,)\2, vy Aky Lk)
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S = [d*/=gl[f(A, A2, ey Akr1) + (R — A1) 4 p1(OA — A2) + ...

k(O = Mes1)]

introduce new fields:

Ai = Xi + i, i =Xi —Yi

S = [d*v/=guiV?Xi = [ d*x/=g[xiV?xi — V] =
[ d*xy/=g[-(Vx)* + (V)]
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V(le ceey Xkﬂﬂll---ﬂﬁk) = /J’)‘l + ,ul)‘2 + ...+ Mk—l)\k
F A1 (A5 ooy ks i) — F(AL, oy Ay i)

5= [ d'xv/=g |uR - DUV = (V) = Vi o)

=Inp

gik = eXgik
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S=[d**xv=g[R-3(Vx)® - e X2 {(Vxi)* — (Vi)?}

—e XV (x1, .-, i)

2k 4+ 1 scalar field:

» k + 1 of which propagate physically (x and x;)

» and k of which are ghost-like (1);)

It mean that for even k = 1 there is one ghost-like scalar field
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case 2:
F(AL, A2y o Ak A1) = 8(A 1,5 A2, s M) Akrr + h(A1,, Az o M)

More complicate case!

g1, A2, s M) V2N,

Nevertheless, it is possible to introduce a set of new fields

{X1, s Xk, V1, -, Yk } Which simultaneously diagonalize the kinetic
terms for \; and p;. This form of transformation will depend on the
function g.

At least k — 1 of the new fields will be ghost-like.

The only possibility not to have ghosts in the theory is liner case
k=1.
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Concrete example
f=a+ BR+~yR?+ eROR

S = /d4x\/—g[o¢ + BR 4+ vR? + ¢ROR]

4

3

S= /d4X\/jg [R) = 5(VX)? —ee (V) = V(A1 X)

with potential V = e™2X(eX\; — a — BA1 — YA?)
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S = /d‘*x\ﬁ—gf(R, ROR = A).
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—2fgu + frRik — ViVifr + guOfr + fAORR)+
D(fAR)R,'k — V,Vk(fADR + \:‘(fAR)) + D(fADR + D(fAR))g,k

+1V(faR)V/Rgix — Vi(faR)ViR + 3 faRORgy = 0.

—2f + frR + 30fz + 3RHOR
+RO(f4R) + 30(f20R + O(faR)) + Vi(faR)V/R = 0.
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S= /d4x\/—gf(R, ROR = A).

all scalarons may propagate physically (not a ghost-like) only in the
case when function f is linear with respect to second argument

more over it is need f4 > 0.

Ahmed Hindawi, Burt A. Ovrut, Daniel Waldram, Phys.Rev. D53 (1996) 5597-5608
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—2f + frR + 30fz + 3RHOR
+RO(f4R) + 30(f0R + O(£aR)) + Vi(faR)V/R = 0.

R=R.+0R

» flat background R, =0
» dS background R, = R4s = const
» non-flat background R, = R}, # const
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on flat background:

—r(0,0)0R + 3fgr(0,0)6R + 6£4(0,0)T%6R = 0.

U ~ eIkX—IUJt’

6£4(0,0)u* + 3frr(0,0)u? — f(0,0) = 0.

on dS background R = Rys + 0R, where Rys is a constant,
equations is similar to the previous one
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Now let us study not flat background. In this case we have
R = Ry + 0R, where R}, is solution of trace equation and not fixed.

3fAARgD35R + (6fA + 6farRp + fAARg’)D25R
+(2fARb + 3frr + 2fARRg)D(5R + (fRRRb — fR)(SR =0,

where all derivatives of function f is took at the point (Rp, Ap).
This relation may be strongly simplified if we study the limit
u? > Ry at WKB regime (Rfrr < fR):

3fAAR§,u6 + 6(fA + fARRb)M4 + 3fRR,u,2 — fR =0.
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f; faf;

P RR ATR
=——[-1+,4/1 = 1.
o 4fA< +8fRR>

Thus we have two possibility for positivity both 12:

> fa>0, frr <0,

> f4 <0, frr > 0.
The first of them is consistent with previous result (not ghost-like
scalarons), but it has wrong limit (f4 — 0), because in f(R)-gravity
it need frr > 0. The second one contrary has true limit, but
contain a ghost. Thus we have two possibilities: or we have a
ghost(tachyon) in the theory or we have a theory which is
disconnected with usual f(R)-gravity.
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S= /d‘*x\ﬁ—gf(R, V:RV'R = B).

—Lfgi + frRik — ViVifr + giOfr + fgV;RVKR
—2V (faV'R)Ry + 2V, V[V (fsV'R)] — 2giO[V,(fsV'R)] = 0,

and it's trace

—2f + frR + 30fr+
fsVIRV'R — 2RV ,(fsV'R) — 60J[V,(fsV'R)] = 0.
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On the flat and de Sitter background equation equivalent to the
previous case.

—6fg0%6R + (3frr + 2fgRp)I0R + (frr Ry — fr)OR = 0.

Since we are interesting in WKB-regime (fg > frrR), we may
neglect by the first term in the last bracket.

[fa1®(—61° + 2Rp) + 3frpu’® — fR]OR = 0.

Here its need to note that we interested in the limit Ry, < 2,
therefor finally we find equation for u?:

—6fgu* + 3frpp® — fr = 0,

which is totally identical (in linear case) to the flat background case
because f4 = —fg. This quadratic (with respect to %) equation
have two solution similar to previous case (where it need to change
fa — —fg) and for its positivity we have two possibilities: first

fg < 0, frr < 0 and second fg > 0, frr > 0, as early one.



Let us introduce Lagrange multipliers
S = [d*x/=gf(R, B) =
= [ d*/=g[f(M1, A2) + p1(R — M) + p2(VidiViIAL — X))
Variation with respect to p1 and u» give us correspondingly
A =R, \»=B.
Variation with respect to A\; and \, reads

L Of(O ) OF(n )
H1 = (9)\1 y M2 = 8)\2 .

Let us rewrite initial action in the canonical form. If we define
potential V as

V(A1, A2, 1, p2) = F(A1, A2) — praAs — pa2,
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initial action take the form
S= /d4X\/ —g[,ulR + sz,'/\lvi)\l + V(/\l, Ao, 1, Mz)].

Now to complete the transformation to canonical form we need to
make a conformal re-scaling of the metric to remove the 1R
coupling. We use a standard procedure for this one. We define

X = In 1 and rescale to the metric g = eXgjk. This give us next
result

8 Ox X5
5= Jatey TR [R- 38 B - e
+e_2X V()\la )‘27:u13//12)] .

We can see that second kinetic term contain a factor ’/ﬁ = ?B and
it must be negative to physical propagation of field \;. Thus we
have a similar to the previous case picture: theory contain a
tachyon(fg < 0, fgr > 0) or there is no a limit to the f(R)-gravity
(fg >0, fr < 0).
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de Sitter stability

fi =R+ 8RN

gix = diag(—1,a%,a°, a°)

6H + B[(1 — N)R + 6H*NRN = + 6HN(N — 1)RV-2R] = 0.

RY™! = _r

BN -2)

H = Ho+6H, R = Ry + 6R = Ry + 6(3H + 4HpdH) and
RN = RY + 6NRY X (6H + 4Hod H)
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N(N -1 o NN -1
NN —1) )H015H+3§V_2)

3 SH + 4Ho(N — 1)6H = 0

OH = Mt

stability condition:

O<N<?2
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f =R+ BR" + aROR.

6H? + B[(1 — N)RN + 6H2NRN=1 + 6HN(N — 1)RN2R]
+a[2RR + 36H3R — R? — 48H2R — 12HR] = 0.

1
BN —2)°

N-1 _
Ry =
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24Hoad H) + 12aRodH + (10HoRocr — M50 Het) o
<2R0a + 3NV )) SH + 4Ho(N — 1)6H = 0.

OH = et

Routh-Hurwitz theorem
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To = 24Hyar,
Ty = 144Hza,

N(N —1
T, = 72Ho (12 - 28Hga? — a§V2)> :

Ts =9 24Hy (~122 - 14 1603H§ — 4802 HEN=3 (13N — 16)

N2(N—1)2
+a7(,51_2)2) ) ,

Ta = 4Ho(N — 1) Ts.

For sufficiently small values of Hp all T; have the same sign in the
range 1 < N < 2. It mean that in this range dS-solution may be
stable for sufficiently big |3|. Actually even for 8 ~ 2.
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