Introduction to Lattice QCD II

Karl Jansen

• Task: compute the proton mass

- need an action
- need an algorithm
- need an observable
- need a supercomputer

• Anomalous magnetic moment of Muon

Quantum Chromodynamics

Quantization via Feynman path integral

 $\mathcal{Z} = \int \mathcal{D}A_{\mu} \mathcal{D}\Psi \mathcal{D}\bar{\Psi}e^{-S_{\text{gauge}}-S_{\text{ferm}}}$

Fermion action

$$S_{\text{ferm}} = \int d^4x \bar{\Psi}(x) \left[\gamma_\mu D_\mu + m\right] \Psi(x)$$

gauge covriant derivative

$$D_{\mu}\Psi(x) \equiv (\partial_{\mu} - ig_0 A_{\mu}(x))\Psi(x)$$

with A_{μ} gauge potential, g_0 bare coupling, m bare quark mass

 $S_{\text{gauge}} = \int d^4 x F_{\mu\nu} F_{\mu\nu} , \ F_{\mu\nu}(x) = \partial_{\mu} A_{\nu}(x) - \partial_{\nu} A_{\mu}(x) + i \left[A_{\mu}(x), A_{\nu}(x) \right]$

Lattice Gauge Theory had to be invented

 \rightarrow QuantumChromoDynamics

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling. Wilson, Cargese Lecture notes 1976

Reminder: Wilson fermions

introduce a 4-dimensional lattice with lattice spacing a

fields $\Psi(x)$, $\overline{\Psi}(x)$ on the lattice sites $x = (t, \mathbf{x})$ integers

discretized fermion action

 $S \to a^4 \sum_x \bar{\Psi} \left[\gamma_\mu \partial_\mu - r \underbrace{\partial_\mu^2}_{\nabla_\mu \nabla_\mu} + m \right] \Psi(x) \quad , \quad \partial_\mu = \frac{1}{2} \left[\nabla_\mu^* + \nabla_\mu \right]$ discrete derivatives

 $\nabla_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x + a\hat{\mu}) - \Psi(x) \right] , \quad \nabla^{*}_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x) - \Psi(x - a\hat{\mu}) \right]$

second order derivative \rightarrow remove doubler \leftarrow break chiral symmetry

Nielsen-Ninimiya theorem: The theorem simply states the fact that the Chern number is a cobordism invariant (Friedan)

Reminder: Gauge fields

Introduce group-valued gauge field $U(x,\mu)\in \mathrm{SU}(3)$ Relation to gauge potential

$$U(x,\mu) = \exp(iaA^{b}_{\mu}(x)T^{b}) = 1 + iaA^{b}_{\mu}(x)T^{b} + \dots$$

Discretization of the field strength tensor ← principle of *local gauge invariance*

$$U(x,\mu)U(x+a\hat{\mu},\nu) - U(x,\nu)U(x+a\hat{\nu},\mu) = ia^2 F_{\mu\nu}(x) + O(a^3)$$
$$F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) + i[A_{\mu}(x), A_{\nu}(x)]$$

Action for the gauge field, $(\beta = 6/g^2)$, plaquettes \Box (K.G. Wilson, 1974)

$$S_{\mathbf{w}}(U) = \sum_{\Box} \beta \left\{ 1 - \frac{1}{3} \operatorname{Re} \operatorname{tr} \left(U_{\Box} \right) \right\} \xrightarrow{a \to 0} \frac{1}{2g^2} a^4 \sum_x \operatorname{tr} \left(F_{\mu\nu}(x)^2 \right) + O(a^6)$$

Implementing gauge invariance

Wilson's fundamental observation: introduce Paralleltransporter connecting the points x and $y = x + a\hat{\mu}$:

$$U(x,\mu) = e^{iaA_{\mu}(x)}$$

 $\Rightarrow \text{ lattice derivatives } \nabla_{\mu}\Psi(x) = \frac{1}{a} \left[U(x,\mu)\Psi(x+\mu) - \Psi(x) \right]$ $\nabla^{*}_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x) - U^{-1}(x-\mu,\mu)\Psi(x-\mu) \right]$

action gauge invariant under

$$\begin{split} \Psi(x) &\to g(x) \Psi(x), \ \bar{\Psi}(x) \to \bar{\Psi}(x) g^*(x), \\ U(x,\mu) &\to g(x) U(x,\mu) g^*(x+\mu) \end{split}$$

Lattice Quantum Chromodynamics

Wilson Dirac operator (K.G. Wilson, 1974)

$$D = \mathbf{m} + \gamma_{\mu} D_{\mu} \rightarrow \qquad D_{w} = \mathbf{m}_{\mathbf{q}} + \frac{1}{2} \{ \underbrace{\gamma_{\mu} (\nabla_{\mu} + \nabla_{\mu}^{\star})}_{\text{naive}} - \underbrace{a \nabla_{\mu}^{\star} \nabla_{\mu}}_{\text{Wilson}} \}$$

bare quark mass m_q

gauge covariant lattice derivatives

$$\nabla_{\mu}\Psi(x) = \frac{1}{a} \left[U(x,\mu)\Psi(x+\mu) - \Psi(x) \right]$$

$$\nabla_{\mu}^{*}\Psi(x) = \frac{1}{a} \left[\Psi(x) - U^{-1}(x-\mu,\mu)\Psi(x-\mu) \right]$$

$$S_{\text{fermion}} = a^4 \sum_x \bar{\Psi}(x) D_w \Psi(x)$$

Physical Observables

expectation value of physical observables $\ensuremath{\mathcal{O}}$

$$\underbrace{\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int_{\text{fields}} \mathcal{O}e^{-S}}_{\text{fields}}$$

 \downarrow lattice discretization

01011100011100011110011

 $\langle f(x) \rangle = \int dx f(x) e^{-x^2}$

 \rightarrow importance sampling:

select points $x_i, i = 1, \dots N$ with x_i Gaussian random number

$$\Rightarrow \langle f(x) \rangle \approx \frac{1}{N} \sum_{i} f(x_i)$$

Quantum Field Theory/Statistical Physics:

- sophisticated methods to generate the Boltzmann distribution e^{-S}
- x_i become field configurations
- $\langle . \rangle$ become physical observables

Wilson's Lattice Quantum Chromodynamics

 $\sigma_{\overline{z}}^{0.95}$

0.9

0.85

0.8

lattice artefacts appear linear in \boldsymbol{a}

- → possibly large lattice artefacts ⇒ need of fine lattice spacings ⇒ large lattices (want $L = N \cdot a = 1$ fm fixed)
- \rightarrow simulation costs $\propto 1/a^{6-7}$

 $\overline{g}^2 = 2.45$

a/L

- present (Wilson-type) solutions:
- clover-improved Wilson fermions
- maximally twisted mass Wilson fermions
- overlap/domainwall fermions

 — <u>exact</u> (lattice) chiral symmetry

Realizing O(a)-improvement

Continuum lattice QCD action $S = \bar{\Psi} \left[m + \gamma_{\mu} D_{\mu} \right] \Psi$

an axial transformation: $\Psi \to e^{i\omega\gamma_5\tau_3/2}\Psi$, $\bar{\Psi} \to \bar{\Psi}e^{i\omega\gamma_5\tau_3/2}$

changes only the mass term:

 $m \to m e^{i\omega\gamma_5\tau_3} \equiv m' + i\mu\gamma_5\tau_3$, $m = \sqrt{m'^2 + \mu^2}$, $\tan \omega = \mu/m$

 \rightarrow generalized form of continuum action

• $\omega = 0$: standard QCD action

- $\omega = \pi/2$: $S = \overline{\Psi} \left[i\mu\gamma_5\tau_3 + \gamma_\mu D_\mu \right] \Psi$
- general ω : smooth change between both actions

Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

$$D_{\rm tm} = m_q + i\mu\tau_3\gamma_5 + \frac{1}{2}\gamma_\mu \left[\nabla_\mu + \nabla^*_\mu\right] - ar_{\frac{1}{2}}\nabla^*_\mu\nabla_\mu$$

quark mass parameter m_q , twisted mass parameter μ

difference to continuum situation: Wilson term not invariant under axial transformations

 $\Psi \to e^{i\omega\gamma_5\tau_3/2}\Psi$, $\bar{\Psi} \to \bar{\Psi}e^{i\omega\gamma_5\tau_3/2}$

2-point function: $\left[m_{q} + i\gamma_{\mu}\sin p_{\mu}a + \frac{r}{a}\sum_{\mu}(1 - \cos p_{\mu}a) + i\mu\tau_{3}\gamma_{5}\right]^{-1}$ $\propto (\sin p_{\mu}a)^{2} + \left[m_{q} + \frac{r}{a}\sum_{\mu}(1 - \cos p_{\mu}a)\right]^{2} + \mu^{2}$ $\lim_{a \to 0} : p_{\mu}^{2} + m_{q}^{2} + \mu^{2} + am_{q}\sum_{\mu}p_{\mu}$

• setting $m_q = 0$ ($\omega = \pi/2$): no O(a) lattice artefacts

quark mass is realized by twisted mass term alone

O(a) improvement

Symanzik expansion

$$\langle \mathcal{O} \rangle |_{(m_q,r)} = [\xi(r) + am_q \eta(r)] \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + a\chi(r) \langle \mathcal{O}_1 \rangle |_{m_q}^{\text{cont}}$$
$$\langle \mathcal{O} \rangle |_{(-m_q,-r)} = [\xi(-r) - am_q \eta(-r)] \langle \mathcal{O} \rangle |_{-m_q}^{\text{cont}} + a\chi(-r) \langle \mathcal{O}_1 \rangle |_{-m_q}^{\text{cont}}$$
symmetry: $R_5 \times (r \to -r) \times (m_q \to -m_q)$, $R_5 = e^{i\omega\gamma_5\tau^3}$

Using symmetry: $R_5 \times (r \to -r) \times (m_q \to -m_q)$, $R_5 = e^{i\omega\gamma_5\tau^\circ}$

- mass average: $\frac{1}{2} \left[\langle \mathcal{O} \rangle |_{m_q,r} + \langle \mathcal{O} \rangle |_{-m_q,r} \right] = \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + O(a^2)$
- Wilson average: $\frac{1}{2} \left[\langle \mathcal{O} \rangle |_{m_q,r} + \langle \mathcal{O} \rangle |_{m_q,-r} \right] = \langle \mathcal{O} \rangle |_{m_q}^{\text{cont}} + O(a^2)$
- automatic O(a) improvement \rightarrow special case of mass average: $m_q = 0$

$$\Rightarrow \langle \mathcal{O} \rangle|_{m_q=0,r} = \langle \mathcal{O} \rangle|_{m_q}^{\text{cont}} + O(a^2)$$

A first test: experiments in the free theory (K. Cichy, J. Gonzales Lopez, A. Kujawa, A. Shindler, K.J.)

free fields: imagine study system for $L[\text{fm}] < \infty$

 $\Rightarrow \quad L = N \cdot a \quad \xrightarrow{} a \rightarrow 0 \leftrightarrow N \rightarrow \infty$

Scaling for pure Wilson fermions at $Nm_q = 0.5$ $N \cdot m_\pi$ versus $1/\mathbf{N} = a$

Averaging over the mass

Wilson fermions at $Nm_q = \pm 0.5$

 $N \cdot m_{\pi}$ versus $\mathbf{1/N} = a$

Averaging Wilson fermions at $Nm_q = \pm 0.5$

 $N \cdot m_{\pi}$ versus $1/N^2 = a^2$

Twisted mass at maximal twist

choosing $m_q = 0 \quad \Rightarrow \quad \omega = \pi/2$

maximally twisted mass fermions at $N\mu=0.5$ $N\cdot m_{\pi}$ versus $1/\mathbf{N^2}=a^2$

starting point: Ginsparg-Wilson relation

$$\gamma_5 D + D\gamma_5 = 2aD\gamma_5 D \qquad \Rightarrow D^{-1}\gamma_5 + \gamma_5 D^{-1} = 2a\gamma_5$$

Ginsparg-Wilson relation implies an exact lattice chiral symmetry (Lüscher): for any operator D which satisfies the Ginsparg-Wilson relation, the action $S = \bar{\psi} D \psi$

is invariant under the transformations

$$\delta \psi = \gamma_5 (1 - \frac{1}{2}aD)\psi$$
, $\delta \overline{\psi} = \overline{\psi} (1 - \frac{1}{2}aD)\gamma_5$

 \Rightarrow almost continuum like behaviour of fermions

one <u>local</u> (Hernández, Lüscher, K.J.) solution: overlap operator D_{ov} (Neuberger)

$$D_{\rm ov} = \left[1 - A(A^{\dagger}A)^{-1/2}\right]$$

with $A = 1 + s - D_w(m_q = 0)$; s a tunable parameter, 0 < s < 1

The "No free lunch theorem" A cost comparison

T. Chiarappa, K.J., K. Nagai, M. Papinutto, L. Scorzato, A. Shindler, C. Urbach, U. Wenger, I. Wetzorke

V, m_{π}	Overlap	Wilson TM	rel. factor
$12^4,720 {\sf Mev}$	48.8(6)	2.6(1)	18.8
$12^4,390 { m Mev}$	142(2)	4.0(1)	35.4
$16^4,720 {\sf Mev}$	225(2)	9.0(2)	25.0
$16^4, 390 {\sf Mev}$	653(6)	17.5(6)	37.3
$16^4, 230 { m Mev}$	1949(22)	22.1(8)	88.6

timings in seconds on Jump

- nevertheless chiral symmetric lattice fermions can be advantageous
 - e.g., Kaon Physics, B_K , $K \to \pi\pi$
 - ϵ -regime of chiral perturbation theory
 - topology
 - use in valence sector

Decide for an action

ACTION	ADVANTAGES	DISADVANTAGES
clover improved Wilson	computationally fast	breaks chiral symmetry needs operator improvement
twisted mass fermions	computationally fast automatic improvement	breaks chiral symmetry violation of isospin
staggered	computationally fast	fourth root problem complicated contraction
domain wall	improved chiral symmetry	computationally demanding needs tuning
overlap fermions	exact chiral symmetry	computationally expensive

For all actions: O(a)-improvement

 $\Rightarrow \langle O_{\rm phys}^{\rm latt} \rangle = \langle O_{\rm cont}^{\rm latt} \rangle + O(a^2)$

Here, example of twisted mass fermions

Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

$$D_{\rm tm} = m_{\boldsymbol{q}} + i\boldsymbol{\mu}\tau_3\gamma_5 + \frac{1}{2}\gamma_{\mu}\left[\nabla_{\mu} + \nabla_{\mu}^*\right] - a\frac{1}{2}\nabla_{\mu}^*\nabla_{\mu}$$

quark mass parameter m_q , twisted mass parameter μ

- $m_q = m_{crit} \rightarrow O(a)$ improvement for hadron masses, matrix elements, form factors, decay constants
- $det[D_{tm}] = det[D_{Wilson}^2 + \mu^2]$ \Rightarrow protection against small eigenvalues
- computational cost comparable to Wilson
- simplifies mixing problems for renormalization
- no operator specific improvement coefficients
- natural to twist

\star based on symmetry arguments

Drawback: explicit breaking of isospin symmetry for any a > 0 \Rightarrow possibly large cut-off effects in isospin zero sector

Need an algorithm

Molecular Dynamics

follow discussion of S. Chanddrasekar, Rev.Mod.Phys. 15 (1943) 1

Brownian motion [free particle in a fluid]

famous description

Langevin equation [stochastic differential equation]

 $\dot{\pi} = -\gamma \pi + \eta(t)$

 π particle momentum, γ friction coefficient

 $\eta(t)$ Gaussian white noise: $<\eta(t)>=0$ $<\eta(t)\eta(t')>=\delta(t-t')$

for a finite interval Δt we have

$$\pi(t + \Delta t) = \pi(t) - \gamma \pi(t) \Delta t + \int_t^{t + \Delta t} dt' \eta(t')$$

(1)

consider probability $P(\pi, t)$ to find a particle with momentum π at time t:

$$P(\pi + \Delta \pi, t + \Delta t) = \int d(\Delta \pi) P(\pi, t) W(\pi, \Delta \pi)$$

 $W(\pi,\Delta\pi)$ transition probability that π suffers an increment $\Delta\pi$ in the time interval Δt

transition probability determined from Gaussian noise:

$$W(\pi, \Delta \pi) = e^{-\int_0^{\Delta t} dt \eta(t)}$$

remember that $\Delta \pi = -\gamma \pi \Delta t + \int_0^{\Delta t} \eta(t)$

we can perform the integral and obtain

$$P(\pi + \Delta \pi, t + \Delta t) = e^{-(\gamma \pi + \int_0^{\Delta t} \eta(t))^2}$$

equation for the probabilities is equivalent to the Langevin equation

Taylor expansion $P(\pi + \Delta \pi, t + \Delta t)$, $W(\pi, \Delta \pi)$ in

 $P(\pi + \Delta \pi, t + \Delta t) = \int d(\Delta \pi) P(\pi, t) W(\pi, \Delta \pi)$

find another equivalent description: Fokker-Planck equation

P probability to find a particle with momentum π at time t

$$\frac{\partial P(\pi,t)}{\partial t} = \gamma \frac{\partial}{\partial \pi} (\pi P) + \frac{1}{2} \frac{\partial^2 P}{\partial \pi^2}$$

this equation has a solution at infinite time:

$$\lim_{t \to \infty} P(\pi, t) \propto \exp\left\{-\frac{\gamma}{2}\pi^2\right\}$$

is a time independent stationary solution of the Fokker-Planck equation: Maxwell distribution

Brownian motion in an external field

1.) External force $F = -\partial/\partial x V(x)$

2.) Consider stochastic differential equations for momenta π and the coordinates x, $(\eta$ "white noise")

$$m\dot{x} = \pi$$

$$\dot{\pi} = -\gamma\pi + F + \eta(t)$$

Equivalent generalized Fokker-Planck equation combined probability P of x and π

$$\frac{\partial P(x,\pi,t)}{\partial t} + \pi \frac{\partial P}{\partial x} + F(x) \frac{\partial P}{\partial \pi} = \gamma \frac{\partial}{\partial \pi} (\pi P) + \frac{1}{2} \frac{\partial^2 P}{\partial \pi^2}$$

Kramers equation

stochastic differential equation is called Kramers equation in Langevin form stationary distribution $\lim_{t\to\infty} P(x,\pi,t) \propto e^{-\frac{\gamma}{2}\pi^2} e^{-V(x)}$

$$\langle f(x)\rangle = \int dx f(x) e^{-x^2} / \int dx e^{-x^2}$$

 \rightarrow solve numerically:

- at computer time au_0 generate Gaussian random number x_0
- at computer time au_i generate Gaussian random number x_i
- do this N-times

 $\Rightarrow \langle f(x) \rangle \approx \frac{1}{N} \sum_{i} f(x_i)$

what if integral is more complicated?

$$\langle f(x) \rangle = \int dx f(x) e^{-V(x)} / \int dx e^{-V(x)}$$

write

$$\langle f(x) \rangle = \int dx \int d\pi f(x) \underbrace{e^{-\pi^2/2 - V(x)}}_{e^H} / \int dx \int d\pi e^{-\pi^2/2 - V(x)}$$

 $\pi(t)$ Gaussian distributed: $<\pi(t)>=0$ $<\pi(t)\pi(t')>=\delta(t-t')$

 \rightarrow solve:

$$\dot{x} = \pi$$

 $\dot{\pi} = -\partial V(x)/\partial x$

Kramers equation: convergence to $e^{-\pi^2/2-V(x)}$ ($e^{-\pi^2/2}$ drops out)

 \rightarrow solve numerically:

- at au_0 generate Gaussian distributed random π_0 and arbitrary x_0
- solve continuum equations

$$\dot{x} = \pi$$

 $\dot{\pi} = -\partial V(x)/\partial x$

by discrete time steps

$$\begin{aligned} x(\tau + \delta \tau) &= x(\tau) + \pi(\tau)\delta \tau \\ \pi(\tau + \delta \tau) &= \pi(\tau) - \frac{\partial V(x)}{\partial x \delta \tau} \end{aligned}$$

for N steps

non-vanishing integration step leads to discretization error repaired by accept/reject step

$$P_{\text{accept}} = \min\left(1, e^{H(x_i, \pi_i) - H(x_{i+1}, \pi_{i+1})}\right)$$

 $\Rightarrow \langle f(x) \rangle \approx \frac{1}{N} \sum_{i} f(x_i)$

find a transition probality $W(\phi, \phi')$ that brings us from a set of generic fields $\{\phi\} \to \{\phi'\}$ and which satisfies

- $W(\phi, \phi') > 0$ strong ergodicity ($W \ge 0$ is weak ergodicity)
- $\int d\phi' W(\phi, \phi') = 1$
- $W(\phi, \phi') = \int d\phi'' W(\phi, \phi'') W(\phi'', \phi')$ (Markov chain)
- $W(\phi,\phi')$ is measure preserving, $d\phi' = d\phi$

under these conditions, we are guaranteed

- to converge to a unique equilibrium distribution $P^{\rm eq}$ namely the Boltzmann distribution e^{-S}
- that this is independent from the initial conditions

Markov chain condition

 $W(\phi, \phi') = \int d\phi'' W(\phi, \phi'') W(\phi'', \phi')$

can be rephrased when taking the equilibrium distribution itself

$$P(\phi') = \int d\phi W(\phi', \phi) P(\phi)$$

to fulfill (most of) our conditions it is *sufficient not neccessary* that W fulfills the detailled balance condition:

$$\frac{W(\phi,\phi')}{W(\phi',\phi)} = \frac{P(\phi')}{P(\phi)}$$

for example

$$\int d\phi P(\phi) W(\phi, \phi') = \int d\phi P(\phi) \frac{P(\phi')}{P(\phi)} W(\phi', \phi)$$
$$= \int d\phi P(\phi') W(\phi', \phi) = P(\phi')$$

in the following discuss particular choices for W for problems of interest

Hybrid Monte Carlo Algorithm

expectation values in lattice field theory

$$\langle O \rangle = \frac{\int \mathcal{D}\Phi O e^{-S}}{\int \mathcal{D}\Phi e^{-S}}$$

do not change if field independent contributions are added to the action

$$\langle O \rangle = \frac{\int \mathcal{D}\Phi \int \mathcal{D}\pi O e^{-\frac{1}{2}\pi^2 - S}}{\int \mathcal{D}\Phi \int \mathcal{D}\pi e^{-\frac{1}{2}\pi^2 - S}}$$

field configurations are generated chronologically in a fictitious (computer) time au

generation of equilibrium distribution: Langevin equation take π 's Gaussian distributed, satisfying

$$<\pi(t)>=0, <\pi(t)\pi(t')>=\delta(t-t')$$

consider a 4-dimensional Hamiltonian

$$H = \frac{1}{2}\pi^2 + S$$

consider quantum mechanical action: $S = \sum_{n} (x(n+a) - x(n))^2 + m^2 x^2(n)$

in ficititious time τ the sytem develops according to Hamilton's equations of motion

$$\frac{\partial}{\partial \tau}\pi(n) = -\frac{\partial}{\partial \mathbf{x}(\mathbf{n})}S \equiv \text{force}, \quad \frac{\partial}{\partial \tau}\mathbf{x}(\mathbf{n}) = \pi(n)$$

 \Rightarrow conservation of energy

in practise, equations are eintegrated numerically up to time T = 1

divide T into N intervals of length $\delta \tau$ such that $T = N \delta \tau$: leap-frog scheme

$$\pi(\delta\tau/2) = \pi(0) - \frac{\delta\tau}{2} \frac{\partial}{\partial \mathbf{x}} S\big|_{\mathbf{x}(0)}$$
$$\mathbf{x}(\delta\tau) = \mathbf{x}(0) + \pi(\delta\tau/2)\delta\tau$$
$$\pi(3\delta\tau/2) = \pi(\delta\tau/2) - \delta\tau \frac{\partial}{\partial \mathbf{x}} S\big|_{\mathbf{x}(\delta\tau)}$$
$$\vdots$$
$$\pi(T) = \pi(N\delta\tau/2) - \frac{\delta\tau}{2} \frac{\partial}{\partial \mathbf{x}} S\big|_{\mathbf{x}((N-1)\delta\tau)}$$

leap-frog scheme has a *finite* step-size $\delta \tau \Rightarrow$ energy is no longer conserved

 $H(\mathbf{x}_{\mathrm{in}}, \pi_{\mathrm{in}}) \neq H(\mathbf{x}_{\mathrm{end}}, \pi_{\mathrm{end}})$

introduce a Metropolis like accept/reject step

accept new field configuration $\{\mathbf{x}_{\mathrm{end}}, \pi_{\mathrm{end}}\}$ with a probability

$$P_{\text{accept}} = \min\left(1, e^{H(\mathbf{x}_{\text{in}}, \pi_{\text{in}}) - H(\mathbf{x}_{\text{end}}, \pi_{\text{end}})}\right)$$

Hybrid Monte Carlo algorithm

- fulfills detailled balance Exercise: proof this
 ← needs reversibility of the leap-frog integrator
- preserves measure
- Ergodicity?

The case of Lattice QCD

action for two flavors of fermions (up and down quark)

 $S=a^4\sum_x \bar{\psi} M^\dagger M \psi$

path integral

$$\mathcal{Z} = \prod_{x} d\bar{\psi}(x) d\Psi(x) e^{-S} = \prod_{x} d\Phi^{\dagger}(x) d\Phi(x) e^{-\Phi^{\dagger} \left[M^{\dagger}M\right]^{-1} \Phi}$$

interaction of the scalar fields is very complicated: inverse fermion matrix $[M^{\dagger}M]^{-1}$ couples all points on the lattice with each other

simulate with Hybrid Monte Carlo algorithm

$$\frac{d}{d\tau}\pi = -\frac{dS}{d\Phi^{\dagger}} = \left[M^{\dagger}M\right]^{-1}\Phi \equiv \text{force}$$
$$\frac{d}{d\tau}\Phi = \pi$$

update of the momenta $\pi(x)$ is completely independent of update of Φ -field, non-locality of the action is not a problem
to update the momenta, have to compute the vector

 $X = \left[M^{\dagger} M \right]^{-1} \Phi$

 \Rightarrow solve an equation

$$\left[M^{\dagger}M\right]X = \Phi$$

Exercise:

estimate the number of flops to apply the twisted mass operator on a vector

assume you want to have 2000 thermalization and 5000 measurement steps on a $48^3\cdot 96$ lattice

assume number of iterations to solve $\left[M^{\dagger}M\right]X = \Phi$ is 500

assume number of time steps in the HMC is 100

How long would the program run on your laptop? (assume –unrealistic– efficiency of 50%)

If you save the 5000 configurations, would this fit on your laptop disk?

autocorrelation times

generating field configurations as a Markov process, \Rightarrow configurations are not independent from each other

free field theory again in Fourier space

$$S = \int d^4k \mathbf{x}(k) [k^2 + m_0^2] \mathbf{x}(k)$$

Langevin equation

$$\frac{d}{d\tau}\mathbf{x}(k,\tau) = -[k^2 + m_0^2]\mathbf{x}(k,\tau) + \eta(k,\tau)$$

then a solution may be written down

$$\mathbf{x}(k,\tau) = \int^{\tau} ds \exp\left\{-(\tau-s)[k^2 + m_0^2]\eta(k,s)\right\}$$

compute correlation of fields at au=0 with fields at au

consider the autocorrelation function

$$C(k,\tau) = \mathbf{x}(k,0)\mathbf{x}(k,\tau)$$

= $\int ds_1 ds_2 \exp\left\{ [k^2 + m_0^2]s_1 \left(-(\tau - s)[k^2 + m_0^2] \right) \right.$
 $\eta(k,s_1)\eta(k,s_2) \right\}$
 $\propto \frac{e^{-[k^2 + m_0^2]\tau}}{k^2 + m_0^2} \equiv \frac{e^{-\tau/\tau_0}}{k^2 + m_0^2}$

- the autocorrelation function $C(k, \tau)$ decays exponentially autocorrelation time τ_0
- decay is lowest for the zero mode k = 0
- $\tau \propto 1/m_0^2 \Rightarrow$ the correlations become stronger closer to the critical point $m_0 = 0 \rightarrow$ critical slowing down
- scaling law $au_0 \propto 1/m^z$, z the dynamical critical exponent

A consequence from autocorrelations: Errors

measure average position of qunatum mechanical particle \bar{x} from N measurements

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

This has a variance

$$\sigma = \frac{1}{N-1} \left(\bar{x^2} - \bar{x}^2 \right)$$

and a standard deviation

$$\Delta_0 \equiv \sqrt{\sigma} \propto 1/\sqrt{N}$$
 for $N \gg 1$

If we have an autocorrelation time $au \Rightarrow$ statistics reduces to n = N/ au

 $\Rightarrow \Delta_{\rm true} \propto 1/\sqrt{n} = \sqrt{\tau}/\sqrt{N} = \sqrt{\tau}\Delta_0$

How to deal with the autocorrelation? measure it:

 $\Gamma(\tau) = \langle x(\tau) \cdot x(0) \rangle / \langle x(0) \rangle^2 \propto e^{-\tau/\tau_{\rm int}}$

Comment: integrated auto correlation time τ_{int} observable dependent

The observable

QCD: the Mass Spectrum

goal: non-perturbative computation of bound state spectrum

 \rightarrow euclidean correlation functions

Reconstruction theorem relates this to Minkowski space

operator $O(\mathbf{x}, t)$ with quantum numbers of a given particle

correlation function decays exponentially: $e^{-Et}\,,\ E^2=m^2+{\bf p}^2$ \Rightarrow mass obtained at zero momentum

$$O(t) = \sum_{\mathbf{x}} O(\mathbf{x}, t)$$

correlation function

$$\begin{aligned} \langle O(0)O(t)\rangle &= \frac{1}{\mathcal{Z}} \quad \sum_{n} \langle 0|O(0)e^{-\mathbf{H}t}|n\rangle \langle n|O(0)|0\rangle \\ &= \quad \frac{1}{\mathcal{Z}} \sum_{n} |\langle 0|O(0)|n\rangle|^2 e^{-(E_n - E_0)t} \end{aligned}$$

connected correlation function

$$\lim_{t \to \infty} \left[\langle O(0)O(t) \rangle - |\langle O(0) \rangle|^2 \right] \propto e^{-E_1 t}$$

vanishing of connected correlation function at large times

 \rightarrow cluster property \Rightarrow locality of the theory

periodic boundary conditions

 $\langle O(0)O(t)\rangle_c = \sum_n c_n \left[e^{-E_n t} + e^{-E_n(T-t)}\right]$ $1 \ll t \ll T : \quad \langle O(0)O(t)\rangle_c \propto e^{-mt} + e^{-m(T-t)}$

Hadron Spectrum in QCD

hadrons are bound states in QCD

- mesons pion, kaon, eta, ...
- baryons neutron, proton, Delta, ...

for the computation of the hadon spectrum

- construct operators with the suitable quantum numbers
- compute the connected correlation function
- take the large time limit of the correlation function

Lorentz symmetry, parity and charge conjugation

rotational symmetry \rightarrow hypercubic group: discrete rotations and reflections classification of operators: irreducible representations R (note hypercubic group is a subgroup of SO(3))

parity	charge conjugation
$\Psi(\mathbf{x},t) \to \gamma_0 \Psi(-\mathbf{x},t)$	$\Psi(\mathbf{x},t) \to C \bar{\Psi}^T(\mathbf{x},t)$
$\bar{\Psi}(\mathbf{x},t) \to \bar{\Psi}(-\mathbf{x},t)\gamma_0$	$\bar{\Psi}(\mathbf{x},t) \to -\Psi^T(\mathbf{x},t)C^{-1}$

C charge conjugation matrix $C=\gamma_0\gamma_2$ C satisfies

 $C\gamma_{\mu}C^{-1} = -\gamma_{\mu}^{T} = -\gamma_{\mu}^{*}$

Contraction

• 2-point-function calculation

 $\mathcal{O}_{\Gamma}(x) = \bar{\psi} \Gamma \psi(0)$

 $\langle \mathcal{O}_{\Gamma}(x)\mathcal{O}_{\Gamma}(0)\rangle =$

$$\bar{\psi}(x)\Gamma\bar{\psi}(0)\psi(x)\Gamma\psi(0)$$
$$= tr[\Gamma S(x,0)\Gamma S(0,x)$$

(2)

in terms of eigenvalues and eigenvectors:

$$tr[\Gamma S(x,0)\Gamma S(0,x)] = \sum_{\lambda_i,\lambda_j} \frac{1}{\lambda_i\lambda_j} \sum_{\alpha\beta\gamma\delta} \left[(\phi_j^{\dagger\alpha}(x)\Gamma_{\alpha\beta}\phi_i^{\beta}(x))(\phi_i^{\dagger\gamma}(0)\Gamma_{\gamma\delta}\phi_j^{\delta}(0)) \right]$$

Example: pion operator \rightarrow need speudoscalar operator

$$O_{\rm PS}(\mathbf{x},t) = \bar{\Psi}(\mathbf{x},t)\gamma_0\gamma_5\Psi(\mathbf{x},t)$$

correlation function

$$f_{\rm PS}(t) \equiv \langle O_{\rm PS}(0)O_{\rm PS}(t) \rangle = \sum_{\mathbf{x}} \left[\bar{\psi}(\mathbf{x}, t)\gamma_0\gamma_5\Psi(\mathbf{x}, t) \right] \left[\bar{\psi}(0, 0)\gamma_0\gamma_5\Psi(0, 0) \right]$$
$$= \sum_{\mathbf{x}} \operatorname{Tr} \left[S_F(0, 0; \mathbf{x}, t)\gamma_0\gamma_5 S_F(\mathbf{x}, t; 0, 0)\gamma_0\gamma_5 \right]$$

used Wick's theorem and $S_F = D^{-1}$ the fermion propagator

 \Rightarrow need to compute inverse of the fermion matrix

$$a \ll t \ll T: \quad f_{\rm PS}(t) = \underbrace{\frac{|\langle 0|P|{\rm PS}\rangle|^2}{2m_{\rm PS}}}_{\equiv F_{\rm PS}^2/2m_{\rm PS}} \cdot \left(e^{-m_{\rm PS}t} + e^{-m_{\rm PS}(T-t)}\right)$$

 $F_{\rm PS}$ pion decay constant

Effective Masses

exponential deacy of correlator $\Gamma(t) = \langle O(0)O(t) \rangle_c$

define an effective mass $m_{\rm eff}(t) = -\ln \frac{\Gamma(t+1)}{\Gamma(t)}$

periodic boundary conditions:

 $f(t) = A\cosh(m_{\rm eff}t)$

$$\rightarrow$$
 solve $\frac{f(t+1)}{f(t)} = \frac{\Gamma(t+1)}{\Gamma(t)}$

The Proton

Nucleon: baryonic isospin-doublet, $I = \frac{1}{2}$: proton (uud) $I_3 = +\frac{1}{2}$ and neutron (udd) $I_3 = -\frac{1}{2}$

local interpotating field of proton

$$P_{\alpha}(x) = -\epsilon_{abc} \left[\bar{d}_a(x)^C \gamma_5 u_b(x) \right] u_{c,\alpha}(x) , \quad [] \text{ spin trace}$$

 u^C charged conjugate quark field

$$\psi^{C}(x) = C\bar{\psi}^{T}(x) , \ \bar{\psi}^{C} = -\psi^{T}(x)C^{-1}$$

leading to

$$P_{\alpha}(x) = -\epsilon_{abc} \left[\bar{d}_{a}(x)^{T} C^{-1} \gamma_{5} u_{b}(x) \right] u_{c,\alpha}(x)$$
$$\bar{P}_{\beta}(y) = -\epsilon_{def} u_{d,\beta}(y) \left[\bar{u}_{e}(y) \gamma_{5} C \bar{d}_{f}^{T}(y) \right]$$
$$\Gamma_{P}(t) = \sum_{\vec{x}} \langle 0 | P(x) \bar{P}(0) | 0 \rangle$$

Exercise:

using the operator

$$P_{\alpha}(x) = -\epsilon_{abc} \left[\bar{d}_a(x)^T C^{-1} \gamma_5 u_b(x) \right] u_{c,\alpha}(x)$$

will we really get the proton?

 \rightarrow check quantum numbers

Quenched approximation

The Quenched Approximation

- \rightarrow neglect steady generation of quarks and antiquarks in physical quantum processes
- \Rightarrow *truncation*, works surprisingly well however

(B) full QCD

A short history of proton mass computation

(take example of Japanese group)

<u>1986</u> (Itoh, Iwasaki, Oyanagi and Yoshie)

quenched approximation, $12^3 \cdot 24$ lattice

 $a \approx 0.15 \mathrm{fm}$, 30 configurations

Machine: HITAC S810/20 → 630 Mflops

 \Rightarrow only meson masses, conclusion: time extent of T = 24 too small to extract baryon ground state

<u>1988</u> (plenary talk by Iwasaki at Lattice symposium at FermiLab)

quenched approximation, $16^3 \cdot 48$ lattice

 $a \approx 0.11 \mathrm{fm}$, 15 configurations

particle	lattice	experiment
Kaon	470(45)	494
Nucleon	866(108)	938
Ω	1697(89)	1672

The story goes on ...

1992 (Talk Yoshie at Lattice '92 in Amsterdam):

quenched approximation, $24^3 \cdot 54$ lattice

two lattice spacings: $a \approx 0.11 \text{fm}$, $a \approx 0.10 \text{fm}$, O(200) configurations

Machine: QCDPAX 14 Gflops

- \Rightarrow worries about excited state effects
- \Rightarrow worries about finite size effects

<u>1995</u> (paper by QCDPAX collaboration)

stat.sys.(fit-range)sys.(fit-func.) $\beta = 6.00$ $m_N = 1.076$ ± 0.060 +0.047-0.020+0.0-0.017GeV $\beta = 6.00$ $m_{\Delta} = 1.407$ ± 0.086 +0.096-0.026+0.038-0.015GeV

"Even when the systematic errors are included, the baryon masses at $\beta = 6.0$ do not agree with experiment. Our data are consistent with the GF11¹ data at finite lattice spacing, within statistical errors. In order to take the continuum limit of our results, we need data for a wider range of β with statistical and systematic errors much reduced."

¹GF11 has been a 5.6Gflops machine developed by IBM research.

where the quenched story ends

<u>2003</u> (Paper by CP-PACS collaboration):

quenched approximation from $32^3\cdot 56$ to $64^3\cdot 112$ lattice

two lattice spacings: $a \approx 0.05 \text{fm} - a \approx 0.10 \text{fm}$, O(150) - O(800) configurations

Machine: CP-PACS, massively parallel, 2048 processing nodes, completed september 1996

- \rightarrow reached 614Gflops
- control of systematic errors
 - finite size effects
 - lattice spacing
 - chiral extrapolation
 - excited states

quenched

quenched

CP-PACS collaboration

Solution of QCD?

 \rightarrow a number of systematic errors

Another example: glueballs

prediction of QCD: the existence of states made out of gluons alone, the glueballs

- hard to detect experimentally
- difficult to compute, of purely non-perturbative nature
- \Rightarrow challenge for lattice QCD

transformation laws for gauge links

parity	charge conjugation
$U(\mathbf{x}, t, 4) \rightarrow U(-\mathbf{x}, t, 4)$	$U(\mathbf{x},t,4) \to U^*(\mathbf{x},t,4)$
$U(\mathbf{x},t,i) \to U(-\mathbf{x},t,-i)$	$U(\mathbf{x},t,i) \rightarrow U^*(\mathbf{x},t,i)$

example: combination of 1×1 Wilson loops $W(C)_{xy}$

$$O(\mathbf{x},t) = W_{(\mathbf{x},t),12} + W_{(\mathbf{x},t),13} + W_{(\mathbf{x},t),23}$$

invariant under hypercubic group, parity and charge conjugation $\rightarrow 0^{++}$

glueball spectrum \rightarrow unique prediction from lattice QCD

4

start of dynamical (mass-degenrate up and down) quark simulations

<u>1998</u> (Paper by UKQCD collaboration):

lattices: from $8^3 \cdot 24$ to $16^3 \cdot 24$

 $approx 0.10 {
m fm}$, $m_\pi/m_
ho>0.7$

Machine: CRAY T3E \approx 1Tflop

<u>1999</u> (Paper by SESAM collaboration):

lattice: $16^3 \cdot 32$ lattice

 $approx 0.10 {
m fm}$, $m_\pi/m_
ho>0.7$

Machine: APE100 pprox 100Gflop

- period of algorithm development
 - improved higher order integrators
 - multiboson algorithm
 - PHMC algorithm

Costs of dynamical fermions simulations, the "Berlin Wall"

see panel discussion in Lattice2001, Berlin, 2001

 χ PT (?)

point

formula
$$C \propto \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-z_{\pi}} (L)^{z_L} (a)^{-z_a}$$

 $z_{\pi} = 6, \ z_L = 5, \ z_a = 7$

"both a 10^8 increase in computing power AND spectacular algorithmic advances before a useful interaction with experiments starts taking place." (Wilson, 1989)

 \Rightarrow need of Exaflops Computers

Supercomputer

ca. 1700, Leibniz Rechenmaschine

Denn es ist eines ausgezeichneten Mannes nicht würdig, wertvolle Stunden wie ein Sklave im Keller der einfachen Rechnungen zu verbringen. Diese Aufgaben könnten ohne Besorgnis abgegeben werden, wenn wir Maschinen hätten.

Because it is unworthy for an excellent man to spent valuable hours as a slave in the cellar of simple calculations. These tasks can be given away without any worry, if we would have machines.

German Supercomputer Infrastructure

 apeNEXT in Zeuthen 3Teraflops and Bielefeld 5Teraflops
 → dedicated to LGT

- NIC 72 racks of BG/P System at FZ-Jülich 1 Petaflops
- 2208 Nehalem processor Cluster computer:
 208 Teraflops
- Altix System at LRZ Munic

- SGI Altix ICE 8200 at HLRN (Berlin, Hannover) 31 Teraflops
 - \rightarrow will be upgraded to a **3 Petaflops system**

State of the art

• BG/P

Blue Gene/P system structure

Strong Scaling

- Test on 72 racks BG/P installation at supercomputer center Jülich (Gerhold, Herdioza, Urbach, K.J.)
- using tmHMC code (Urbach, K.J.)

Low budget machines

- QPACE 4+4 Racks in Jülich und Wuppertal 1900 PowerXCell 8i nodes 190 TFlops (peak) based on cell processor 3-d torus network low power consumption 1.5W/Gflop
- Videocards (NVIDIA Tesla)

CUDA programming language (C extension)

enlarged to a cluster

- challenge for 2020: Exaflop Computing
- already 2006: workshop on Zetaflop computing

A generic improvement for Wilson type fermions

New variant of HMC algorithm (Urbach, Shindler, Wenger, K.J.) (see also SAP (Lüscher) and RHMC (Clark and Kennedy) algorithms)

- even/odd preconditioning
- (twisted) mass-shift (Hasenbusch trick)
- multiple time steps

- comparable to staggered
- reach small pseudo scalar masses $\approx 300 \mathrm{MeV}$

Computer and algorithm development over the years

time estimates for simulating $32^3 \cdot 64$ lattice, 5000 configurations

→ O(few months) nowadays with a typical collaboration supercomputer contingent $N_f = 2$ dynamical flavours

Examples of present Collaborations (using Wilson fermions)

- CERN-Rome collaboration
 Wilson gauge and clover improved Wilson fermions
- ALPHA Wilson gauge and clover improved Wilson fermions Schrödinger functional
- QCDSF

tadpole improved Symanzik gauge and clover improved Wilson fermions

• ETMC

tree-level Symanzik improved gauge and maximally twisted mass Wilson fermions

• RBC

domain wall fermions

• BMW

improved gauge and

non-perturbatively imporved, 6 stout smeared Wilson fermions

- Cyprus (Nicosia) C. Alexandrou, T. Korzec, G. Koutsou
- France (Orsay, Grenoble)
 R. Baron, Ph. Boucaud, M. Brinet, J. Carbonell, V. Drach, P. Guichon, P.A. Harraud, Z. Liu, O. Pène
- Italy (Rome I,II,III, Trento)
 - P. Dimopoulos, R. Frezzotti, V. Lubicz, G. Martinelli, G.C. Rossi, L. Scorzato,
 - S. Simula, C. Tarantino
- Netherlands (Groningen)

A. Deuzeman, E. Pallante, S. Reker

- Poland (Poznan)
 - K. Cichy, A. Kujawa
- Spain (Valencia)

V. Gimenez, D. Palao

• Switzerland (Bern)

U. Wenger

- United Kingdom (Glasgow, Liverpool) G. McNeile, C. Michael, A. Shindler
- Germany (Berlin/Zeuthen, Hamburg, Münster)

B. Bloissier, F. Farchioni, X. Feng, J. González López, G. Herdoiza, M. Marinkovic, I. Montvay, G. Münster, D. Renner, T. Sudmann, C. Urbach, M. Wagner, K.J.

European Twisted Mass Collaboration

Extraction of Masses

- Quark propagator: stochastic, fuzzed sources
- Change the location of the time-slice source: reduce autocorrelations

- effective mass of π^{\pm}
- isolate ground state : small statistical errors
- \Rightarrow get a number, but what does it mean? How to get physical units?

Setting the scale

$$m_{\rm PS}^{\rm latt} = a m_{\rm PS}^{\rm phys}, \quad f_{\rm PS}^{\rm latt} = a f_{\rm PS}^{\rm phys}$$
$$\frac{f_{\rm PS}^{\rm phys}}{m_{\rm PS}^{\rm phys}} = \frac{f_{\rm PS}^{\rm latt}}{m_{\rm PS}^{\rm latt}} + \mathcal{O}(a^2)$$

→ setting
$$\frac{f_{\rm PS}^{\rm latt}}{m_{\rm PS}^{\rm latt}} = 130.7/139.6$$

→ obtain $m_{\rm PS}^{\rm latt} = a139.6$ [Mev]
→ value for lattice spacing a

β	a [fm]	$L^3 \cdot T$	L [fm]	$a\mu$	$N_{\mathrm{traj}}~(au=0.5)$	$m_{ m PS}~[{ m MeV}]$
4.20	~ 0.050	$48^3 \cdot 96$	2.4	0.0020	5200	~ 300
		$32^3 \cdot 64$	2.1	0.0060	5600	~ 420
4.05	~ 0.066	$32^3 \cdot 64$	2.2	0.0030	5200	~ 300
				0.0060	5600	~ 420
				0.0080	5300	~ 480
				0.0120	5000	~ 600
3.9	~ 0.086	$32^3 \cdot 64$	2.8	0.0030	4500	~ 270
				0.0040	5000	~ 300
		$24^3 \cdot 48$	2.1	0.0064	5600	~ 380
				0.0085	5000	~ 440
				0.0100	5000	~ 480
				0.0150	5400	~ 590
3.8	~ 0.100	$24^3 \cdot 48$	2.4	0.0060	4700×2	~ 360
				0.0080	3000×2	~ 410
				0.0110	2800×2	~ 480
				0.0165	2600×2	~ 580

available configurations (free on ILDG)

Continuum limit scaling

observe small $O(a^2)$ effects

$$r_0 f_{\rm PS} = r_0 f_0 \left[1 - 2\xi \log \left(\frac{\chi_{\mu}}{\Lambda_4^2} \right) + \dots \right]$$
$$(r_0 m_{\rm PS})^2 = \chi_{\mu} r_0^2 \left[1 + \xi \log \left(\frac{\chi_{\mu}}{\Lambda_3^2} \right) + \dots \right]$$

where

$$\xi \equiv 2B_0 \mu_q / (4\pi f_0)^2, \quad \chi_\mu \equiv 2B_0 \mu_R, \quad \mu_R \equiv \mu_q / Z_{\rm P}$$

Pion decay constant

nucleon mass

 \rightarrow add finite volume and lattice spacing dependence:

$$r_{0}f_{\rm PS} = r_{0}f_{0} \left[1 - 2\xi \log\left(\frac{\chi_{\mu}}{\Lambda_{4}^{2}}\right) + D_{f_{\rm PS}}a^{2}/r_{0}^{2} + T_{f}^{\rm NNLO} \right] K_{f}^{\rm CDH}(L)$$
$$(r_{0}m_{\rm PS})^{2} = \chi_{\mu}r_{0}^{2} \left[1 + \xi \log\left(\frac{\chi_{\mu}}{\Lambda_{3}^{2}}\right) + D_{m_{\rm PS}}a^{2}/r_{0}^{2} + T_{m}^{\rm NNLO} \right] K_{m}^{\rm CDH}(L)^{2}$$

$$r_0/a(a\mu_q) = r_0/a + D_{r_0}(a\mu_q)^2$$

where

$$\xi \equiv 2B_0 \mu_q / (4\pi f_0)^2, \quad \chi_\mu \equiv 2B_0 \mu_R, \quad \mu_R \equiv \mu_q / Z_{\rm P}$$

- $D_{f,m}$ parametrize lattice artefacts
- $K_{f,m}^{\text{CDH}}(L)$ Finite size corrections Colangelo *et al.*, 2005
- $T_{f,m}^{\text{NNLO}}$ NNLO correction

• Fit B: NLO continuum χ PT, $T_{m,f}^{\text{NNLO}} \equiv 0$, $D_{m_{\text{PS}},f_{\text{PS}}}$ fitted

two values of the lattice spacing $\rightarrow D_m = -1.07(97)$, $D_f = 0.71(57)$

 \rightarrow fit variety:

- Fit A: NLO continuum χ PT, $T_{m,f}^{\text{NNLO}} \equiv 0$, $D_{m_{\text{PS}},f_{\text{PS}}} \equiv 0$
- Fit B: NLO continuum χ PT, $T_{m,f}^{\text{NNLO}} \equiv 0$, $D_{m_{\text{PS}},f_{\text{PS}}}$ fitted
- Fit C: NNLO continuum χ PT, $D_{m_{\rm PS},f_{\rm PS}}\equiv 0$
- Fit D: NNLO continuum χ PT, $D_{m_{\rm PS},f_{\rm PS}}$ fitted

Finite Size Effects

General analytical description: $m_{\pi}(L) = m_{\pi}^{L=\infty} + c_1/L^{3/2} \exp(-m_{\pi}^{\infty}L)$ M. Lüscher different κ correspond to different m_{π}

 \rightarrow Analytical finite size corrections known for many quantities, and to high precision

e.g. higher order correction terms from χPT Colangelo, Dürr

$$R_{m_{\pi}}(L) \simeq \frac{3}{8\pi^2} \left(\frac{m_{\pi}}{F_{\pi}}\right)^2 \left[\frac{K_1(m_{\pi}L)}{m_{\pi}L} + \frac{2 K_1(\sqrt{2} m_{\pi}L)}{\sqrt{2} m_{\pi}L}\right]$$
$$\simeq \frac{3}{4(2\pi)^{3/2}} \left(\frac{m_{\pi}}{F_{\pi}}\right)^2 \left[\frac{e^{-m_{\pi}L}}{(m_{\pi}L)^{3/2}} + \frac{2 e^{-\sqrt{2} m_{\pi}L}}{(\sqrt{2} m_{\pi}L)^{3/2}}\right]$$

Finite size effects

Comparison of data at several volumes to :

- NLO χ PT : GL
- resummed Lüscher formula : CDH
- relative deviation : $R_O = (O_L O_\infty)/O_\infty$

obs. O	eta	$m_{\rm PS}L$	meas. [%]	<mark>GL</mark> [%]	CDH [%]
$\overline{m_{\mathrm{PS}}}$	3.90	3.3	+1.8	+0.6	+1.1
$f_{\rm PS}$	3.90	3.3	-2.5	-2.5	-2.4
m_{PS}	4.05	3.0	+6.2	+2.2	+6.1
$f_{\rm PS}$	4.05	3.0	-10.7	-8.8	-10.3
m_{PS}	4.05	3.5	+1.1	+0.8	+1.5
$f_{\rm PS}$	4.05	3.5	-1.8	-3.4	-2.9

• for R_{CDH} : parameters estimates from [CDH, 2005] were used as input

• CDH describes data in general better than GL but needs more parameters

[Gasser, Leutwyler, 1987, 1988]

[Colangelo, Dürr, Haefeli, 2005]

quantity	value		
$m_{u,d} \; [\text{MeV}]$	3.37(23)		
$\overline{\ell}_3$	3.49(19)		
$\overline{\ell}_4$	4.57(15)		
$f_0 \; [{ m MeV}]$	121.75(46)		
$B_0 \; [{ m GeV}]$	2774(190)		
$r_0 \; [\mathrm{fm}]$	0.433(14)		
$\langle r^2 angle_s$	0.729(35)		
$\Sigma^{1/3}$ [MeV]	273.9(6.0)		
f_{π}/f_0	1.0734(40)		

Chiral perturbation theory: results

- averaged over many fit results, weighted with confidence levels
- B_0 , Σ , $m_{u,d}$ renormalised in $\overline{\mathrm{MS}}$ scheme at scale $\mu = 2 \ \mathrm{GeV}$
- LECs can be used to compute further quantities: scattering lengths

S-wave scattering lengths a_0^0 and a_0^2 Leutwyler

Chiral extrapolation of strange Baryons

The lattice QCD benchmark calculation: the spectrum ETMC ($N_f = 2$), BMW ($N_f = 2 + 1$)

I=2 Pion scattering length

(X. Feng, D. Renner, K.J.)

energy determined from $R(t) = \langle (\pi^+ \pi^+)^{\dagger} (t + t_s) (\pi^+ \pi^+) (t_s) \rangle / \langle (\pi^+)^{\dagger} (t + t_s) \pi^+ (t_s) \rangle^2$ $\rightarrow \Delta E = c/L^3 \cdot a_{\pi\pi}^{I=2} (1 + O(1/L))$

E865 (BNL) $m_{\pi}a_{\pi\pi}^{I=0} = 0.203 (33)$ and $m_{\pi}a_{\pi\pi}^{I=2} = -0.055 (23)$. NA48/2 (CERN) $m_{\pi}a_{\pi\pi}^{I=0} = 0.221 (5)$ and $m_{\pi}a_{\pi\pi}^{I=2} = -0.0429 (47)$. our work $m_{\pi}a_{\pi\pi}^{I=2} = -0.04385 (28)(38)$

The ρ -meson resonance: dynamical quarks at work

(X. Feng, D. Renner, K.J.)

usage of three Lorentz frames

 $m_{\pi^+} = 330$ MeV, a = 0.079 fm, L/a = 32 fitting $z = (M_{
ho} + i \frac{1}{2} \Gamma_{
ho})^2$ $m_{
ho} = 1033(31)$ MeV, $\Gamma_{
ho} = 123(43)$ MeV Selected results for $N_f = 2$

Simulation results versus PDG

Low energy constants

Summary

- wanted to show basic step for proton mass computation
- 25 years effort
 - conceptual developments: O(a)-improved actions
 - algorithm developments (see also Buividovic and Urbach)
 - machine developments
- mission of hadron spectrum benchmark calculation completed
- read for more complicated observables
 → (lectures by M. Göckeler and R. Sommer)

General articles

Lectures, review articles

- R. Gupta Introduction to Lattice QCD, hep-lat/9807028
- C. Davies Lattice QCD, hep-ph/0205181
- M. Lüscher *Advanced Lattice QCD*, hep-lat/9802029 *Chiral gauge theories revisited*, hep-th/0102028
- A.D. Kennedy *Algorithms for Dynamical Fermions*, hep-lat/0607038

• C. Gattringer and C. Lang

Quantum Chromodynamics on the Lattice Lecture Notes in Physics 788, Springer, 2010

• T. DeGrand and C. DeTar

Lattice methods for Quantum Chromodynamics World Scientific, 2006

• H.J. Rothe

Lattice gauge theories: An Introduction World Sci.Lect.Notes Phys.74, 2005

• J. Smit Introduction to quantum fields on a lattice: A robust mate Cambridge Lect.Notes Phys.15, 2002

I. Montvay and G. Münster Quantum fields on a lattice Cambridge, UK: Univ. Pr., 1994

• Yussuf Saad

Iterative Methods for sparse linear systems Siam Press, 2003