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Abstract

The present lectures contain an introduction to low energy supersymmetry, a new symmetry
that relates bosons and fermions, in particle physics. The Standard Model of fundamental in-
teractions is briefly reviewed, and the motivation to introduce supersymmetry is discussed. The
main notions of supersymmetry are introduced. In more detail the supersymmetric extension
of the Standard Model - the Minimal Supersymmetric Standard Model - is considered. Phe-
nomenological features of the MSSM as well as possible experimental signatures of SUSY are
described. An intriguing situation with the supersymmetric Higgs boson is discussed.
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1 Introduction. The Standard Model and beyond.

The Standard Model (SM) of fundamental jnteractions describes strong, weak and electromag-
netic interactions of elementary particles }#}O] It is based on a gauge principle, according to
which all the forces of Nature are mediated by an exchange of the gauge fields of a corresponding
local symmetry group. The symmetry group of the SM is

SUcolour(g) & SUleft(2) & Uhypercharge(l)’ (11) IE]

whereas the field content is the following:

Gauge sector : Spin = 1

Theagauge bosons are spin 1 vector particles belonging to the adjoint representation of the
group (hl) Their quantum numbers with respect to SU(3) ® SU(2) ® U(1) are:

gluons Ge: (8,1,0) SU3) gs
intermediate ;
weak bosons wio (1,3,0) SULE) g, (1.2)
abelian boson B, : (1,1,0) Uy (1) q,

where the coupling constants are usually denoted by gs, g and ¢’, respectively.

Fermion sector : Spin = 1/2

The matter fields are fermions belonging to the fundamental representation of the gauge
group. These are believed to be quarks and leptons of at least of three generations. The SM is
left-right asymmetric. Left-handed and right-handed fermions have different quantum numbers:

quarks
4 U u ot 1
W= (D%) = (di> , <S> : <b> ;e (3,2,1/3)
> /L L L L
aR =  WR, CiR; tir, S (3%,1,4/3) (1.3)
D! r = diR, SiR, bir, oo (3%,1,-2/3)
leptons Lar = ( Ve ) ) ( “n > ; ( ' ) , o (L,2,-1)
e )2 T
L L L
E.r = eR, UR, TR, . (1,1,-2)
1=1,2,3 - colour, « = 1,2,3, ... - generation.

Higgs sector: Spin = (

In the minimal version of the SM there is one doublet of Higgs scalar fields

HO
H = ( - ) (1,2,-1), (1.4)

which is introduced in order to give masses to quarks, leptons and intermediate weak bosons via
spontaneous breaking of electroweak symmetry.
In Quantum Field Theory framework the SM is described by the following Lagrangian

L= Egauge + EYukawa + £Higg37 (1'5)



Figure 1: Global Fit of the Standard Model

Figure 2: Weak mixing angle and the Higgs boson mass mixang
ﬁ — Ga Ga ) ) 1 B B
gauge 4 Qv - 4WMVW - 1 prvuy (16)

+iLaY"DypLa + Qo' DyQa + iEay" DyEq
+iU o y" DUy + iDoy" DD, + (D, H) (D, H),

where

a a a abc b e
G;w = 0,Gy — 8,,GM + gsf GMGV
Wi, = 0.W)—0,W,+ ge’*WIwy,
B, = 0,B,-90,B,,

/

D,L, = (04 —Z WI—I—Z—B ) La,

D,Es = (9, +Zg 'B,)Ea, i
D,Qo = (04 —z Wi —zEB —z—/\aGa)Qa,
D, U, = (0, zgg'Bu L /\“G“)U
D,D, = (0,+ z;g'Bu — % )\aG“)
Lyukawa = YapLaEsH + yLsQ0DsH + yJ3Q,UsH + h.c., (L.7)
where H = iToH?.
Liiggs = -V =m*HH — %(HTH)2. (1.8) [nig

Here {y} are the Yukawa and X is the Higgs coupling constants, both dimensionless, and m is
the only dimensional mass parameter!.
The Lagrangian of the SM contains the following set of free parameters:

e 3 gauge couplings gs, g, g’;
e 3 Yukawa matrices yéﬁ, ygﬁ, yaUﬁ;
e Higgs coupling constant A;
e Higgs mass parameter m?;

e number of matter fields (generations).

All the particles obtain their masses due to spontaneous breaking of SUjcs(2) symmetry
group via a non-zero vacuum expectation value (v.e.v.) of the Higgs field

<H>:<g>, Uzm/\/X. (1.9) [vac

"We use the usual for particle physics units ¢ = h = 1




As a result the gauge group of the SM is spontaneously broken down to
SU:(3) @ SUL(2) @ Uy (1) = SU.(3) @ Ugn(1).
The physical weak intermediate bosons are the linear combinations of the gauge ones

Wl w2
Wk = u\%u Z, = —sin by By, + cos Oy W (1.10)
with masses

my = mz =mw/cosby, tanfy =g'/g, (1.11)

1
V2!
while the photon field
Yu = cos Oy B, + sin QWW3 (1.12)

remains massless.
The matter fields acquire masses proportional to the corresponding Yukawa couplings:

Mg = yigv, Mg = yagv, Mag = Yagv, muy = V2m. (1.13)

Explicit mass terms in the Lagrangian are forbidden because they are not SUj.f+(2) symmetrical
and would destroy the renormalizability of the Standard Model.

The SM has been constructed as a result of numerous efforts both theoretical and experi-
mental. At present the SM is extraordinary Su(:cesessfjel_lé n:uhe achieved accuracy of its predictions
corresponds to tjg F%c%tggyental data within 5 % . The combined result of the Global SM fit
are shown in Fig. . All the particles except for the Higgs boson have been discovered exper-
imentally. And ghe mass of the Higgs boson is severely constrained from precision electroweak
data (see Figﬁk%%f‘

However the SM has its natural drawbacks and unsolved problems. Among them are:

e inconsistency of the SM as a QFT (Landau Pole),
e large number of free parameters,
e formal unification of strong and electroweak interactions,

e still unclear mechanism of EW symmetry breaking: the Higgs boson has not yet been
observed and it is not clear whether it is fundamental or composite,

e the problem of CP-violation is not well understood including CP-violation in strong inter-
action,

e flavour mixing and the number of generations are arbitrary,
e the origin of the mass spectrum is unclear.

The answer to these problems lies beyond the SM. There are two possible ways to go beyond
the SM:

= To consider the same fundamental fields with new interactions. This way leads us to
supersymmetry, Grand Unification, String Theory, etc. It seems to be favoured by modern
experimental data.



= To consider new fundamental fields with new interactions. This way leads us to composite-
ness, fermion-antifermion condensates, Technicolour, extended Technicolour, preons, etc.
It is not favoured by data at the moment.

There are also possible exotic ways out of the SM: gravity at TeV energies, large extra
dimensions, brane world, etc. We do not consider them here. In what follows we go along the
lines of the first possibility and describe supersymmetry as a nearest option for the new physics
at TeV scale.

2 What is supersymmetry? Motivation in particle physics

Supersymmetry or fermion-boson symmetry has not yet been observed in Nature. This is a
purely theoretical invention. Its validity in particle physics follows from the common belief in
unification.

2.1 Unification with gravity

The general idea is a unification of all forces of Nature. It defines the strategy : increasing
unification towards smaller distances up to Ip; ~ 10732 cm including quantum gravity. However
the graviton has spin 2, while the other gauge bosons (photon, gluons, W and Z weak bosons)
have spin 1. Therefore, they correspond to different representations of the Poincaré algebra.
Attempts to unify %élo rfgnl‘ll" forces within the same algebra are faced with the problem. Due
to no-go theorems%ﬂjﬁiﬁcation of spin 2 and spin 1 gauge forces within unique algebra is
forbidden. The only exception from this theorem is supersymmetry algebra. The uniqueness of
SUSY is due to a strict mathematical statement that algebra of SUSY is the only graded (i.e.
contaiping anticommutators as well as commutators) Lie algebra possible within relativistic field
theorylT4].
If @ is a generator of SUSY algebra, then

Q|boson >=|fermion > and Q|fermion >= |boson > .

Hence starting with the graviton state of spin 2 and acting by SUSY generators we get the
following chain of states

spin2 — spin3/2 — spinl — spinl/2 — spinO.

Thus, a partial unification of matter (fermions) with forces (bosons) naturally arises out of an
attempt to unify gravity with other interactions.

SUSY algebra appears as a generalization of Poincaré algebra (see next section) and links
together various representations with different spin. The key relation is given by the anticom-
mutator

{Qa, Qa} =20}, 1Py

Taking an infinitesimal transformations 6, = €*Qq, 0 = Q4€%, one gets
{8c,0¢} = 2(ea’€) P, (2.1)

where € is a transformation parameter. Choosing € to be local, i.e. a function of a space-time
point € = €(z) one finds from eq.(2.1) that anticommutator of two SUSY transformations is
a local coordinate translation. And a theory which is invariant under the general coordinate



Figure 3: Electric Screening and Magnetic Antiscreening

transformation is General Relativity. T Amaking SUSY local, one obtains General Relativity
or a theory of gravity or supergravity

Theoretical attractiveness of SUSY field theories is explained by remarkable properties of
SUSY models. This is first of all a cancellation of ultraviolet divergencies in rigid SUSY theories
which is the origin of

e possible solution of the hierarchy problem in GUTs;
e vanishing of the cosmological constant;
e integrability allowing for an exact non-perturbative solution.

We believe that along this lines one can also obtain the unification of all forces of Nature
including quantum (super)gravity.

What is essential, the standard concepts of QFT allow SUSY without any further assump-
tions. In recent years supersymmetry became a subject of intensive experimental tests. Its
predictions can be verified at modern and future colliders.

2.2 Unification of the gauge couplings

Since the main motivation for SUSY is r gﬁxted with the unification theory, let us briefly recall
the main ideas of the Grand Unification }?7‘3]

The philosophy of Grand Unification is based on a hypothesis: Gauge symmetry increases
with energy. Having in mind unification of all forces of Nature on a common basis and neglecting
gravity for the time being due to its weakness the idea of GUTs is the following;:

All known interactions are different branches of unique interaction associated with a simple
gauge group. The unification (or splitting) occurs at high energy

Low energy = High energy
SU(3)® SUL2)® Uy(l) = Ggur (or G™+ discrete symmetry) (2.2)
gluons W, Z photon = gauge bosons '
quarks leptons = fermions
93 92 g = gcur

At first sight this is impossible due to a big difference in the values of the couplings of
strong, weak and electromagnetic interactions. However, this is not so. The crucial point here
is the running coupling constants. It is a generic property of quantum field theory which has an
analogy in classical physics.

Indeed, consider electric and magnetic phenomena. Let us take some dielectric medium and
put a sample electric charge in it. What happens is that the medium is polarized. It gontams
electric dipoles which are arranged in such a way that to screen the charge (see Fig. is
a consequence of a Coulomb law: attraction of the opposite charges and repulsion of the same
ones. This is the origin of electric screening.

The opposite situation happens to be in magnetic medium. According to the Biot-Savart law,
electric currents of the s e:r(illirlrection are attracted to each other, while those of the opposite
one are repulsed (see Fig.B). is leads to antiscreening of electric currents in magnetic medium.

In QFT the role of the medium is played by the vacuum. Vacuum is polarized due to the
presence of virtual pairs of particles in it. The matter fields and transverse quanta of vector
fields in this case behave like dipoles in the dielectric medium and cause screening, while the



longitudinal quanta of vector fields behave 11%<e currents and cause antiscreening. These two
effects compete with each other (see eq.( ; ?i Below
Thus, the couplings become the functions of a distance or energy scale

a; = a;(—) = a;(distance), o = g2 /Ar.

A2
This dependence 'F.deanrIilla)ed by the renormalization group equations and is confirmed experi-
mentally (see Fig.% '

. . . ethke
Figure 4: Summary of running of the strong coupling o [[7

In the SM the strong and weak couplings associated with non-abelian gauge groups decrease
with energy, while the electromagnetic one associated with the abelian group on the contrary
increases. Thus, it becomes possible that at some energy scale they become equal. According to
the GUT idea this equality is not occasional but is a manifestation of unique origin of these three
interactions. As a result of spontaneous symmetry breaking, the unifying group is broken and
unique interaction is splitted into three branches which we call strong, weak and electromagnetic
interactions. This happens at a very high energy of the order of 10'°+16 GeV. Of course, this
energy is out of the range of accelerators, however, some crucial predictions follow from the very
fact of unification.

After the precise measurement of the SU(3) x SU(2) x U (1) coupling constants, is has become
possible to check the unification numerically.

The three coupling constants to be compared are:

ar = (5/3)¢”/(47) = 5a/(3 cos® Oy ),
ay = ¢*/(4m) = o/ sin? Oy, (2.3)
ag = g;/(4m)

where ¢’ , g and g, are the usual U(1), SU(2) and SU(3) coupling constants and « is the fine
structure constant. The factor of 5/3 in the definition of a; has been included for the proper
normalization of the generators.

The couplings, when defined as renormalized values including loop corrections require the
speciﬁca%%&of a renormalization prescription, for which the modified minimal subtraction (M.S)
scheme is used.

In this scheme the %%rld averaged val 8;‘ %%the couplings at the Z° energy are obtained from

a fit to the LEP data [12], My [38] and |:
a Y (My) = 128.040.1
sin? 57z = 0.23149 £ 0.00017 (2.4)

a3 = 0.119+0.002,

that gives
a1(Mz) =0.017, ag(Myz) =0.034, az(Mz)=0.118 £+ 0.005. (2.5)

Assuming that the SM is valid up to the unification scale one can then use the known RG
equations for the three couplings. They are the following:

déy; - - le% Q2
=bal, @=—, t=log(- 2.
dt 7 471-’ Og( 2 )v ( 6)

fig:alpha
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where for the SM the coefficients b; are:

by 0 4/3 1/10
b; = b = —22/3 + Nram 4/3 +NH’iggs 1/6 . (2.7)
by 11 4/3 0

Here Npgpm is the number of generations of matter multiplets and Npg9s is the number of
Higgs doublets. We use Npg, = 3 and Npjggs = 1 for the minimal SM, which gives b; =
(41/10,—-19/6, 7).

Notice a positive contribution (screening) from the matter multiplets and negative one (an-
tiscreening) from the gauge fields. For the abelian group U(1) this contribution is absent due
to the absence of a self—g’ié%action of abelian gauge fields.

The solution to eq.(2.6) is very simple

1 1 Q?
& (Q?%)  ay(p?) bllog(uz ) (2:8)
nif
The result is demonstrated in Fig.ETT,Which shows the evolution of the inverse of the couplings
as function of the logarithm of energy. In this presentation the evolution becomes a straight
line in first order. The secon order corrections are small and do not cause any visible deviation
from a straight line. Fig. E_Tclearly demonstrates that within the SM the coupling constants
unification at a single point is impossible. It is excluded by more than 8 standard deviations.
This result means that the unification can only be obtained if new physics enters between the
electroweak and the Planck scales!
Since we do not know what kind of new physics it may be, there is a lot of arbitrariness.
In this situation some guiding idea is needed. It is very attempting to try to check whether
unification is possible within supersymmetric generalization of the %&t/één SUSY case the slopes
(

of the RG evolution curves are modified. The coefficients b; in eq. Nnow are:
b1 0 2 3/10
b; = by = —6 + Nream 2 + NHiggs 1/2 , (2.9)
bs -9 2 0

where use Npgm = 3 and Ngjggs = 2 in the minimal SUSY model which gives b; = (33/5,1, —3).
It turns out that within the SUSY model perfect uC'{liggécion can be obtained if the SUSY
masses are of the order of 1 TeV. This is shown in FigE.?; the SUSY particles are assumed to
contribute effectively to the running of the coupling constants only for energies above the typical
SUSY mass scale, which causes the change in the slope of the lines near 1 TeV. From tj&_gt
requiring unification one finds for the break point Mgygy and the unification point Mgy 7(26]

MSUSY _ 103.4i0.9i0.4 Ge‘/7
MGUT — 1015.8i0.3i0.1 Gev’ (210)
-1
aghy = 263+1.9%1.0,

where agyr = gs5/4m. The first error originates from the uncertainty in the coupling constant,
while the second one is due to the uncertainty in the mass spli@%et\ween the SUSY particles.

The x? distributions of Mgy gy and Mgyr are shown in Fig.2. , Where
3 -1 132
Z w (2.11)

1=1



Figure 5: Evolution of the inverse of the three coupling constants in the Standard Model (left)
and in the supersymmetric extension of the SM (MSSM) (right). Only in the latter case unifica-
tion is obtained. The SUSY particles are assumed to contribute only above the effective SUSY
scale Mgygy of about 1 TeV, which causes the change in slope in the gglution of couplings.
The thickness of the lines represents the error in the coupling constants %2'6]

Figure 6: The x? distributions of Mgygy and Mgyt

For SUSY chels, the dimensional reduction DR scheme is a more appropriate renormal-
ization schemel%'r]. In this scheme all thresholds are treated by simple step approximations and
unification occurs if all three a’s meet exactly at one point. This crossing point corresponds to
the mass of the heavy gauge bosons. The MS and DR couplings differ by a small offset

1 1 Ci
_ = T — ¢ B (2.12)
al.DR afws 127

where the C; are the quadratic Casimir coefficients of the group (C; = N for SU(N) and 0 for
U(1) so oy stays the same).

This observation was considered as the first ”evidence” for supersymmetry, especially since
Mgysy was found in the range preferred by the fine-tuning arguments.

It should be noted, that the unification of the three curves at a single point is not that trivial
as it may seem from the existence of three free parameters (Mgsysy, Mgur and agyr). Out
of more than thousand models tried, only a handful yielded unification. The reason is simple:
introducing new particles one influences all three curves simultaneously, thus giving rise to
strong correlations between the slopes of the three lines. For example, adding new generations
and/or new Higgs doublets never yield unification! Nevertheless, unification does not prove
supersymmetry. The real proof would be the observation of the sparticles.

2.3 Solution of the hierarchy problem

The appearance of two different scales V' > v in GUT theory, namely, My and Mgy, leads
to a very serious problem which is called the hierarchy problem. There are two aspects of this
problem.

The first one is the very existence of the hierarchy. To get the desired spontaneous symmetry
breaking pattern, one needs

myg ~ v ~ 102 GeV my 14
my ~ V o~ 101 GeV my, 10 <1 (213)

where H and ¥ are the Higgs fields responsible for the spontaneous breaking of the SU(2) and
the GUT groups, respectively.

The question arises how to get so small number in a natural way. One needs some kind of
fine tuning in a theory, and we don’t know is there anything behind it.

The second aspect of the hierarchy problem i%%)%nnected with the preservation of a given
hierarchy. Even if we choose the hierarchy like eq.(2.13) the radiative corrections will destroy it!
To see this, consider the radiative correction to the light Higgs mass. It is given by the Feynman

hier



Figure 7: Radiative correction to the light Higgs boson mass

fig:hierar
diagram shown in Fig.ll and is proportional to the mass squared of the heavy particle. This

correction obviously spoils the hierarchy if it is not cancelled. This very accurate cancellation
with a precision ~ 10714 needs a fine tuning of the coupling constants.

The only known way to achieve this kind of cancellation of quadratic terms (also known as
the cancellation of the quadratic divergencies) is supersymmetry. Moreover, SUSY automatically
cancels quadratic corrections in all orders of PT. This is due to the contributions of superpartners
of the ordinary particles. The contribution from boson loops cancels those from tlEei fgggicoe? ones
because of additional factor (-1) coming from Fermi statistics, as shown on Fig.8. "One can see

Figure 8: Cancellation of quadratic terms (divergencies)

here two types of contribution. The first line is the contribution of the heavy Higgs boson and
its superpartner. The strength of interaction is given by the Yukawa coupling A\. The second
line represents the gauge interaction proportional to the gauge coupling constant g with the
contribution from the heavy gauge boson and heavy gaugino.

In both the cases the cancellation of quadratic terms takes place. This cancellation is true
in case of unbroken supersymmetry due to the following sum rule relating the masses of super-

partners
Z m? = Z m? (2.14)
bosons fermions
and is violated when SUSY is broken. Then the cancellation is true up to the SUSY breaking
scale, Mgysy, since
YomP— Y m?P=Miygy, (2.15)
bosons fermions

which should not be very large (< 1 TeV) to make the fine-tuning natural. Indeed, let us
take the Higgs boson mass. Requiring for consistency of perturbation theory that the radiative
corrections to the Higgs boson mass do not exceed the mass itself, gives

SMj ~ g* My gy ~ Mj. (2.16)

So, if Mj, ~ 10? GeV and ¢ ~ 10~! one needs Mgygy ~ 10° GeV in order the relation (}dT‘.a%G)
to be valid. Thus, we again get the same rough estimate of Mgygy ~ 1 TeV as from the gauge
couplings unification above. Two requirements match together.

That is why it is usually said that supersymmetry solves the hierarchy problem. Moreover,
sometimes it is said that: ”There is no GUT without SUSY”. However, this is only the second
aspect of the problem, the preservation of the hierarchy. The origin of the hierarchy is the other
part of the problem. We show below how SUSY can explain this part as well.

2.4 Beyond GUTSs: superstring

Another motivation for supersymmetry follows from even more radical changes of basic ideas
related to the ultimate goal of construction of consistent unified theory of everything. At the mo-
ment the only viable conception is the superstring theory, which pretends to be a self-consistent
quantum fiel Jghleé)ry in non-perturbative sense allowing exact non-perturbative solutions in
quantum casel?]. In superstring theory strings are considered as fundamental objects, closed
or open, and are non-local by nature. Ordinary particles are considered as string excitation
modes. String’s interactions, which are local, generate the proper interactions of usual particles,
including gravitational one.

del



To be consistent the string theory should be conformal invariant in D-dimensional target
space and have a stable vacuum. The first requirement is valid in classical theory but may be
violated by quantum anomalies. Cancellation of quantum anomalies takes place when space-time
dimension of a target space equals to a critical one. For bosonic string the critical dimension is
D = 26, and for a fermionic one it is D = 10.

The second requirement is that the massless sting excitations (the particles of the SM) are
stable. This assumes the absence of tachyons, the states with imaginary mass. This can be
guaranteed only in supersymmetric string theories!

Thus, the superstring theory proves to be the only known consistent quantum theory. This
serves as a justification of research in spite of absence of even a shred of experimental evidence.
However, many ingredients of this theory are still unclear.

3 Basics of supersymmetry

Supersymmetry transformations differ from ordinary global transformations as far as they con-
vert bosons into fermions and vice versa. Indeed if we symbolically write SUSY transformation
as

6B=¢-f,

where B and f are boson and fermion fields, respectively, and ¢ is an infinitesimal transformation
parameter, then from the usual (anti)commutation relations for (fermions) bosons

{f.f}=0, [B,B]=0
we immediately find
{e,e} =0.

This means that all the generators of SUSY must be fermionic, i.e. they must change the spin
by a half-odd amount and change the statistics.

3.1 Algebra of SUSY

Combined with the usual Poincaré and internal symmetry algebra the Super-Poincaré Lie algebra
contains additional SUSY generators ¢, and Q%

[Py, P] =

[PWM } = (gupp g;pr),

[M/u/a Mpa] = Z(gupMua - guaMup - gupMua + g;LO'Ml/p)a
[BT,BS] = ZCt Bt,
[Br, Pu] =
[Qa
[

B u [BT,MW]—O
P.]=1[Q% PJ] =0, |
Qa,Muy]z 5(0u)aQh Q% M) = —5Q%(0)5, (3.1)

[ 7&'7-8_7"1 = (br)] {1’ [ gaBT] = Qix(b )j’
{Qlou QJB} = 25” (U“)QIBPM7
(@i @) = 200020, 2y =i 29 =75,
{QZ,Q;} = —ZGMJ',Z”, [Zw,anythmg] =0,
a,a=1,2 i,j=1,2,...,N.
Here P, and M, are four—momentllm and angular momentum operators respectively, B, are
internal symmetry generators, Q° and Q' are spinorial SUSY generators and Z;; are the so-called

10



central charges. «, &, 3, ﬁ are spinorial indices. In the simplest case one has one spinor generator
Q. (and the conjugated one Q) that corresponds to an ordinary or N=1 supersymmetry. When
N > 1 one has an extended sypersymmetry.

A natural question arises: how many SUSY genera Qrs are possible, i.e. what is the value
of N7 To answer this question consider massless states[I7]. Let us start with the ground state
labeled by energy and helicity, i.e. projection of a spin on the direction of momenta, and let it
be annihilated by @;

Vacuum = |E, A >, Qi|E, A >=0.

Then one and more particle states can be constructed with the help of creation operators as

State Expression # of States
vacuum |E,\ > 1
1 — particle state  Q;|E, A >=|E, X+ 1/2 >; ]Ir =N
' _ B N\  ~Nw-1)
2 — particle state QiQ|E, XN >=|E, X+ 1>y 2 | 2
. L N
N — particle state ~ Q1Q2...QN|E, A >= |[E, A+ N/2 > < N ) =1
(N
Total # of States Z ( k ) =2V = 2V~1 posons + 2V~ fermions,
k=0
(3.2)

where the energy E is not changed, since according to (E%%Ethe operators QQ; commute with the
Hamiltonian.

Thus one has a sequence of bosonic and fermionic states and the total number of bosons
equals to that of fermions. This is a generic property of any supersymmetric theory. However,
in CPT invariant theories the number of states is doubled, since CPT transformation changes
the sign of helicity. Hence, in CPT invariant theories, one has to add to the above mentioned
states the states with opposite helicity.

Consider some examples. Let us take N =1 and A = 0. Then one has the following set of
states

helicity 0 1/2 helicity 0 —1/2
N=1 =0 ey (3.3)
# of states 1 1 # of states 1 1

Hence, complete N = 1 multiplet is

N =1 helicity ~1/2 0 1/2

# of states 1 2 1 (3.4)

and contains one complex scalar and one spinor with two helicity states.
This is an example of the so-called self-conjugated multiplet. There are also self-conjugated
multiplets with NV > 1 corresponding to extended supersymmetry. Two particular examples are
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N = 4 super Yang-Mills multiplet, and N = 8 super gravity multiplet

N =4 SUSY YM helicity -1 -1/2 0 1/2 1
A=-—-1 # of states 1 4 6 4 1
(3.5)
N =8 SUGRA helicity -2 -3/2 -1 -1/2 0 1/2 1 3/2 2

A=-2 # of states 1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended supersymmetry are very reach and contain a vast
number of particles.

The constraint on the number of SUSY generators comes from a requirement of consistency
of the corresponding QFT. The number of supersymmetries and the maximal spin of the particle
in the multiplet are related by

N < 485,

where S is the maximal spin. Since the theories with spin greater than 1 are non-renormalizable
and the theories with spin greater than 5/2 have no consistent coupling to gravity, this imposes
a constraint on the number of SUSY generators

N <4 for renormalizable theories (YM),

N <8 for (super)gravity. (3.6)

In what follows we shall consider simple supersymmetry, or N = 1 supersymmetry, contrary to
extended supersymmetries with IV > 1. In this case we have two types of supermultiplets, the
so-called chiral multiplet with A = 0, which contains two physical states (¢, ) with spin 0 and
1/2, respectively, and vector multiplet with A = 1/2, which also contains two physical states
(A, A,) with spin 1/2 and 1.

3.2 Superspace and superfields

An elegant formulation of supersymmetry transformations and invariants can be achieved in the
framework of superspace . Superspace differs from the ordinary Euclidean (Minkowski) space
by addition of two new coordinates, 8, and 64, which are grassmannian, i.e. anticommuting,
variables '

{60,05} =0, {04,0;} =0, 62 =0, 02=0, o,B,0,3=1,2.

Thus, we go from space to superspace

Space = Superspace

Ty Ly, O, O (37)

A SUSY group element can be constructed in superspace in the same way as an ordinary
translation in the usual space

Glz,0,8) = (—2"Pu+0Q +6Q) (3.8)

It leads to a supertranslation in superspace

xz, — x,+ibo,E— 10,0,
6 — 0+e, (3.9)
§ — 0+¢[sutr]
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where € and € are grassmannian transformatlon parameters. From (3.9) one can easily obtain
the representation for the supercharges ( H§ [) acting on the superspace:
Q 0 90‘8 Qs 0 +1000,,,0u- (3.10)
= _— —iol = —— + b0k .
00, “ 004,

Taking the grassmannian transformation parameters to be local or space-time dependent one
gets local translation. As was already mentioned this leads to a theory of (super) gravity.

gne the fields on a superspace consider representations of the Super-Poincaré group
@TT%U]S»The simplest one is a scalar superfield F(z,,0) which is SUSY invariant. Its Taylor
expansion in @ and 6 has only several terms due to the nilpotent character of grassmannian
parameters. However, this superfield is a reducible representation of SUSY. To get an irreducible
one, we define a chiral superfield which obeys the equation

DF =0, where D = —(% — 100”0, (3.11)

is a superspace covariant derivative.
For the chiral superfield grassmannian Taylor expansion looks like (y = = + ifo0)

D(y,0) = A(y)+V20¢(y) + 00F (y)
= A(z) +i00"00,A(z) + i@@ééDA(:E)

éeﬁﬁuw(x)a"é +00F (z). (3.12)
The coefficients are ordj inary functions of x being the usual fields. They are called the components
of a superfield. In eq.(B.12) one has 2 bosonic (complex scalar field A) and 2 fermionic (Weyl
spinor field ) degrees of freedom. The component fields A and v are called the superpartners.
The field F' is an auxiliary field, itréllgs the “wrong” dimension and has no physical meaning.
It is needed to close the algebra (3.1). One can get rid of the auxiliary fields with the help of
equations of motion.

Thus, a superfield contains an equal number of bosonic and fermionic degrees of freedom.
Under SUSY transformation they convert one into the other

0:A = V2,
6 = iV20ME0,A + V2¢F, (3.13)
6. F = V250" 0.

+ V20 (x) —

Notice that the variation of the F'-component is a total derivative, i.e. it vanishes when integrated
over the space-time.
One can also construct an antichiral superfield ®* obeying the equation

D®T =0, with D= % + ic*00,.

The product of chiral (antichiral) superfields ®2, ®3, etc is also a chiral (antichiral) superfield,
while the product of chiral and antichiral ones ®*® is a general superfield.
For any arbitrary function of chiral superfields one has:

W(®;) = W(A; + V20 + 00F)

aw oW, 1 92W
= W(A)+ \/_91/11 + 60 (M MAiaAjij) . (3.14)
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W is usually referred to as a superpotential, which replaces the usual potential for the scalar
fields.

To construct the gauge invariant interactions, one needs a real vector superfield V = V. It
is not chiral but rather a general superfield with the following grassmannian expansion

V(z,0,0) = C’(x) +ifx(z) — i0x(x
+ %ee[M(x) iN(z)] —
— 00"Gu,(x) + i000]\(z) + %Waux(x)]
— i000[\ + %a“aﬂx(x)] - %9055@(9@) + %DC(JE)]. (3.15)

The physical degrees of freedom corresponding to a real vector superfield V' are the vector gauge
field v, and majorana spinor field A. All other components are unphysical and can be eliminated.
Indeed, under the abelian (super)gauge transformation the superfield V' is transformed as

V — V+o4+0T,

where ® and ®T are some chiral superfields. In components it looks like

C — C+ A+ A*,
X - x—iv2y,
M+iN —  M+iN —2iF,
Uy — vy —i0u(A—AY), (3.16)
A — A,
D — D

and_corresponds to ordinary gauge transformations for physical components. According to
eq.(%.lﬁ) one can choose a gauge (the Wess-Zumino gauge) where C = x = M = N = 0, leaving
us with only physical degrees of freedom except for the auxiliary field D. In this gauge

_ __ _ 1
V. = —0c"0v,(z) +i000X(x) — 000X (x) + 599091)(.%),
1
Vi = —590990#@)11“(3:),
Vo= 0, ete (3.17)

One can define also a field strength tensor (as analog of F),, in gauge theories)

1_
Wo = —;D%"Dse”",
_ 1 _
Wy = —ZDQeVDae_V, (3.18)

which is a polynomial in the Wess-Zumino gauge. (Here Ds are the supercovariant derivatives.)
The strength tensor is a chiral superfield

DBWa =0, DgW;=0.
In the Wess-Zumino gauge it is a polynomial over component fields:

a <\ a a i —V a ya
Wo=T (—ma +0aD" = 5 ("5 0)aFy, + 0*0" D, ) , (3.19)
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where 7 7 7
Fgg = a U + fabcv,uvw DM)\a = O\* + fabCUZ)\c.
STtIr
In abelian case eqs.(lBTI8 are s1mphﬁed and take form

1 _ 1 .-
W, = —ZD2DQV, Wg = —ZD2DQV.

3.3 Construction of SUSY Lagrangians

Let us start with the Lagrangian which has no local gauge invariance. In the superfield notation
SUSY invariant Lagrangians are the polynomials of superfields. Having in mind that for com-
ponent fields we should have the ordinary terms, and the above mentioned property of SUSY
invariance of the highest dimension components of a superfield, the general SUSY invariant
Lagrangian has the form

1
39k 2i®;®Pr)loo + h.c.]. (3:20)

Hereafter the vertical line means the corresponding term of a Taylor expansion.

The first term is a kinetic term. It contains both the chiral and antichiral superfields ®; and
@f, respectively, and is a function of grassmannian parameters 6 and 6. Being expanded over 4
and 6 it leads to the usual kinetic terms for the corresponding component fields.

The terms in the bracket form the superpotential. It is composed of the chiral fields only
(plus the hermitian conjugated counterpart composed of antichiral superfields) and is a chiral su-
perfield. Since the products of a chiral superfield and antichiral one produce a general superfield
they are not allowed in a superpotential. The last coefficient of its expansion over parameter 6
is supersymmetrically invariant and gives the usual potential after getting rid of the auxiliary
fields, as it will be ¢ ear later.

The Lagrangian (3.20) can be written in much more elegant way in superspace. The same way
as an ordinary action is an integral over space-time of Lagrangian density, in supersymmetric

ess‘réle eetgtl’on is an integral over the superspace. The space-time Lagrangian density then

7, 15

1
L = Of ®igg55 + [(Ni®; + §mij‘1>¢‘1>j +

_ 1 1

where the first part is a kinetic term and the second one is a superpotential V. Here instead of
taking the proper componen S we use an integration over the superspace according to the rules
of grassmannian integration [18]

/ dfy = 0, /ea 03 = S0

1
Performing explicit integration over the grassmannian parameters we get from eq. (l3.21)
L = i0ia"; + AJOA; + FF, (3.22)
1
+ [)\le + mij(AiFj — §¢Z1/J]) + yzjk(A,A]Fk — 1/JZ1/)]Ak) + hc}

The last two terms are the interaction ones. To obtain a familiar form of the Lagrangian, we
have to solve the constraints:

oL

= Bt N Al 4yl ATAS =0, (3:23)
OF;
oL )
— = Fp+ M +mipAi + yijkAiAj =0. (3.24)
oF,
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Expressing the auxiliary fields F and F™* from these equations we finally get

_ 1 1
L= i0hig" i+ ATOA; — Smigihith; — gmiziity;

—yiktbibi A — yipit Ay — V(Ai, Aj), (3.25) [m]

where the scalar potential V' = F} Fj,. We will return to the discussion of the form of the scalar
potential in SUSY theories later.

Consider now the gauge invariant SUSY Lagrangians. They should contain gauge invariant
interaction of the matter fields with the gauge ones and the kinetic term and the self interaction
of the gauge fields.

Let’s start with the gauge fields kinetic terms. In the Wess-Zumino gauge one has

o1 1 1
W Walgg = —2iAa" DyX = o Fpu F*™ + 5D2 i FY P 6o, (3.26)

where D,, = 0, + ig[v,, | is the usual covariant derivative and the last, the so-called topological
6 term,? is the total derivative.
The gauge invariant Lagrangian now has familiar form

| Lo
L = Z/dQHW"Wa+Z/d29WO‘Wd

— 1D2—1

5 1 P = iAo Dy (3.27)

To obtain a gauge-invariant interaction with matter chiral superfields, consider their gauge
transformation (abelian)

d — e WD, dt — TN Vo V4i(A—AT),

where A is a gauge parameter (chiral superfield).
It is clear now how to construct both the SUSY and gauge invariant kinetic term (compare
with the covariant derivative in a usual gauge theory):

O ©ilgggs = @7 ¢?" Dilogsa (3.28)
A complete SUSY and gauge invariant Lagrangian then looks like:
1 1 - _
Low = § /d29 WOW, + 5 /d29 WeTW, + /d29d29 Bt etV B, (3.29)
1 1
+ /d29 (§mij®i(pj + gyijkéi@jd)k) + h.c.
In particular the SUSY generalization of QED looks as follows
1 2 @ 1 25 VATt
Lsusy opp = Z/dew Wa+1/d9W A
+ / a0 (dTe?Vd + dTe 9V D) (3.30)

+ /d2«9 m o, P_ + /d2§ m oToT,

2Terminology comes from the 6 term of QCD and has nothing to do with the grassmannian parameter 6
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where two superfields ® and ®_ have been introduced in order to have both left and right
handed fermions.
The non-abelian generalization is straightforward

1 1 o
Lsvsy ya = 5 [0 Tr(WeWo) + | [ &0 Tr(voWw) (3.31)
- /d29d2§ ém(egv)gcpi?Jr/d?e W(®;) +/d2§ W(D;),

where W is a superpotential, which should be invariant under the group of symmetry of a
particular model.
In terms of component fields the above Lagrangian takes the form

1 -1
Lsusy ym = —ZFl‘fyFQW — iX"H DA + §D‘1D“

+ (8/“41 — Z'gUZTaAZ‘)T(auAi — igva“TaAi) — iv]}ﬁ“(@ﬂ)i — igvaMTalf)i)
— DaAITaAZ‘ — iﬂAITa)\awi + i\/i(ﬁiTaAij\a + F;TFZ
ow ow 1 0*°w 1 PW -
f_= Pithj. (3.32)

SR S F - o g —
MY +aAj’ 28AaAj¢% 29Af04!

Integrating out the auxiliary fields D and F;, one reproduces the usual Lagrangian.

3.4 The scalar potential

Contrary to the SM, where the scalar potential is arbitrary and is defined only by the requirement
of the gauge invariance, in supersymmetric theories it is completely defined by the superpotential.
It consists Q the contributions from D-terms and F-terms. The kinetic energy of the guge fields
(recall eq.(B3.27) yields 1/2D*D® term, and the matter-gauge interaction (recall eq.(3.29) yields
gDT3 A7 Aj. Together they give

1 a a arpa *

The equation of motion reads
D = —gTz AT Aj. (3.34)

d
Substituting it back to eq.(b.33) yields the D-term part of the potential
1 a a 1 a a
1
where D is given by eq.(ETOM).

20
The F-term contribution can be derived from the matter fields self-interaction eq.(bf22). For
a general type superpotential W one has

Lp= FZ*Fz + (gj‘ijz + hc) (3.36)

Using equations of motion for the auxiliary field F;

H= oA,

(3.37)
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yields
Lp=-F'F, = Vp=F'F, (3.38)

solf
where F' is given by eq.(l3.3?). The full potential is the sum of the two contributions:
V =Vp+Vp. (3.39)

Thus, the form of the Lagrangian is practically fixed by symmetry requirements. The only
freedom is the field content, the value of the gauge coupling g , Yukawa couplings ¥;;, and
the masses. Because of the renormalizability constraint V' < A% the superpotential should be
limited by W < ®3 as in eq.(83.21). All members of a supermultiplet have the same masses, i.e.
bosons and fermions are degenerate in masses. This property of SUSY theories contradicts the
phenomenology and requires supersymmetry breaking.

3.5 Spontaneous breaking of SUSY

Since supersymmetric algebra leads to mass degeneracy in a supermultiplet it should be broken
to explain the absence of superpartners at modern energies. There are several ways of supersym-
metry breaking. It can be broken either explicitly or spontaneously. Performing SUSY breaking
one has to be careful not to spoil the cancellation of quadratic divergencies which allows to solve
the hierarchy problem. This is achieved by spontaneous breaking of SUSY.

Apart from non-supersymmetric theories in SUSY models the energy is always nonnegative
definite. Indeed, according to quantum mechanics

E=<0|H|0>

rou

and due to SUSY algebra eq.(3.

{CQQ,C?B} ::2(UH)QB}L7

taking into account that tr(c#P,) = 2P, we get

42&:12

F=1 Y <0{Qu@u}0>= {3 [Qul> >0

Hence
E=<0H|0>#0 ifandonlyif Qu|0>%#0.

Therefore a supersymmetry is spontaneously broken, i.e. vacuum is not invariant (Q,|0 >%#
0) , if and only if the minimum of the g)getfntial is positive (i.e.E > 0) .

The situation is illustrated in Fig.9. The SUSY ground state has £ = 0, while a non-SUSY
one has £ > 0. On the right hand side a non-SUSY potential is shown. It does not appear
even in spontaneously broken SUSY theories. However, just this type of the potential is used
for spontaneous breaking of the gauge invariance via the Higgs mechanism. This property has
crucial consequences for the spontaneous breaking of the gauge invariance. Indeed, as will be
seen later, in the MSSM spontaneous breaking of SU(2) invariance takes place only after SUSY
is broken.

Figure 9: Scalar potential in supersymmetric and non-supersymmetric theories

Spontaneous breaking of supersymmetry is achieved in the same way we break electroweak
symmetry. One introduces the field whose vacuum expectation value is non-zero and breaks
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the symmetry. However, due to a special character of SUSY, this should be a superfield whose
auxiliary F' and D components acquire non-zero v.e.v.’s. Thus, among possible spontaneous
SUSY breaking mechanisms one distinguish 1*; tamd D ones.

i) Fayet-Iliopoulos (D-term) mechanism [7].
In this case the linear D-term is added to the Lagrangian

AL = €V |gpa5 = / o V. (3.40)

It is gauge and SUSY invariant by itself, however ma%ead to spontaneous breaking of both
of them depending on the value of £&. We show in Figll0a the sample spectrum for two chiral
matter multiplets. The drawback of this mechanism is the necessity of U(1) gauge invariance.

Figure 10: Spectrum of spontaneously broken SUSY theories

It can be used in SUSY generalizations of the SM but not in GUTs.
The mass spectrum also causes some troubles since the following sum rule is always valid

Z m? = Z m2, (3.41)

boson states fermion states

which is bad for a phenomenology. ,
ii) O’Raifeartaigh (F-term) mechanism [7].
In this case several chiral fields are needed and the superpotential should be chosen in a way that
trivial zero v.e.v.s for the auxiliary F-fields are absent. For instance, choosing the superpotential
to be
W(®) = A\P3 + m® Dy 4 gO3B7,

one gets the equations for the auxiliary fields

Ff = mAy+2gA; A3,
FQ* = ’I?’LAl,
Fy = AtgAl

which have no solutions lith < F; >= 0 and SUSY is spontaneously broken. The sample
spectrum is shown in Fig.TOb.

The d Sauvyn?lflafeks of this mechanism is a lot of arbitrariness in the choice of potential. The
sum rule Wlﬁ)‘ls also valid here.

Unfortunately none of these mechanisms explicitly works in SUSY generalizations of the SM.
None of the fields of the SM can develop non-zero v.e.v.s for their F' or D components without
breaking of SU(3) or U(1) gauge invariance, since they are not singlets with respect to these
groups. This requires the presence of extra sources of spontaneous SUSY breaking, which we
consider below. They are based, however, on the same F' and D mechanisms.

4 SUSY generalization of the Standard Model. The MSSM

As has been already mentioned, in SUSY theories the number of bosonic degrees of freedom
equals that of fermionic. At the same time, in the SM one has 28 bosonic and 90 fermionic
degrees of freedom (with massless neutrino, otherwise 96). So the SM is in great deal non-
supersymmetric. Trying to add some new particles to supersymmetrize the SM, one should take
into account the following observations:
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fig:shadow

d
Figure 11: The shadow world of SUSY particles .;a .

1. There are no fermions with quantum numbers of the gauge bosons;

2. Higgs fields have a non-zero v.e.v.s, hence they cannot be superpartners of quarks and
leptons since this would induce a spontaneous violation of baryon and lepton numbers;

3. One needs at least two complex chiral Higgs multiplets to give masses to Up and Down
quarks.

The latter is due to the form of a superpotential and chirality of matter superfields. Indeed,
the superpotential should be invariant under SU (3) ﬁég 1% (2) x U(1) gauge group. If one looks at
the Yukawa interaction in the Standard Model, eq.(I[.7), one finds that it is indeed U (1) invariant
since the sum of hypercharges in each vertex equals zero. In the last term this is achieved by
taking the conjugated Higgs doublet H = imyH' instead of H. However, in SUSY H is a chiral
superfield and hence a superpotential, which is constructed out of chiral fields, can contain only
H but not H, which is an antichiral superfield.

Another reason for the second Higgs doublet is related to chiral anomalies. It is known that
chiral anomalies spoil the gauge invariance and, hence, the renormalizability of the theory. They
are canceled in the SM between quarks and leptons in each generation.

Indeed, chiral (or triangle anomaly) is proportional to the trace of three hypercharges. In
the SM one has

Try3 = 3 (% +3 -9 +5) -1 -1 48 =o.
T 1 7 7 1T 7 (4.1)

colour wuy dr up dgr vy, el €R

However, if one introduces a chiral Higgs superfield, it contains higgsinos, which are chiral
fermions, and contain anomalies. To cancel them one has to add the second Higgs doublet with
the opposite hypercharge.

Therefore the Higgs sector in SUSY models is inevitably enlarged, it contains an even number
of doublets.

Conclusion: In SUSY models supersymmetry associates known bosons with new fermions
and known fermions with new bosons.

4.1 The field content

Consider the particle content of the Minimal Supersymmetric Standard Model WITS&F According
to the previous discussion in the minimal version we double the number of particles (introducing
a superpartner to each particle) and add another igas doublet (with its superpartner). The
particle content of the MSSM then looks as follows 17

Particle Content of the MSSM
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Superfield Bosons Fermions SU:(3) SUL(2) Uy(1)

Gauge
G2 gluon g° gluino g° 8 0 0
%A Weak WF (W*,Z)  wino, zino @% (0%, %) 3 0
\% Hypercharge B () bino b(%) 1 1 0
Matter
L; Li= (7,é) L= (v,e)r 1 2 -1
E sleptons { B =én leptons B =g 1 1 9
Qi Qi = (a,d)L Qi = (u,d)r, 3 2 1/3
U; squarks U; = ug quarks Ui = u$ 3* 1 —4/3
D; D; =dg D; = d§ 3* 1 2/3
Higgs )
H, Hi Hy higgsinos § 1 L 2l
H, ggses H, ggsinos i, 1 9 1

where a = 1,2,...,8 and k = 1,2,3 are SU(3) and SU(2) indices, respectively, and i = 1,2, 3 is
the generation index. Hereafter tilde denotes a superpartner of an ordinary particle.

Thus, the characteristic fe dure hoafd%ly supersymmetric generalization of the SM is the pres-
ence of superpartners (see Fig%.g—[fﬁpersymmetry is exact, superpartners of ordinary particles
should have the same masses and have to be observed. The absence of them at modern en-
ergies is believed to be explained by the fact that their masses are very heavy, that means
that supersymmetry should be broken. Hence, if the energy of accelerators is high enough, the
superpartners will be created.

The presence of an extra Higgs doublet in SUSY model is a novel feature of the theory. In
the MSSM one has two doublets with the quantum numbers (1,2,-1) and (1,2,1), respectively:

HO vy + LR HY Hy
H = L= V2 , Hy=| 3% | = ~ , 4.2
1 < H; > ( HE 2 HY vy + S —\/i_i 1Py (4.2)

where v; are the vacuum expectation values of the neutral components.

Hence, one has 8=4+4+4=>5+3 degrees of freedom. As in the case of the SM, 3 degrees of
freedom can be gauged away, and one is left with 5 physical states compared to 1 state in the
SM.

Thus, in the MSSM, as actually in any two Higgs doublet model, one has five physical Higgs
bosons: two CP-even neutral, one CP-odd neutral and two charged. We consider the mass
eigenstates below.

4.2 Lagrangian of the MSSM

The Lagrangian of the MSSM consists of two parts; the first part is SUSY generalization of the
Standard Model, while the second one represents the SUSY breaking as mentioned above.

L= *CSUSY + ['BTeakingy (43)

where
‘CSUSY = £Gauge + £Yukawa (44)
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and

1 _ — =
CGauge = Z Z (/ d%0 TrWwW, + /d29 TTWaWd)
SU(3),5U(2),U(1)
+ > [ d*6d*0 pleosVs + 0V +g1Vig, (4.5)
Matter
Lyukawa = /d29 (WR + WNR) + h.c. (46)

The index R in a superpotential refers to the so-called R-parity which %(lilusts a ”+” charge to
all the ordinary particles and a ”—" charge to their superpartners . e first part of W is
R-symmetric

Wr = e (5, QLU H + y5 QI DS HY + yb LI EgHY + pH H), (4.7)

where 7,7 = 1,2,3 are SU(2) and a,b = 1,2,3 are the generation indices; colour indices are
suppressed. This part of the Lagrangian almost exactly repeats that of the SM except that the
fields are now the superfields rather than the ordinary fields of the SM. The only difference is
the last term which describes the Higgs mixing. It is absent in the SM since we have only one
Higgs field there.

The second part is R-nonsymmetric

Wik = 6Nl Ly Eq + NgaLuQy DG + i, Ly H3)
+ A\B USD:DS. (4.8)

These figrms are absent in the SM. The reasqn is very simple: one can not replace the superfields
in eq.(4.8) by the ordinary fields like in eq.(4.7) because of the Lorentz jnvariance. These terms
have the other property, they violate either lepton (the first line in eq.(@S)) or baryon number
(the second line). Since both effects are not observed in Nature, these terms must be suppressed
or be excluded. One can avoid such terms if one introduces the special symmetry called R-

symmetry. This is the global U(1)g invariance:
Ulg: 60— 9,0 — ™9, (4.9)

i.e. the superfield has R = n. To preserve U(1)g invariance the superpotential W must have
R = 2. Thus, to get Wxgr = 0 one must choose R =1 for all the Higgs superfields and R = 1/2
for quark and lepton ones. However, this property happens to be too restrictive. Indeed, the
gaugino mass term, which is Lorentz and gauge invariant and is introduced while supersymmetry
breaking, happen to be R-invariant only for a = +m. This reduces the R-symmetry to the
discrete group Zo, called R-parity. The R-parity quantum number is given by

R= (_1)3(BfL)+25' (410)

for particles with spin S. Thus, all the ordinary particles have R-parity quantum number equal

to R = 41, while all the superpartners have R-parity quantum number equal to R = —1.

R-parity obviously forbids the Wyg terms. It is usually assumed that they are absent in the

MSSM, i.e. R-parity is preserved. However, there is no physical principle behind it. It may well

be that these terms are present, though experimental limits on the couplings are very severe:
Ao CONH <107, AB <1077

aber abc abc
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4.3 Properties of interactions

If one assumes that the R-parity is preserved, then the interactions of superpartners are essen-
tially the same as in the SM, but two of three particles involved into an interaction at any vertex
are replglged by superpartners. The reason for it, as we discussed earlier, is R-parity. According
to eq.(#.10) all the ordinary particles are R-even, while all the superpartners are R-odd.

A conservation of R-parity has two consequences:

e the superpartners are created in pairs;
e the lightest superparticle (LSP) is stable.

Usually it is photino 4, the superpartner }%E%%}ggon with some admixture of neutral higgsino.
A typical vertices are shown in Figs.T2-14. Tilde above a letter denotes a corresponding
superpartner. Note that the coupling is the same in all the vertices involving superpartners.
In case of R-parity violation one has additional vertices with new types of interaction. As
has been already mentioned they violate either lepton or baryon number. The typical ones are

LiLE = N {ﬂLeLef{—éLl/Lefg—i-é*Rl/LeR—i-...}, (4.11)
c :)\{~dd—~ dp + dpvidp —fierdr + ... b 412
LoD F éjtfreLlf? Ggﬁlg%—l\ﬁatte% II/rtheIfzactliLoer LER } ( )

Figure 13: Gauge Self-Interaction
Figure 15: Proton decay in R-parity violating models
Figure 14: Yukawa-Type Interaction

There are also UDD terms which violate bar%%g number. These term together lead to a
fast proton decay via the process shown in Fig.I5. To avoid it one usually leaves either L or B
violating interactions.

The limits on R-parity violating couplings come from non-observation of various processes,
like proton decay, v,e scattering, etc and also from the charged current universality: I'(m —
ev)/T'(m — wv),I(1 — evv)/T(1 — pvw), ete.

4.4 Creation and decay of superpartners

The above-mentioned rule together with the Feynman rules for the SM enables us to draw
. . . . . . . + —

dlag.ra.tms. descrlblng creation of super'partne.rs. On.e 9f the @ost promising processes is e"e

annihilation (see Fig. l6§. ['he usual kinematic restriction is given by the central of mass energy

max \/g

msparticle < 9"

Similar processes take place at hadron colliders with electrons and positrons being replaced by
quarks and gluons.

Creation of superpartners can be accompanied by creation of the ordinary particles as well.
We consider various signatures for eTe™ and hadron colliders below. They crucially depend on
SUSY breaking pattern and on the mass spectrum of superpartners.

The decay properties of superpartners also deper#d%co_ar}[ their masses. For the quark and lepton
superpartners the main processes are shown in Fig.I7.

Since R-parity is conserved, new particles will eventually end up giving neutralinos (the
lightest superparticle) whose interactions are comparable to those of neutrinos and they leave
undetected. Therefore, their signature would be missing energy and transverse momentum.
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Ezamples. Consider some explicit examples of superpartners decays.

squarks :  q¢r R
qr

A

sleptons :

gluino :

chargino :

neutralino :

q+x) (quark + photino)
o .
¢ +X; (quark + chargino)
qg+g (quark + gluino) for mg > mg
c+ Xy (main decay) signal: 2 acollinear jets + ¢T
b+ )Zf signal: 2 b jets + 2 leptons + ﬂfT
— W (fF =19,40) (4 jets) + P
[ — 1+ %) (lepton + photino)
I — wu+xF (neutrino + chargino)
g — q+qd+7 (quark + antiquark + photino)
g — g+7 (gluon + photino)
X5 — e+rve+x? (electron + neutrino + photino)
X = q+7+xY (quark + antiquark + photino)
X3 - X+ X

In the last case there are many possible channels both visible and invisible.

Visible Channels Final States
e A (s
- XETy IH + ¢T
— )Zg)l:tl/l
— X?qq— 2 jets + ¢T
- X5 v+ ¢T
- X
— QEqq 2 jets + for
- Xy
— XYqq I 42 jets + ¢T
- Xfad
— Pty 1% + 2 jets +
Invisible Channel Final State
- XJup ¢T

Thus, if supersymmetry exists in Nature and if it is broken somewhere below 1 TeV, then it will
be possible to detect it in the nearest future.

5 Breaking of SUSY in the MSSM

Since none of the fields of the MSSM can develop non-zero v.e.v. to break SUSY without spoiling
the gauge invariance, it is supposed that spontaneous supersymmetry breaking takes place via
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some other fields. The most common scenario for producing low-energy supersymmetry breaking
is called hidden sector one. According to this scenario, there exist two sectors: the usual matter
belongs to the ”visible” one, while the second, "hidden” sector, contains fields which lead to
breaking of supersymmetry. These two sectors interact with each other by exchange of some
fields ca :%\g glnessengers, which mediate SUSY breaking from the hidden to the visible sector
(see Fig.l8). There might be various types of messenger fields: gravity, gauge, etc. Below we
consider four possible scenarios.

The hidden sector is the weakest part of the MSSM. It contains a lot of ambiguities and
leads to uncertainties of the MSSM predictions considered below.

Figure 18: Hidden Sector Scenario

5.1 The hidden sector: four scenarios

So far there are known four main mechanisms to mediate SUSY breaking from a hidden to a
visible sector:

e Gravity mediation (SUGRA);

e Gauge mediation;

e Anomaly mediation;

e Gaugino mediation.

Consider them in more detail.
SUGRA

This mechanism is based n ae‘,frfneégtive non-renormalizable interactions arising as a low-energy
limit of supergravity theories[?]. In this case two sectors interact with each other via gravity.
There are two types of scalar fields that develop non-zero v.e.v.s, namely moduli fields 7', which
appear as a result of compactification from higher dimensions, and the dilaton field S, part of
SUGRA supermultiplet. These fields obtain non-zero v.e.v.s for their F' components: < Fp >#
0,< Fs >z 0, which leads to spontaneous SUSY breaking. Since in SUGRA supersymmetry
is local, spontaneous breaking leads to Goldstone particle which is a Goldstone fermion in this
case. With the help of a super Higgs effect this particle may be absorbed into the additional
component of a spin 3/2 particle, called gravitino, which becomes massive.

SUSY breaking is then mediated to a visible sector via gravitational interaction leading to
the following SUSY breaking scale

< Fr > < Fg >
M ~ + ~m
SU?/Y MPL MpL 3/2>
where mg3 /o is the gravitino mass.

The effective low-energy theory, which emerges, contains explicit soft supersymmetry break-
ing terms

Loope = — > mZ| A2 =Y M\ + Nhi) — BWE(A) — A wWB)(4), (5.1)

where W®) and W) are the quadratic and cubic terms of a superpotential, respectively. The
mass parameters are

2 <FS> 2 <FS>

m; ~ ——— ~m M,~ ———~m
4 MPL 3/2 7 MPL 3/2s
< FT > 2 < FTS >
B ~ ———— ~m A~ —22 " ~ ms/o.
Mpp, 3/2 Mpr, /
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To have SUSY masses of the order of 1 TeV one needs /< Fr g > ~ 10! GeV.

In spite of attractiveness of these mechanism in general, since we know that gravity ex-
ists anyway, it is not truly substantiated due to the lack of a consistent theory of quantum
(super)gravity. Among the problems of supergravity mechanism are also the large freedom of
parameters and the absence of automatic suppression of flavour violation.

Gauge Mediation

In this version of a hidden sector scenario the SUSY b eaakie%% deffects are mediated to the
observable world not via gravity but via gauge interactions 6? . The messengers are the gauge
bosons and matter fields of the SM and of some GUT theory. The hidden sector is necessary
since the dynamical SUSY breaking requires the fields with quantum numbers not compatible
with the SM. The advantage of this scenario is that one can construct a renormalizable model
with dynamical SUSY breaking, where in principle all the parameters can be calculated.

Consider some simplest possibility where in a hidden sector one has a singlet scalar superfield
S with non-zero v.e.v. < Fg > 0. The messenger sector consists of some superfield ®, for
instance, 5 of SU(5), that couples to S and to the SM fields with a superpotential

W~ SOID, < S >=M#0. (5.2)
augino

Integrating out the messengef,.ﬁelds jives mass to gauginos at the one loo leve% (see Fig.
1%: % g . Jsquar . i
and to the scalar fields (squarl%%ﬁ?d slept%ﬁ jnz;)t the two orgpl%%e (see Fig.20).  So, in gauge

Figure 20: Squark mass generation

mediated scenario all the soft masses are correlated to the gauge couplings and in this sense this
scenario is more restrictive than the SUGRA one. There is no problem with flavour violating
processes as well, since the soft terms automatically repeat the rigid sector.

It is remarkable that in this scenario the LSP happens to be the gravitino. The mass of the
gravitino is given by
<Fg> M _u M

M . M PL - [GeV} ’
that leads to a very light gravitino field.

The problem of the gauge mediated SUSY breaking scenario emerge in the Higgs sector, since
the Higgs mass mixing parameters which break an unwanted Peccei-Quin symmetry can not be
generated by gauge interactions only. In order to parameterize some new unknown interactions,
two new inputs have to be introduced (x and B in SUGRA conventions).

mé ~ (5.3)

Anomaly Mediation

Anomaly mediation mechanism assumes no SUSY breaking at the tree level. SUSY breaking
is generated due to conformal anomaly. This mechanism refers to a hidden sector of a multidi-
mensional theo m‘g& the couplings being dynamical fields which may acquire v.e.v.s. for their
F' components %._T'Ee external field or scale dependence of the couplings emerges as a result
of conformal anomaly and that is why is proportional to the corresponding § functions. In the
leading order one has

< FT,S >
m*(A) ~ b} aF(A) m3 ), (5.4)
susyl

where b; are one-loop RG coefficients (see eq.(2-
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This reminds supergravity mediation mechanism but with fixed coefficients. It leads to two
main differences:
i) the inverted relation between the gaugino masses at high energy scale

MliMQ:M3:b12b22b3,

ii) negative slepton mass squared (tachyons!) at the tree level.
This problem has to be cured.

Gaugino Mediation

X X X . X . uginomed
At last we would like to mention the gaugino mediation mechanism of SUSY breaking 7

This is less developed scenario so far. It is based on a paradigm of a brane world. According
to this paradigm there exists multidimensional world where our four dimensional space-time
represents a brane of 4 dimensions. The fields of the SM live on the brane, while gravity and some
other fields can propagate in the bulk. There also exists another brane where supersymmetry
is broken. SUSY breaking is mediated to our brane via the fields propagating i]ral1 thg dbulk. It is

essuied that the gaughug feld oy esventil tofe b g g houibin o< Fie

All four mechanisms of soft SUSY breaking are different in details but are common in results.
They generate gauge invariant soft SUSY breaking operators of dimension < 4 of the form

»Csoft = - ZmﬂAz‘Q - ZMz()\z/\z + 5\15\2)
— Z Bl]AlAJ — Z Az]kAZA]Ak + h.c., (55)
ij ijk

where the bilinear and trilinear couplings B;; and A;j; are such that not to break the gauge
invariance. These are the only possible soft terms that do not break renormalizability of a theory
and preserve SUSY Ward identities for the rigid terms.

Predictions for the sparticle spectrum depend on the mecha%isg?t lpaf SUSY breaking. For
comparison ofFfour glé%\:/esmentlon%d meCha‘Iulrlg s we show in ign T Il gcﬁamg)l%)sspectra as the

_ lgur yperpar icle spec or various medi ani
ratio to the gaugino mass Mo.

In what follows to calculate the gigss spectrum of superpartners we need explicit form of
SUSY breaking terms. Applying eq.(5.5) to the MSSM and avoiding R-parity violation gives

1 -
~Lpreaking = > mo;leil” + (5 > Moo + BH Hy (5.6)
+ ALQUUSHs + ARQuDyHy + Al LaESHy + hec.)

where we have suppressed SU(2) indices. Here ¢; are all scalar fields, Ao are the gaugino fields,
Q.U,D and L, E are the squark and slepton fields, respectively, and Hj 2 are the SU(2) doublet
Higgs ﬁelds.Soft

The eq. (%_67 contains a vast number of free parameters which spoils the prediction power
of the model. To reduce their number we adopt the so-called universality hypothesis, i.e. we
assume the universality or equality of various soft parameters at high energy scale, namely we
put all the spin 0 particle masses to be equal to the universal value my, all the spin 1/2 particle
(gaugino) masses to be equal to my s2 and all the cubic and quadratic terms, proportional to
A and B, to repeat the structure of the Yukawa superpotential (4.7). This is an additional
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requirement motivated by the supergravity mechanism of SUSY breaking. Universality is not a
necessary requirement and one may consider non-universal soft terms as well. However, it will
not change the qualitative picture presented below, 50 ffgr simplicity in what follows we consider
the universal boundary conditions. In this case eq.(f‘STGT takes the form

1 o
_‘CBreaking = m(2) z |901|2 * <2m1/2 Z AaAa (57)
i el
+ Al QuUs Ha + yBQuDs Hy + yly Lo Eg Hy) + BluHi Hp) + hec.)

It should be noted that supergravity induced universality of the soft terms is more likely to
be valid at the Planck scale, rather than at the GUT one. This is because a natural scale for
gravity is M pianck, while Mgy is the scale for the gauge interactions. However, due to a small
difference between these two scales, it is usually i %ggggkin the first approximation resulting in
minor uncertainties in the low-energy predictions 27

The soft terms explicitly break supersymmetry. As will be shown later they lead to the mass
spectrum of superpartners different from that of the ordinary particles. Remind that the masses
of quarks and leptons remain zero until SU(2) invariance is spontaneously broken.

5.2 The soft terms and the mass formulas

There are two main sources of the mass terms in the Lagrangian: the D terms and soft ones.
With given values of mq, my 9, i1, Y3, Y3, Y7, A, and B one can construct the mass matrices for all
the particles. Knowing them at the GUT scale, one can solve the corresponding RG equations
thus linking the values at the GUT and electroweak scales. Substituti S Hese parameters into
the mass matrices one can predict the mass spectrum of Superpartners%ﬁpi

5.2.1 Gaugino-higgsino mass terms

The mass matrix for gauginos, the superpartners of the gauge bosons, and for higgsinos, the
superpartners of the Higgs bosons, is non-diagonal, thus leading to their mixing. The mass
terms look like

1 - 1 -
'CGauginoinggsino = *iMS)\a)\a - §>_(M(O)X - (¢M(C)1/) + h.C.), (58)
where A\g,a =1,2,...,8, are the Majorana gluino fields and
BO
w3 W+
X=1 o | w—< i+ ) (5.9)
H

are, respectively, the Majorana neutralino and Dirac chargino fields. The neutralino mass matrix
is:

My 0 —MgcosBsiny My sin B sinyy
1O 0 . M> My cos Becosyy  —My sin 3 cosyy . (5.10)
— Mg cos Bsiny My cos 3 cosyy 0 —
Mgz sin Bsiny  — Mgz sin 3 cosy — 0

where tan 3 = vy /v is the ratio of two Higgs v.e.v.s and sinyy = sin fyy is the usual sinus of the
weak mixing angle.
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The physical neutralino masses Mo are obtained as eigenvalues of this matrix after diago-
nalization. For charginos one has:

© _ M, V2Myy sin 3
M© = < VM <08 3 . ) . (5.11)

This matrix has two chargino eigenstates )ng with mass eigenvalues

1
M=)

5 M3+ p? + 2M7, F \/(M22 — u?)? + AM;, cos? 203 + AME, (M3 + p? + 2Mspsin 26)} :

(5.12)

5.2.2 Squark and slepton masses

The non-negligible Yukawa couplings cause a mixing between the electroweak eigenstates and
the mass eigenstates of the third generation particles. The mixing matrices for the m?, mg and

m2 are:
=2
mir my( Ay — pcot 3) 513
( my (A — pcot 3) mig ' (5.13)
=2
myy, mb(Ab - I’Ltanﬂ) 5.14
< mp(Ap — ptan 3) mip ’ (5.14)
=2
may, m; (A, — ptan 3)
T - 5.15
( mr(A; — ptan 3) m2p (5.15)
with
- - 1
mi = mé +m? + 6(4M§V — M%) cos 283,
~ - 2
mip = my+m?— g(Mt%V — M%) cos 28,
1
my, = fné +mi — 6(2M3V + M%) cos 243,
1
My = mp+mj + 5 (Myy — MZ) cos 25,
1
mZ;, = mi+m:— 5(2M5V — M%) cos 28,
mip = my+m2+ (M§, — M%) cos23

and the mass eigenstates are the eigenvalues of these mass matrices. For the light generations
the mixing is negligible.

The first terms here (m?) are the soft ones, which are calculated using the RG equations
starting from their values at the GUT (Planck) scale. The second ones are the usual masses of
quarks and leptons, and the last ones are the D terms of the potential.

5.3 The Higgs potential

As has been already mentioned, the Higgs potential in MSSM is totally defined by superpotential
(and the soft terms). Due to the structure of VW the Higgs self-interaction is given by the D-
terms, while the F-terms contribute only to the mass matrix. The tree level potential is:

Viree (H1, Hy) = mi|H1|* + m3|Ha|* — m3(H1Hs + h.c.)
2 2 2
_|_
+ ST (P |HaP) + Y Hl?, (5.16)
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where m? = m%ll + 2 m3 = m%{Q + p?. At the GUT galgtm% =m3 =md+ 3, m3 = —Buy.

Notice, that the Higgs self-interaction coupling in eq.(b. is fixed and is defined by the gauge
interactions as‘oppl(_i)lsm%ttlo the SM. . ‘ . .

The potential (b. igi, in accordance with supersymmetry, is positively definite and stable. It
has no non-trivial ﬁrllingrglum different from zero. Indeed, let us write the minimization condition
for the potential (b.

16V 92 + g/2
25H, mivy — mivy + 1 (v —v3)vy =0, (5.17)
16V 9> +4”
25l mavy — mivy + T(v% —vd)vy =0, (5.18)

where we have introduced the notation

. V2
< H| >=v; =vcosfB, <Hy>=wvy=vsing, v*>=0v}+v3, tanf=—.
U1

inl  jmin2
Solution of eqs.(%.ml 7),(g.ml 8) can be expressed in terms of v? and sin 3:

A(m2 — m2 tan2
2 = 2(m1/2 My ;m B) . sin28 =
(9" +g7)(tan” 3 — 1)

: ﬁ e o2 2 2 2,02 s
One can easily see from eq.(b.19) that if m{ = ms = mg + u§, v appens to be negative, i.e.
the minimum does not exist. In fact, real positive solutions to egs.(b. ),(lg 8) exist only if the
following conditions are satisfied :

) 2
3 (5.19)

2 2°
mi + msy

m3 4+ m3 > 2m3,  mimi < mi, (5.20)
which is not the case at the GUT scale. This means that spontaneous breaking of the SU(2)
gauge invariance, which is needed in the SM to give masses for all the particles, does not take
place in the MSSM.

This strong statement is valid, howevgf %gclly at the GUT scale. Indeed, going down with
energy the parameters of the potential (}‘I%Efare renormalized. They become the “running”
parameters with the energy scale dependence given by the RG equations. The running of the
parameters leads to a remarkable phenomenon known as a radiative spontaneous symmetry
breaking which we discusE_bz%low.

Provided conditions (5.20) are satisfied the mass matrices at the tree level are
CP-odd components P; and P; :

0%V
odd __
M= OP,0P;

_ [ tang 1 9
H,_v~_< 1 cotfs >m3’ 21

CP-even neutral components S7 and Ss:

5%V _ —
MeEven — — < tifllﬁ 1 ) m% —+ ( C(itlﬁ 1 ) MZ cosﬁsinﬁ, (522)
Hi:Ui

~ 98,08,

cot 8 tan 8

Charged components H~ and H:

M charged __ 62 14
OH; OH;

- _ ( tailﬂ cotﬂ ) (m3 + My cos Bsin 3). (5.23)
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. . . . . aber
Diagonalising the mass matrices one gets the mass eigenstates 142 :

G® = —cosfBP; +sin 3P, Goldstone boson — Z,
A = sinBP; + cosGPs, Neutral CP = —1 Higgs,
Gt = —cosB(Hy)*+sinBHS,  Goldstone boson — W,
H* = sinB(H;)* + cos BH,, Charged Higgs,
h = —sinaSi + cosaSs, SM Higgs boson CP =1,
H = cosaS] + sin Sy, FExtra heavy Higgs boson,

where the mixing angle « is given by

2 M2
tan 2a = — tan 20 (%) .
my — Mz

SS
The physical Higgs bosons acquire the following masses [19]:

CP-odd neutral Higgs A : m?% =m? +m3,
Charge Higgses HT : m%t = m124 + Mgv,

CP-even neutral Higgses H,h:

2

Mih =5 mi + My £ \/(m,24 + M3)? — Am’ M7 cos* 23| ,

where as usual ) ) .
MI%V = g—v2, M% = g +9° v?
2 2
This leads to the once celebrated SUSY mass relations:
mpg+ 2 MWv
mp <my < My,
mpy < Mz|cos28| < My,

m%—l—m%:mi—i—Mg.

(5.24)

(5.25)

(5.26)

(5.27)

Thus, the lightest neutral Higgs boson happens to be lighter than Z boson, that clearly

distinguishes it from the SM one. Though we do not know the mass of the Higgs boson i ghe
SM, there are several indirect constraints leading to the lower boundary of mf M > 135 GeV .

di

After including the radiative corrections the mass of the lightest Higgs boson in the MSSM, my,,

increases. We consider it in more detail below.

5.4 Renormalization group analysis

To calculate the low energy values of the soft terms we use tEe Cé)zrresponding RG equations.

The one-loop RG equations for the rigid MSSM couplings are :

dé; -
dtl = bal, t=logQ*/Méyr
dYy

dt

16 13
= Y (Edg + 3ag + 1—5611 —6Yy — YD) ;
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dYp
dt
dyr,
dt

16 7
= -Yp (3d3 +3ag + Bdl — Yy —6Yp — YL) ;

where we use the notation & = a/4r = g?/167%, Y = y?/1672.
For the soft terms one finds:

dM; N
dtl = blOéZM
dA 16 13
ditU = ?Oz;gMg + 3an Mo + 5a1M1 +6YyAy + YpAp,
dA 16 7
d—tD = ?OégMg + 3a Mo + —5061M1 +6YpAp + YAy + YLAL,
dA 9
d—tL = 3asMs + gdlMl +3YpAp + 4YLAL,
dB - 3.
E = 3aoMs + quMl + 3YyAy +3YpAp + YL Ar.
din? 16 1
= (G asM5 4369 M + 2 aM7) — Yy (g + iy + mi, + A7)
~Yp (i +m¥ +miy, + A%)} :
dm? [,16 16 _ - -
dtU = — (?agMg + 1—5a1M12) - QYU(sz -+ m2U + m%h + A%}) ,
dim? (16 4 _ N -
b (a2 Lamp) - avp (i +md 4 md, + A2D>] ,
dt 13 15
L7 P iy S 2 9
Fra 3(aM; + 501M1) Yi(mg +mp +my, + A7),
' dm?; (12 o 22 <2 2 :
Figure 237?%11 extzﬂnp}e ()fgelil()n—o?ﬂép@nLc}b Tgstesrgpdisotf $ipersymmetry breaking para-

meters m3 = i gy + p?and m3 = m3;, + p® for low (left) and high (right) values of tan 3

- ig(ag + a0 = (3vy +3Yp 4+ YL)l (5.29)
One shofﬁd mention t followfrhg general features commeén to any choice of initial conditions:

i) Th@@wglno mas[l f(?lygw the rﬂ_}ﬁaln hegg uge ¢ u%lgng a spht at low energies.
The gluinadmass is run S§1§ Ster t’ihan t]he er;( a %s ugugrlly ﬁﬁeihea%lest due to the strong

interaction. —Yp (M2 + i +mYy, + A2 )}
ii) The squark and slepton masses also'split St low energies, the stops (and sbottoms) being

the hghtgsmﬂme to relaigf Al?ﬂg_*_YﬂﬂéaW ou}?)lj,ng@ gﬁ th%dlgdn%%nqpaﬂb ;J

iii) Théii-hggs mass (ea})%,r af leadt one gf them) are runmng dowin Veryljl ulckly and may even
becomginggativie RG equat1ons one can find now the RG flow for the soft terms. To see what
hap DA aL BRI ¢ i A L REHS, G Rt s TR DB YT WD ks
(e BW scale. Let us take some initial values of the soft masses at the
GUW@%% %@&ﬁm@aﬂ%ﬁ&@e o paderpgand e gigaifisancsph @ﬁ@?ﬂ&%@%ﬁ@%@é@%

ARG S3RIBEpe &‘éa{ é%%\fﬂ?&gg S PHERMRIG VRIS AR RSl R b res B te! BRmEdical
EHB%W%%EL% FBeeH W ions for the soft terms in case of low values of tan 3. In this case

one can ignore the bottom and tau Yukawa couplings and keep only the top one. Taking
Mgyt = 2.0-10' GeV, a(Mour) ~ 1/24.3, Yi(Mcur) =~ &(Mgyr), tans = 1.65 one gets the
following numerical results

M3(Mz) = 2.7 my),
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= Y (3042 + gal —3Yp — 4YL) , (5.28)
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M, = 0.8 my o,
My = 0.4 mys,
p = 0.63 po,
Ay = 0.009 A¢(0) — 1.7 my o,

= mp+0.52 m3 5, — 0.27 cos(26)M3,
= md+0.52 m%/Q +0.5 cos(26) M2,
= mj+0.15 m3 5 — 0.23 cos(26) M3,
m + 6.6 mi 5 +0.35 cos(28) Mz,

= mg+6.6 m7,, —0.42 cos(28)M3,
Ny = md+6.2 m%/Q +0.15 cos(28) M2,
My = m}+6.1m3, — 0.07 cos(26)M3,
i = mQDR,
my, = mDL 0.48 mf — 1.21 m? ,,
i, = iid, — 0.96 md — 242 m3 ,
g, = mUL 0.48 m — 1.21 m3 ,

= mp+0.40 pj +0.52 m3
—0.44 m +0.40 pg — 3.11 mi ;5 — 0.09 Agmy 5 — 0/02 AG.

:barger
¥plcal dependence of the mass spectra on the initial conditions (my) is also shown in Fig. ZZI

HgFor a given value of my /2 the masses of the lightest particles are practically independent of
myo, while the heavier ones increase with it monotonically as it follows also from the numerical
solutions given above. One can see that the lightest neutralinos and charginos as well as the
stop squark may be rather light.

Figure 24: The masses of sparticles as functions of the initial value mq

5.5 Radiative electroweak symmetry breaking

The running of the Higgs masses leads to the phenomenon known as a radiative electroweak
symmetry breaking. By this we mean the following: at the GUT energy scale both the Higgs
mass parameters m2 and m2 are positive and the Higgs potential has no non-trivial minima.
However, when running down to the EW scale due to the radiative corrections they may change
sign so that the potential develops a non-trivial minimum. At this minimum the electroweak
symmetry happens to be spontaneously broken. Thus, contrary to the SM where one has to
choose the negative sign of the Higgs mass squared ”by hand”, in the MSSM the effect of
spontaneous symmetry breaki geis triggered by the radiative corrections.

Indeed, one can see in FigI.IR is that m3 (or both m? and m3) decreases when going down
from the GUT scale to the My scale and can even become negative. This is the effect of the
large top (and bottom)i Yukawa couplings in the RG equations. As a result, at some value of
Q? the conditions (EQ%U) are satisfied, so that the non-trivial minimum appears. This triggers
spontaneous breaking of the SU(2) gauge invariance. The vacuum expectations of the Higgs
fields acquire non-zero values and provide masses to quarks, leptons and SU(2) gauge bosons,
and additional masses to their superpartners.
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This way one obtains also the explanation of why the two scales are so much different. Due
to the logarithmic running of the parameters one needs a long "running time” to get m3 (or both
m% and m%) to be negative when starting from a positive value of the order of Mgy gy ~ 102+10°
GeV at the GUT scale.

6 Constrained MSSM

6.1 Parameter space of the MSSM
The Minimal Supersymmetric Standard Model has the following free parameters:
e Three gauge couplings a;.
e The matrices of the Yukawa couplings ygb, where ¢ = L, U, D.
e The Higgs field mixing parameter p.
e The soft supersymmetry breaking parameters.

Compared to the SM there is an additional Higgs mixing parameter, but the Higgs self-coupling,
which is arbitrary in the SM, is fixed by supersymmetry. The main uncertainty comes from the
unknown soft terms.
With universality hypothesis one is left with the following set of 5 free parameters defining
the mass scales
ty Mo, My, Aand B.

Parameter B is usually traded for tan 3, the ratio of the v.e.v.s of the two Higgs fields.

In particular models, like in SUGRA or gauge and anomaly mediation, some of soft parame-
ters may be related to each other. However, since the mechanism of SUSY breaking is unknown,
in what follows we consider them as free phenomenological parameters to be fitted by exper-
iment. The experimental constraints are sufficient to determine these parameters, albeit with
large uncertainties. The statistical analysis yields the probability for every point in the SUSY
parameter space, which allows one to calculate the cross sections for the expected new physics
of the MSSM at the existing or future accelerators (LEP II, Tevatron, LHC).

While choosing parameters and making predictions, one has two possible ways to proceed:

i) take the low-energy parameters as input, impose the constraints, define the allowed pa-
rameter space and calculate the spectrum and cross-sections as functions of these parameters.
They might be the superparticle masses 11, M2, M4, tan 3, mixings Xop, i, etc.

ii) take the high-energy parameters as input, run the RG equations, find the low-energy
values, then impose the constrains and define the allowed parameter space for initial values.
Now the calculations can be done in terms of initial parameters. They might be, for example,
the above mentioned 5 soft parameters.

Both the ways are used in a phenomenological analysis. We show below how it works in
practice.

6.2 The choice of constraints

Among the constraints that we are going to impose on the MSSM model are those which follow
from the comparison of the SM with the experimental data, from the experimental limits on the
masses of as yet unobserved particles, etc, and also those that follow from the ideas of unification
and SUSY GUT models. Some of them look very obvious while the others depend on a choice.
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Perhaps the most remarkable fact is, that all of them can be fulfilled simultaneously. The only
model where one can do it is proved to be the MSSM.

In our analysis we impose the following constraints on the parameter space of the MSSM:

e Gauge coupling constant unification;
This is one of the most restrictive constraints, which we discussed in Sect 2. It fixes the scale of
SUSY breaking of the order of 1 TeV.

e My from electroweak symmetry breaking;
Radiative corrections trigger spontaneous symmetry breaking in the electroweak sector. In this
case the Higgs potential does not have its minimum for all fields equal zero, but the mlmmum is
obtained for non-zero vacuum expectation values of the fields. Solving Mz from eq.(b. 9) yields:

2 21,2
m$ — m5tan® 3
Mz =212 : 6.1
z tan? 3 — 1 (6.1)

To get the right value of My requires proper adjustment of parameters. This condition deter-
mines the value of p for a given values of mg and my ;.

e Yukawa coupling constant unification;
The masses of top, bottom and 7 can be obtained from the low energy values of the running
Yukawa couplings

my = yr vsin 3, my =y, vCcosB, my = yr VCos . (6.2)

uk
Eq(%_Z) is written for the so-called running masses. They can be translated to the pole masses
with account of the radiative corrections. For the pole masses of the third generation the
following values are taken:

DF,DO
M; = 179+12 GeV/c? [39;40),

S

My = 4.94+0.15 Gev/c? 5 (6.3)

PDB
M, — 1.7771+0.0005 GeV/c? 688

The r(?qulrement of bottom-tau Y1 awa bl())ou 5.111 CH magki%ncg‘%rgg&g resgglcts the possible
solutions in the m; versus tan 3 plane [7, 49, 2, 93]

Figure 25: The upper part shows the top quark mass as function of tan 3 for mg = 600 GeV,
my o = 400 GeV. The middle part shows the corresponding values of the Yukawa couplings at
the GUT scale and the lower part the x? values.

e Branching ratio BR(b — s7);
The branching ratio BR(b — s7) has been measured by the CLEO collaboration and later by
ALEPH and yields the world average of BR(b — s7) = (3.1440.48)-10~%. The Standard Model
contribution to this process comes from the W — ¢ loop and gives a prediction which is very
close to the experimental value leaving few space for SUSY. In the MSSM this flavour changing
neutral current (FCNC) receives addltlona? congrlbutlaons from H* — ¢, Y* — ¢ and § — ¢ loops.
The ¥" — ¢ loops, which are much smaller n leading order SUSY contribution may be
rather big exceeding the experimental value by several standard deviations. However, the NLO
corrections are essential.

This requirement imposes severe restrictions on the parameter space, specially for the case
of large tan 3.

e Experimental lower limits on SUSY masses;
SUSY particles have not been found so far and from the searches at LEP one knows the lower
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limit on the charged lepton and chargino masses of about a half of a central of mass energy.
The lower limit on the neutralino masses is lower. The lower limit on the Higgs mass is roughly
given by the c.m.e. minus the Z-boson mass. These limits restrict the minimal values for the
SUSY magsg parameters. There exist also limits on squark and gluino masses from the hadron
colliders [[38], but these limits depend on the assumed decay modes. Furthermore, if one takes
the limits given above into account, the constraints from the limits on all other particles are
usually fulfilled, so they do not provide additional reductions of the parameter space in case of
the minimal SUSY model.

e Dark Matter constraint;
Abundant evid nce eflgr E]ilg existence of non-relativistic, neutral, non-baryonic dark matter exists
in our universe(%Eg,_GO]LThe lightest supersymmetric particle (LSP) is supposedly stable and
would be an ideal candidate for dark matter.

The present lifetime of the universe is at least 1 years, which implies an upper limit on
the expansion rate and correspondingly on the total relic abundance.Pﬁ%jsﬁsuming ho > 0.4 one
finds that the contribution of each relic particle species x has to obey :

010

Quhd < 1,

where Qxh2 is the ratio of the relic particle density of particle xy and the critical density, which
overcloses the Universe. This bound can only be met, if most of the LSP’s annihilated into
fermion-antifermion pairs, which in turn would annihilate into photons again.

Since the neutralinos are mixtures of gauginos and higgsinos, the annihilation can occur both,
via s-channel e)jcé]larége of the Z° and Higgs bosons and t-channel exchange of a scalar Rélenltlicle

. . . . cts't,roskane,rosdm,bog
like a selectron . This constrains the parameter space, as discussed by many groups[62, 64,
63, 65).

e Proton life time constraint;

There are two sources of proton decay in SUSY GUTs. The first one is the same as in non-SUSY
theories and is related to the s-channel exchange of heavy gauge bosons. To avoid contradiction
with experiment the unification scale has to be above 10'® GeV that is usually satisfied in any
SUSY GUT.

The second source is more specific to SUSY models. The proton decay in this case takes
place due to the loop diagrams with the exchange of heavy higgsino triplets. The preferable
decay mode in this case is p — UK or p — pt K instead of p — et in non-SUSY GUTs. The
decay rate in this case depends on a particular GUT model and it is not so easy to satisfy the
experimental requirements.

Having in mind the above mentioned constraints one can try to fix the arbitrariness in the
parameters. In a kind of a statistical analysis, in which all the constraints are implemented in a
x? definition, one can find the most probable region of the parameter space by rpjnimizing the
x? function. For the purpose of this analysis the following y? definition is used ,w. :

2 = 23: (0 (Mz) — a;QlSSMi(MZ))z (6.4)
i=1 i
+(MZ —91.18)2  (my — 174)?
o of
(my — 4.98)%  (m, — 1.7771)*
o? o2
(Br(b — sv) — 3.15 x 107%)?2

a(b— sv)?
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Qh? —1)2
(72) (for QR% > 1)
70
M = Moyp)? o
% (fOT' M < Mexp)

TN

~ = N2
—l—(mLSPZ—_mX) (for mpsp charged).

gLsp
The first six terms are used to enforce gauge coupling unification, electroweak symmetry break-
ing and b — 7 Yukawa coupling unification, respectively. The following two terms impose the
constraints from b — sy and the relic density, while the last terms require the SUSY masses to
be above the experimental lower limits and the lightest supersymmetric particle (LSP) to be a
neutralino, since a charged stable LSP thild have been observed. The input and fitted output
variables have been summarized in table [T.

Fit parameters
exp. input data = low tan @ high tan 8
aq, g, 03 Mgur, acur | Mgur, acur
m V=Y v =y =
mp minimize mo, My /2 mo, my /2
mr X2 tan (8 tan 3
My 1% K
b — 87 (A()) AO
Tuniverse

Table 1: @mary of fit input and output variables.

The five dimensional parameter space of the MSSM is big enough to be presented on a two or
three dimensional picture. To make our analysis more clear we consider various low dimensional
projections.

We first choose the value of the Higgs mixing parameter p from the requirement of radiative
EW symmetry breaking, iggle:nt we take the values of tan 8 from the requirement of Yukawa cou-
pling unification (see Fig.bB%.—One finds two possible solutions: low tan § solution corresponding
to tan 8 &~ 1.7 and high tan 8 solution corresponding to tan 8 ~ 30 + 60. In what follows we
refer to this two solutions as low and high tan § scenarios, respectively.

What is left are the values of the soft parameters A, mo and m;/. However, the role
of the trilinear coupling A is not essential, since at low energies it runs to the infra-red fixed
point and is almost independent on initial conditions. Therefore, imposing the above mentioned
constraints, the parameter space of the MSSM is reduced to a two dimensional one. In what
follows we consider the plane mq, m;/; and find the allowed region in this plane. Each point at
this plane corresponds to a fixed set of parameters and allows one to calculate the spectrum,
the cross-sections and the other quantities of interest.

\%el present the allowed regions of the parameter space for low and high tan 3 scenarios in
Fig.bﬁ In case when the requirement of b — sy decay rate is not taken into account (due to
Figure 26: The y2-distribution for low and high tan 3 solutions. The different shades in the
projections indicate steps of Ax? = 4, so basically only the light shaded region is allowed. The
stars indicate the o tci&um solution. Contours enclose domains by the particular constraints
used in the analysis%?].‘
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uncertainties of the high order contri

much wider as it is illustrated in Fig.
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6.3 The mass spectrum of superpartners

%%tions), the allowed region of parameter space becomes
. Now much lower values of mg and m,/, are allowed

it TlavPlot domanstrats hraslol AT Qe s B ate

When the parameter set is fixed one can calculate the mass spectrum of superpartners. We show

below the set of paramete
indicated by stars in Fig.bﬁf

‘ Fitted SUSY parameters ‘

Symbol low tan 3 high tan (¢
tan g3 1.71 35.7
mg 200 800
my /o 500 900
1(0) 1084 -938
A(0) 0 1200
1/acur 24.8 24.3
Mgyt 1.6 1016 2.51016

Is and predicted mass spectrum corresponding to the best fit values

Table 2: Values of the fitted SUSY parameters for low and high tan § (in GeV, when applicable).

SUSY masses in [GeV]

‘ Symbol ‘ low tan (3 ‘ high tan 3 ‘
W(B), X3(W?) 214, 413 397, 722
XS (H1),X3(Ha) 1028, 1016 834, 791

X (WH), X5 (HF) 413, 1026 721, 834

| g | 1155 1994

ér, R 303, 270 902, 802

oL 290 889
ir, Gr 1028, 936 1825, 1723
1, T2 279, 403 888, 1107
by, bo 953, 1010 1734, 1782
t1, to 727, 1017 1537, 1765
h, H 95, 1344 115, 1092
A, H* 1340, 1344 1092, 1096

Table 3: Values of the SUSY mass spectra for the low and high tan 3 solutions, given in table }'f

t2a

To demonstrate the dependence of masses of the lightest particles on the choice of parameters,
we show below their values in the whole mg, m;/5 plane for the case of low and high tang
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solutions, respectively. One can see that the masses of gauginos (charginos and neutralinos) and

Higgses basically depend on my /5, while those of squarks and sleptons on my.
Figure 28: The masses of the l(ig’htest particles in the CMSSM. The contours show the fixed

mass values of the corresponding particles.
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6.4 Experimental signatures at e"e~ colliders

Experiments are finally beginning to push into a significant region of supersymmetry parameter
space. We know the sparticles and their couplings. We do not know their masses and mixings.
Given the mass spectrum one can calculate the cross-sections and consider the possibilities of
observation of new particles at modern accelerators. Otherwise one can get the restrictions on

unknown parameters.

We start with eTe™ colliders and, first of all with

of superpartners is given by the diagrams shown in Fig.

EP II. In the leading order creation
creation

il

above. For a given center of mass
energy the cross-sections depend on the mass of created particles and vanish at the kinemat'gixl s
boundary. For a sample example of c.e.m. of LEP II equal to 183 GeV they are shown at Fig.b(i. '

Experimental signatures are defined by the decay modes which vary with the mass spectrum.
The main ones are summarized below.

Production

e ILRrlLR

o 1 2%

e Uivi
o Y
[ ] ~i ~J
o bib;

Key Decay Modes

[}? — lif(? \, cascade
l% — lif(? /" decays

v— lif((f ¢T

~t ~ ~0 . -
X — Xy, Qed

92% — X3 f' pair of acomplanar
leptons + ¢T

fdﬁ —ly — lVl)Z(l)

Signatures

acomplanar pair of
charged leptons + ;Z‘T

isolated lepton + 2 jets + ¢T

)Zli -yl — %, 4 jets + ¢T

(2

=,2l,2 jets
20 + T,l+2j+¢T

fi — ex? 2 jets + ¢T

t — bxi — bf /XY 2 b jets + 2 leptons + ¢T
2 b jets + 2 jets + lepton + ¢T

b; — by? 2 b jets + ¢T

)20 — )2(1])(3 X? — X?X’ X =y invisible

bi = bX8 — b 'R} 2b jets+ 2 leptons + fir
2 b jets +2 jets + r

(6.5)

(6.6)

Characteristic feature of all possible signatures is the missing energy and transverse momenta,

which is a trade mark of new physics.

Numerous attempts to find out the superpartners at LEP II gave no positive resul

igifsfgephon
imposing the lower bounds on their masses. They are shown on parameter plane in Figs.B1-
In case of stop masses the result depends on the stop mixing angle ©; calculated from the

stop mixing matrix. It defines the mass eigenstate basis #; and £,

t1\ [ cos®; sin®O;
ta )\ —sin®; cosO;
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G — qq\y

¢T + multijets

T ot
*  §9,449,499 Z;]Z, (E(l mg > mg (Hleptons) (6.9)
~ ~0
e
e OB -y 8- Trilepton + fir
XF = X0ad. X3 — XV, Dilepton + jet + r
e XXy T — Xyt Dilepton + ¢T
o« WV 0 — X, 70 — 09X Jor + Dilepton + (jets) + (Ieptons)
° tity t — cf((l] 2 acollinear jets + ¢T
i, — bﬁc, ﬁc — X{F, )ﬁt — XYq7  single lepton + Fr +b's
t — bXE, X — X0y, X — x1* v Dilepton + Fr 4 's
o livup IF o140 E o ygd Dilepton + ¢T

7 — vy} Single lepton + ¢T + (jets)

Pr

Note again the characteristic missing energy and transverse momenta events.
Unless ete™ colliders at hadron machines the background is extremely rich and essential.

(6.10)

6.6 The Lightest Superparticle

One of the crucial questions is the properties of the lightest superparticle. Different SUSY
breaking scenarios lead to different experimental signatures and different LSP.

e Gravity mediation:

In this case the LSP is the lightest neutralino !, which is almost 90% photino for low tan 3
solution and contains more higgsino admixture for high tan 3. The usual signature for LSP is

missing energy. X! is stable and is the best candidate for the cold dark matter in the Universe.

Typical processes where the LSP is created end up with jets + Er, or leptons + K7, or both

jest + leptons + ;Z’T.

e Gauge mediation:

In this case the LSP is the gravitino G which also leads to missing energy. The actual
question here is what is the NLSP, the next lightest particle. There are two possibilities:

i) x{ is the NLSP. Then the decay modes are

W — 4G, hG, ZG.

As a result one has two hard photons + ¢T, or jets + ¢T.

ii) I is the NLSP. Then the decay mode is g — 7G and the signature is a charged lepton
and the missing energy.

e Anomaly mediation:

In this case one also has two possibilities:

i) x{ is the LSP and wino-like. It is almost degenerate with the NLSP.

ii) 7, is the LSP. Then it appears in the decay of chargino Y™ — 7l and the signature is the
charged lepton and the missing energy.

e R-parity violation:

In this case the LSP is no longer stable and decays into the SM particles. It may be charged
(or even colored) and may lead to rare decays like neutrinoless double (3-decay, etc.

Experimental limits on the LSP mass follow fr?]:(p:ilé)n—observation of the corresponding
events. Modern low limit is around 40 GeV (see Fig.B3b).
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allow one to complete the SM paradigm and confirm the mechanism of spontaneous symmetry
breaking. On the contrary, the absence of the Higgs boson would awake doubts about the whole
picture and would require new concepts.

Experimental limits_on the Higgs boson mass come frolr%n ? direct search at LEP II and

Tevatron and frg 1 l%lrrledigr%ct o u&lg&,rgg]esggt%%rela on da ?;% it tgﬁnﬁ%m the radiative

corre wgs to the W and top Figark 3Bassesihflatiomidhedfé of modern experimental data
gives ?3()

my, = 78755 GeV, (7.1)

fig:1
which at the 95% confidence level leads to the upper bound of 200 GeV (see Fig.blﬁg. At the
same time, re en direct searches at LEP II for the c.m. energy of 209 GeV give the lower limit

bigws. 36 - disbribyiierasdiingbion of thewiess Masssiionsd ke oM B& to il oles tpyrerk
prsenipnRbsNVablgsaatidulhe fop thashpdig shaded sgaeliseaelyfledebgMhe direct searches.

Within the Standard Model the val e u%%fhebo}g%%s mass myp, is not predicted. However, one
can get the bounds on the Higgs mass )27, 28 1 E%gcfogscgzv from the behaviour of the quartic

coupling which is related to the Higgs mass by eqs.(h_.g, I 3) m,% = 2)v and obeys the following
renormalization group equation describing the change of A with a scale:

a1
dt 1672

(6)\2 + 6)\y? — 6y} + gauge terms) (7.2)

with ¢ = In(Q?/u?). Here y; is the top-quark Yukawa coupling.

Since the quartic coupling grows with rising energy infinitely and reaches the Landau pole,
an upper bound on my, follows from the requirement th tothgltheory be valid up to the scale
M pigner, or up to a given cut-off scale A below M pignek . The scale A could be identified
with the scale at which the Landau pole develops. The upper bound on m; depends mildly on
the top-quark mass throu }eltg}fgm ibrgléjact of the top-quark Yukawa coupling on the running of the
quartic coupling A in eq.(?.?).

On the other hand, the requirement of vacuum stability in the SM (positivity of A) imposes

a lower bound on t gugg%sé 1llan%%on mass, which crucially depends on the top-quark mass as well
as on the cut-off A [[27, 28]. Again, the dependence of this lower %%Iillcelm qn 1My is due to the effect
of the top-quark Yukawa coupling on the quartic coupling in eq.([7.2), which drives A 0 nggative

values at large scales, thus destabilizing the standard electroweak vacuum (see Figs.B7J.

From the point of view of LEP and Tevatron physics, the upper bound on the SM Higgs boson
mass does not pose any relevant restriction. The lower bound on my, instead, is particularly
important in view of search for the Higgs boson at LEPII and Tevatron. For n :?;talb74 GeV
and ags(Mz) = 0.118 the running of the Higgs quartic coupling is shown in Fj%dbgdz T'he results

at A = 10" GeV or at A =1 TeV can be given by the approximate formulae

fusion

betalambda

Mz)—0.118
my > 1354 2.1[my — 174] — 4.5 {O‘S( 5)006 } . A=10"Y GeV, (7.3) [19a
Mz)—0.118
mp > 72+ 0.9[my —174] — 1.0 {as( 5206 } , A=1TeV, (7.4)
where thaer asses are in units of GeV.
Fig. shows the perturbativity and stability bounds on the Higgs boson mass of tggriam

SM for dfg%r??t values of the cut-off A at which new physics is expected. We see from Fig.
and eqs.(l?ﬁ}ﬁl) that indeed for m; ~ 174 GeV the discovery of a Higgs particle at LEPII
would imply that the Standard Model breaks down at a scale A well below Mgy or Mpianck,
smaller for lighter Higgs. Actually, if the SM is valid up to A ~ Mayr or Mpjanek, for my ~ 174
GeV only a small range of values is allowed: 134 < mj, <~ 200 GeV. For m; = 174 GeV and
my < 100 GeV [i.e. in the LEPII range] new physics should appear below the scale A ~ a few
to 100 TeV. The dependence on the top-quark mass however is noticeable. A lower value, m; >~
170 GeV, would relax the previous requirement to A ~ 10% TeV, while a heavier value m; ~ 180
GeV would demand new physics at an energy scale as low as 10 TeV.
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Figure 37: The shape of the Higgs potential

Figure 38: The running of the Higgs quartic coupling. Numbers shown above the lines indicate
the value of the Higgs mass in GeV.

Figure 39: Strong interaction and stability bounds on the SM Higgs boson mass. A denotes the
energy scale up to which the SM is valid.

7.2 SM Higgs production at LEP

The dominant mechanism for Higgs boson production at LEP is the Higgsstrahlung. The Higgs
boson is produced together with the Z° boson. Small (gntll%lgution to the cross section comes

50 tromy. e G At %%Sﬁoﬁtpﬁ?fﬁsﬁiégggtr%ﬁu%noZ‘ (DS OSESNRE SR b
(below)

Higgs boson mass and decreases with in rieaxsseegf the latter. On the other hand it grows with the
central of mass energy as shown in Fig.;&I. Kinematical limit on the Higgs production is given
by the c.m. energy minus the Z-boson mass.

However, one of the main problems is to distinguish the final products of the Higgs boson
decay from the background, m%llrllalﬁf the ZZ pair production. The branching ratios for the Higgs
boson decay are shown in Fig42. Z boson has the same decay modes with different branchings.
In final states one has either four hadronic jets, or two jets and two leptons, or for leptons. The
most probable is the four jet configuration, which is the most difficult from the point of view of
unwanted background. Two jet and two lepton final state is more clean though less probable.

Attempts to find the Higgs boson have not meet success so far. All the data are consistent
with the background. An interesting four jest event is shown in Figﬁ%%d is most likely a ZZ
candidate. A reconstructed invariant mass of two jets does not show noticeable deviation from
background expectation. For 68.1 background events expected t ere are 70 events observed.
The reconstructed Higgs mass for four jet events is shown in Fig.d4. this kind of plots the
real Higgs boson should gé\églg peak above the background as is shown for a would be Higgs
mass of 110 GeV in FigA4.

Combined results from four LEP collaborations (ALEPH, DELPHI, L3 and OPAL) in the
energy interval 5= 200 — 210 GeV allow one to ol a lower limit on the Higgs mass. As it
follows from Fig.H#b at the 95% confidence level it is%{:l'Z]

my, > 113.3 GeV/c? @ 95% C.L.

Recent hot news from LEP accelerator show slight excess of events in hadronic channels. For
the hard cuts keeping only "really good” events one can achieve the sig a:uLl Cba%(ékground ratio
of 2 with few signal events indicating on 114 GeV Higgs boson (see Fig.%ﬁ%. Deviation form
the background achieves 2.9 standard deviations and is better seen in the confidence level plots.
However, statistics is not enough to make definite conclusions.

7.3 The Higgs boson mass in the MSSM

It has been already mentioned that in the MSSM the mass of the lightest Higgs boson is predicted
to be less than the Z-boson mass. This is, however, the tree level result and the masses acquire
the radiative corrections.
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Figure 43: Typical four jet event

Figure 44: Reconstructed Higgs mass for four jet events. The peak shown in red corresponds to
a would be Higgs boson with mass of 110 GeV.

With account of the radiative corrections the effective Higgs bosons potential is

Vﬁ{;gs = Viree + AV: (75)
Higpot
where Viee is given by eq.(b. and in one loop order
1 J 4 m% 3
AVijoop = Zk: 642 (1) (2Jk + 1)ckmy, <log Q: 2/ (7.6)

Here the sum is taken over all the particles in the loop, Jj is the spin and my is the field
dependent mass of a particle at the scale Q.
. . . . . . to Cor . . .
The main contribution comes from the diagrams shown in Flg.h 7. These radiative corrections
vanish when supersymmetry is not broken and are positive in softly broken case. They are
proportional to the mass squared of top (stop) quarks and depend on the V%lalé%%rgf th};gr%?lgt
breaking parameters. Contributions from the other particles are much smaller [48, 69, 35]. The

leading contribution comes from (s)top loops

sto 3 ~ mQ 3 ~ n? 3 mQ 3
Avlltoo}; = 3952 mfl (log thl - 5) + mé (log Qt; - 5) - me(log a; - 5) . (7.7)

These corrections lead to the following modification of the tree level relation for the lightest
Higgs mass

3g°m} m2 m?
2 2 2 t t1' "t
~ M 2 1 . 7.8
h 700520 + 16w2 M3, o8 m} (7.8)

One finds that the one loop correction is positive and increases the mass value. Two loop
corrections have the opposite effect but are smaller and result in slightly lower value of the
Higgs mass.

To find out numerical values of these corrections one has to determine the masses of all
superpartners. Within the Constrained MSSM, imposing various constraints, one can define the
allowed region in the parameter space and calculate the sp cir gf superpartners and, hence,
the radiative corrections to the Higgs boson mass (see Figsjﬂ'f%

The Higgs mass depends mainly on the following parameters: the top mass, the squark
masses, the mixing in the stop sector, the pseudoscalar Higgs mass and tan 5. As will be shown
below, the maximum Higgs mass is obtained for large tan 3, for a maximum value of the top
and squark masses and a minimum value of the stop mixing.

Note that in the CMSSM the Higgs P{ing parameter p is determined by the requirement
of EWSB, which yields large values for p [7]. Given that the pseudoscalar Higgs mass increases
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rapidly with u, this mass is always much larger than the lightest Higgs mass and thus decouples.
This decoupling is effective for all regions of the CMSSM parameter space, i.e. the lightest Higgs
has the couplings of the SM Higgs within a few percent.

We present below the value of the lightest Higgs mass in the whole mg, my/, plane for low
and high tan 3 solutions, respectively. One can see that it is practically constant in the whole
plane and saturates for high value of mo and m 5. £ 1 BHEKD

The lightest Higgs boson mass my, is shown as function of tan 8 in Fig. %Dg%he shaded
band corresponds to the uncertainty from the stop mass and stop mixing for m; = 175 GeV.
The upper and lower lines correspond to m;=170 and 180 GeV, respectively.

The parameters used for the calculation of the upper limit were: m; = 180 GeV, Ay = —3my
and mg = my /o = 1000 GeV. The lowest line of the same figure gives the minimal values of my,.
For high tan 8 the values of my, range from 105 GeV 125 GeV. There is at present no preference
for a Xw(ﬁg thée values in this range, but it can be seen, that the 95% C.L. lower limit on the Higgs
masle]ﬁf’]_ofg%SB GeV excludes tan 3 < 3.3.

In order to understand better the Higgs mass uncertainties, the relevant parameters were
varied one by one. The largest uncertainty on the light Higgs mass originates from the stop
masses. The Higgs mass varies between 110 and 120 GeV, if mg and m, /, are varied between
200 and 1000 GeV, which implies stop masses varying between 400 and 2000 GeV. Since at
present there is no preference for any of the values between 110 and 120 GeV, the variance for
a flat probability distribution is 10/ v/12=3 GeV, which we take as an error estimate.

The remaining uncertainty on the Higgs mass originates from the mixing in the stop sector
when one leaves Aj a free parameter. The mixing is determined by the off-diagonal element in
the stop mass matrix Xy = A; — p/ tan 8. Its influence on the Higgs mass is quite small in the
CMSSM, since the low energy value A; tends to a fixed point, so that the stop mixing parameter
X; = Ay — p/ tan (3 is not strongly dependent on Ag. Furthermore, the p term is not important
at large tan 3. If we vary Ay between +3myg, the error from the stop mixing in the Higgs boson
mass is estimated to be +1.5 GeV. The values of mo = my/, = 370 GeV yield the central value
of mp = 115 GeV.

The uncertainty from the top mass at large tan 8 is + 5 GeV Ffé’jﬁ given the uncertainty on
the top mass of 5.2 GeV.

1l1lg.mn

nawagner

The uncertainties from the higher order cal %lar;cgcl)nss (HO) is estimated to be 2 GeV fI;OHl
a comparison of the full diagrammatic method [7 and the effective potential approachl[?].” So
combining all the uncertainties discussed before the results for the Higgs mass in the CMSSM
can be summarized as follows:

e The low tan 3 scenario (fan . < 3.3) of the CMSSM is excluded by the lower limit on the
Higgs mass of 113.3 GeV[7].

e For the high tan § scenario the Higgs mass is found to n the range from 110 to 120
GeV for m; = 175 GeV. The central value is found to be [7]:

myp = 115+ 3 (stopmass) =+ 1.5 (stopmizing) =+ 2 (theory) +5 (topmass) GeV, (7.9)

where the errors are the estimated standard deviations around the central value. This
prediction is independent of tan 3 for tan 5 > 20 and decreases for lower tan 3.

However, these SUSY limits on the Higgs mass may not be so restricting if non-minimal
SUSY models are ¢ %%ir(lidered. In a SUSY model extended by a singlet, the so—cc;cﬂ;%gllNext-to—
Minimal model, eq.(%.??i is modified and at the tree level the bound looks like [7

mi ~ M% cos® 23 + \2v? sin? 23, (7.10)

where )\ is an additional singlet Yukawa coupling. This coupling being unknown brings us back
to the SM situation, though its influence is reduced by sin %gl As a result, for low tan 3 the
upper bound on the Higgs mass is slightly modified (see Fig.h1).
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In case of supersymmetry, contrary to the SM, there are two competing processes for neutral
Higgs production. Besides the usual Higgsstrahlung diagram there is also the pair production
one when two Higgs bosons (the usual one and the pseudoscalar boson A) are produced. The
cross-section of ?uese two processes are complimentary and related to the SM one by a simple
formula (see Fig.%? ) Thus, the cross-section for Higgs production in the MSSM is usually lower

fig:mh
Figure 49: me as in Fig. hlggﬁt for the high tan 3 solution tan 3 = 35.

Figure 52: MSSM Higgs production at LEP: complimentary diagrams
Figure 50: The mass of the lightest Higgs boson as function of tan 8

than that of the SM. Therefore, searches for pair production are limited by low cross-section

rathey Shamoby drdhistolfladier-ahegontise of hsaHizes hasam gt bt dn aereidialves ovse
henghonsdhed pgeboniamapp bham! Bt b Sith Mode memardm sttt s he Ml
Hﬂgigﬁsb?ﬁ%lsggeupper bound on the Higgs mass may increase up to 155 GeV 7" (the upper
curve in Fig.hI), though it i t.necgssarily saturated. ¢ shou tice, however, that
more sophistica)ted %%&zéod%ol%y Zﬁahge@ﬁe%ﬂé%? f%\aplfre 0 Sg%%'ot éldfies, the preserg%efi)i
f‘h?wlég@:,qﬂﬁg& h8§9l§ pseudoscalar boson A the second process is decoupled and one basically
has the same production rate as in the SM. Therefore in this case the SM experimental limit is
applicable also to the MSSM.

To present the result for the Higgs search in the MSSM various variables can be used. The
most pop ﬁr gnes are (mp,ma), (mp,tan ) and (my,tan 3) planes. They are shown below
in Figs.ES-—SZI for two particular cases: no-mixing and maximal mixing in the stop sector. For
comparison the theoretically allowed regions are shown. One can see that

a) low tan 3 solution (0.5 < tan § < 3.3) is already excluded;

b) very small region for the lightest neutral Higgs boson mass is left (specially for the no-
mixing case).
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As it has been explained, in the MSSM one has also the charged Higgs bosons. The searches
for the charged Higgs bosons are the attempts to look beyond the Standard Model. It is basically
the same in the MSSM and in any two Higgs doublet model. The charged Higgs bosons are
produced in pairs in annihilation process like any charged particles. The couplings are the
standard EW couplings and the only unknown quantity is the charged Higgs mass. However,
the branching ratios for the decay channels depend on the mass and the model. Large background
comes from the W-pair production. Non-observation of charged Higgs bosons at LEP gives Efl}e:ass
lower limit on their masses. The combined exclusion plot for various channels is shown in Fig.55:
This imposes the absolute lower limit on the charged Higgs boson mass

my+ > 775 GeV/c? @ 95% C.L. (7.12)

Tevatron and LHC

With shut down of LEP next attempts to discover the Higgs boson are connected with the
Tevatron and LHC hadron colliders.

Tevatron will start the Run II next year and will reach the c.m. energy of 2 TeV with
almost 10 times greater luminosity. However, since it is hadron collider, not the full energy goes
into collision taken away by those quarks in a proton that do not take part in the interaction.
Having very severe background this collider needs long time of running to reach the integrated
luminosity required for the Higgs discovery. A combined CDE%DO plot shows the integrated
luminosity at Tevatron as function of the Higgs mass (see Fig.h6). The three curves correspond
to 20 (95% confidence level), 30 and 5o signal necessary for exclusion, evidence and discovery
of the Higgs boson, respectively. One can see that the integrated luminosity of 2fb~!, which is
planned to be achieved at the end of 2001, will allow to exclude the Higgs boson with the mass
of the order of 115 GeV, i.e. just the limit reached by LEP. One will need RUN III to reach
10fb~! to cover the most interesting interval, even at the level of exclusion (20). To find the
Higgs boson one will need still greater integrated luminosity. The signatures of the Higgs boson
are related to the dominant decay modes which depend on the mass of the Higgs boson. In the
Tevatron region they are

H — bb, 100 < mpg < 140 GeV,
H — WW*, 140 < mpy < 175 GeV, (7.13)
H — Z7*, 175 < my < 190 GeV.

The LHC hadron collider is the ultimate machine for a new physics at the TeV scale. Its
c.m. energy is planned to be 14 TeV with very high luminosity up to a few hundred fb=!. It is
supposed to start operating in 2006. In principle LHC will be able to cover the whole interval
of SUSY and Higgs masses up to a few TeV. It will either discover the SM Qv ‘q%e MSSM Higgs
boson, or prove their absence. In terms of exclusion plots shown in Figs.53,54 the LHC collider
will Gover the whole region. Various decay modes allow to probe different areas as shown in

. 1 C . .
F 1g.%T, though the background will be very essential.

8 Conclusion

LEP II has neither discovered the new physics, nor has proven the existence of the Higgs boson.
However, it gave us some indication that both of them exist. Supersymmetry now is the most
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