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Multiple Freezeout on your table top: Salt
mixture in water
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Freezeout in HIC

o Freezeout is a result of competition between 2 effects:
constituent interactions and fireball expansion- Cross section
vs Dilution

e In the late stage of a heavy ion collision (HIC), the rate of
collisions between the constituents can no longer cope with
the expansion rate. As a result, hadrons start freezing out.

e Simple assumption: All strong interaction rates are same.
Hence single chemical freezeout (1CFO).




Single Chemical Freezeout: 1CFO
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1CFO at LHC

Equilibrium SHM Fits in Central Pb-Pb

dN/idy
-

107

3 3 3

°

(mod.—data),, (mod dataymod.
S

!

M. Floris

Aboma 0o o

nk[K[Kk[o]p[a]=z]2]d [{H]He]
T ~ 156 MeV, N —

3 models agree [ = _ | X ~
Foltmuszs  fusaa| [sn | 1
e L ot Yot P il & = A A o
| AL-121- Qi g S . - Mg ¢‘-¢_.D.§.-H+ ....&. = rd

{

e e
e = I\ .S}_‘ *-.}] e

Floris: SQM 2015

SQM 2015 - ALICE Overview

IN.B.
1RHIC (STAR)

Js =200 GeV
X2/NDF~1

Better fit in
60-80%,

Petran et al, arXiv:1310.5108
Wheaton et al,
Comput.Phys.Commun, 180 84
Andronic etal, PLB 673 142

2




1CFO at LHC
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Revisitng our 1CFO assumption: When does
chemistry freeze out?

Basic observables are the spectra of identified particles; from this
one gets yields. Relative yields of hadrons is the outcome of
“chemistry” .

At early times, fireball is a reactive fluid. Reaction rates depend on
local densities as well as rates of mixing.




When does isospin freeze out?

o The rates for processes p + 7~ < n+ 7°, remain high at
=~ 150 MeV, because m, — m, is small and the yield of pions
is large. So the chemical freezeout of baryon isospin can be
delayed. The p <+ n reaction may proceed without
suppression right up to kinetic freezeout
Asakawa, Kitazawa, 2011




Can the K and 7 freeze separately?

e Indirect transmutations of K and 7 involve strange baryons in
reactions such as Q= + Kt «» =% + 79 These have very high
activation thresholds. There is no physics forcing K and 7 to
freezeout together. But K and ¢ are resonantly coupled, so
freeze out together.

SC, Godbole, Gupta, 2013




Double Chemical Freezeout: 2CFO

e ‘Isospin changing' reactions are last to freezeout
(p+ 70 < n+7T) (Asakawa, Kitazawa 2011)
e low activation energy
e high pion density

e ‘Strangeness changing’ reactions can freezeout earlier
(Q + Kt « =0 + 7%)(SC, Godbole, Gupta, 2013)
e High activation energy
e Q and K densities much less compared to that of 7;
Q™ 4+ K™ reactions much suppressed

o Motivates to propose separate CFO for (strange+hidden
strangeness) and non strange hadrons: 2CFO

e T, Vi, ups characterise the strange surface
o Tos, Vis, B, Characterise the non-strange surface

e Using conservation of baryon number and entropy, 4
parameter fit is sufficient (Bugaev et al, 2013)




Hadron Yields in Thermal Model

e The ideal hadron resonance gas (HRG) partition function Z
in the grand canonical ensemble at the time of CFO at a
particular beam energy /sNn is given as

log [Z (v/sxw)] = Z log [Z; (T (v/sxn) » i (v/snn) > Vi (vanw))]

NP = L_Iog[Z]
(%)
ViT; - -
= rami Y (=a) " I Ky (Imi/ i) %
1=1
exp (I (Bipg; + Qipg; + Sinsi) / Ti)




Ratios

e Unlike Flavor Ratio (RVF):
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Ratios

Like Flavor Ratio (R'F):

o = () (5)
exp (((m; — m;) + (Bi — Bj) ug) / T)

e Hence,

LF LF
R2CFO ~ RlCFO

Anti-particle to particle ratios simplifies even further.

S th
(’V;t/N;t) = exp(—2(Bijus; + Qiuq; + Sipns;) /T)

e Hence,

AP/P AP/P
R2CFO ~ RlCFO




2CFO Freezeout Parameters
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2CFO Freezeout Parameters
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2CFO at LHC: yields
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2CFO at LHC: spectra
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Antiparticle to Particle Ratio
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Like Flavor Ratio
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Unlike Flavor Ratio
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Unlike Flavor Ratio
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Unlike Flavor Ratio: Nuclei
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Unlike Flavor Ratio
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Unlike Flavor Ratio
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Other schemes

o Flavor dependence in hadronization- Bellwied et al, 2013;
Torres-Rincon et al, 2015

e Post 1CFO employ hadronic afterburner: Microscopic
Transport Approach (UrQMD Model). Baryon-antibaryon
annihilation main source of correction- Steinheimer et al, 2013

e Introduce additional light and strange chemical
non-equilibrium fugacity factors- Petran et al, 2013

e Incomplete hadron spectrum- Bazavov et al, 2014




Summarising..

Multiple freezeout is a common occurence in nature: from a
cooling salt mixture in water to the cooling early universe. A
multi-component system naturally freezes over a range in the
relevant parameter space.

Freezeout in the cooling fireball in HIC- Is the freezeout
gradual enough to leave an imprint on the data ?

1CFO provides an overall good description of the
hadrons(nuclei) yields across a wide range of \/syn

Does closer/careful inspection of the data reveal details in
freezeout 7 Which observables are most sensitive?

Strange to non strange hadron/nuclei ratios are most
sensitive to flavor dynamics at freezeout

Anomaly with data of A/p at LHC, 3H/3He at top RHIC
have a common origin: flavor dynamics at freezeout
Influence of additional resonances ?- they will affect the
above strange to non strange ratios. On including them, can
the above anomalies with data be addressed within 1CFO ?
Require input on their branching ratios. Data from the low
/5NN (where these heavy resonances do not play a role)
FAIR, BES-II can throw more light
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