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Lecture 3. Conformal anomaly and effective action

• Some examples of 4d conformal theories.

• Conformal anomaly and its ambiguities.

• Anomaly induced effective action.

• Light massive fields case.

• Applications:
Vacuum states near black holes and Starobinsky model.
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Examples of 4d conformal theories

• General scalar action with ξ term

Sscal =

∫

d4x
√−g

{

1
2

gµν∂µφ∂νφ+
1
2
ξRφ2 − f

4!
φ4

}

is invariant under global but not local conformal transform ation.

gµν → g′

µν = gµνe2λ , φ → φ′ = φe−λ , λ = const .

Only in the case ξ =
1
6

one meets local conformal symmetry

gµν → g′

µν = gµν e2σ, φ → φ′ = φe−σ,

σ = σ(x) .
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• General metric-dilaton theory Shapiro & Takata, PLB-1994

S =

∫

d4x
√−g {A(φ) (∇φ)2

+ B(φ)R + C(φ)} .

Consider conformal transformation of the metric plus scala r
reparametrization

g′

µν = gµνe2σ(φ), Φ = Φ(φ)

The well-known particular case is

S =

∫

d4x
√−g

{

− 1
2
φ∆2 φ− f

4 !
φ4

}

where

∆2 = �+
1
6

R .

It is equivalent to Einstein-Hilbert action with a wrong sig n

SEH = +
1

16πG

∫

d4x
√−g {R + 2Λ } .

The change of sign is perfectly possible , e.g., in the theory with
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• • Massless spinor and vector fields

S1/2 =
i
2

∫

d4x
√−g

{

ψ̄ γµ ∇µψ − ∇µψ̄ γµψ
}

and

S1 = − 1
4

∫

d4x
√−g FµνFµν .

The transformation rules are

ψ → ψ′ = ψ e−3σ/2 , ψ̄ → ψ̄′ = ψ̄ e−3σ/2 , Aµ → A′

µ = Aµ ,

gµν → g′

µν = gµν e2σ σ = σ(x) .

Note: the difference between conformal weight and dimension
for the vector field is due to

Aµ = Ab eb
µ , eb

µ ea
ν ηab = gµν .

Direct relation between local & global conformal symmetrie s.
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• The conformal (Weyl) gravity in the dimension n = 4 includes
only metric field

SW =

∫

d4x
√−g C2 ,

It can be easily generalized to an arbitrary dimension

C2(n) = R2
µναβ − 4

n − 2
R2

µν +
1

(n − 1)(n − 2)
R2 .

• Fourth derivative scalar of the first kind

S4 =

∫

d4x
√−g ϕ∆4 ϕ ,

where ∆4 = �
2 + 2Rµν∇µ∇ν −

2
3

R� +
1
3

R;µ ∇µ .

The transformation law is ϕ→ ϕ′ .

S.M. Paneitz, MIT preprint - 1983; SIGMA - 2008
R.J. Riegert; E.S. Fradkin & A.A. Tseytlin, PLB - 1984.

• • General review of classical conformal theories • •
V.Faraoni, E.Gunzig, P.Nardone, Fund.Cosm.Phys., gr-qc/9811047.
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Quantum (Semiclassical) Theory

Introduction: Birrell & Davies (1980);
Buchbinder, Odintsov & I.Sh. (1992);
L. Parker & D.J. Toms (2009).

The most remarkable thing at the quantum level is that the
classical conformal invariance is broken (trace anomaly).

Recent reviews: I.Sh. et al. - gr-qc/0412113, hep-th/0610168
(both very technical), gr-qc/0801.0216.

The first step is to consistently formulate the action on clas sical
curved background.

In a conformal theory at 1-loop level it is sufficient to consi der

Sconf . vac =

∫

d4x
√−g

{

a1C2 + a2E + a3�R
}

.
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QFT in curved space can be renormalizable if we define

St = Smin + Snon.min + Svac .

Renormalization involves fields and parameters like coupli ngs
and masses, ξ and vacuum action parameters.

Relevant diagrams for the vacuum sector

+ + + + ... .

All possible covariant counterterms have the same structur e as

Svac = SEH + SHD , SEH = − 1
16πG

∫

d4x
√−g (R + 2Λ) ,

SHD =

∫

d4x
√−g

{

a1C2 + a2E + a3�R + a4R2} .
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Conformal anomaly

kΦ is the conformal weight of the field Φ.
The Noether identity for the local conformal symmetry

[

− 2 gµν
δ

δgµν
+ kΦΦ

δ

δΦ

]

S(gµν , Φ) = 0

produces on shell − 2√
g

gµν
δSvac(gµν)

δgµν
= T µ

(vac)µ = T µ
µ = 0 .

At quantum level Svac(gµν) is replaced by the EA Γvac(gµν) .

For free fields only 1-loop order is relevant [here ε = (4π)2(n−4)]

Γdiv = − 1
ε

∫

d4x
√

g
{

β1C2 + β2E + β3�R
}

.

For the global conf. symmetry the renormalization group tel ls us

〈T µ
µ 〉 =

{

β1C2 + β2E + a′
�R

}

,

where a′ = β3. In the local case a′ is ambiguous .
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The simplest way to derive the conformal anomaly is using
dimensional regularization (Duff, 1977).

The expression for divergences

Γ̄div =
1
ε

∫

d4x
√

g
{

β1C2 + β2E + β3�R
}

.

where




β1

− β2

β3



 =
1

360(4π)2





3N0 + 18N1/2 + 36N1

N0 + 11N1/2 + 62N1

2N0 + 12N1/2 − 36N1





The renormalized one-loop effective action has the form

ΓR = S + Γ̄ + ∆S ,

where Γ̄ = Γ̄div + Γ̄fin is the naive quantum correction to the
classical action and ∆S is a counterterm.

∆S is an infinite local counterterm which is called to cancel the
divergence. It is the only source of non-invariance.
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The anomalous trace is

T = 〈T µ
µ 〉 = − 2√−g

gµν
δ ΓR

δ gµν

∣

∣

∣

∣

n=4

= − 2√−g
gµν

δ∆S
δ gµν

∣

∣

∣

∣

n=4

.

Conformal parametrization of the metric:

gµν = ḡµν · e2σ , σ = σ(x)

where ḡµν is the fiducial metric with fixed determinant.

There is a useful relation

2√−g
gµν

δA[gµν ]

δ gµν
=

1
√

−ḡ

δ A[ḡµν e2σ]

δσ

∣

∣

∣

∣

ḡµν→gµν , σ→0, n→4
(∗)

∫

dnx
√−g C2(n) =

∫

dnx
√

−ḡ e(n−4)σ C̄2(n) .

Then
δ

δσ

∫

d4x
√

−ḡ
n − 4

e(n−4)σ C̄2(n)

∣

∣

∣

∣

∣

n→4

=
√−g C2 .

The derivatives of σ(x)in other terms are irrelevant.
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In the simplest case σ = λ = const, we immediately arrive at the
expression for T with a′ = β3.

For global conformal transform this procedure always works ,

〈T µ
µ 〉 =

1
(4π)2

(

ωC2 + bE + c�R
)

.

However the local case σ(x) it is more complicated, e.g.,

δ

δgµν

∫ √−g�R ≡ 0 .

We have a conflict between global and local conf. anomalies.

Or a conflict between formulas and intuitive expectations.
M.J. Duff, Class. Quantum. Grav. (1994)

Problem resolved:
M. Asorey, E. Gorbar & I.Sh., CQG 21 (2003).
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• Anomaly-induced Effective Action (EA) of vacuum

One can use 〈T µ
µ 〉 to obtain equation for the finite 1-loop EA

2√−g
gµν

δ Γ̄ind

δgµν
= 〈T µ

µ 〉 =
1

(4π)2

(

ωC2 + bE + c�R
)

.

The solution is straightforward
Riegert; Fradkin & Tseytlin, PLB-1984.

It can be generalized for the theory with more background fiel ds,
e.g., with vector, torsion or scalar fields.

I.L. Buchbinder, S.D. Odintsov & I.Sh. Phys.Lett. B (1985).
J.A. Helayel-Neto, A. Penna-Firme & I.Sh. Phys.Lett. B (1998);
I.Sh., J. Solà, Phys.Lett. B (2002);
M. Giannotti, E. Mottola, Phys. Rev. D (2009).

Ilya Shapiro, Lectures on curved-space QFT, February - 2016



The simplest possibility is to parameterize metric

gµν = ḡµν · e2σ , σ = σ(x) .

The solution for the effective action is

Γ̄ind = Sc[ḡµν ] +
1

(4π)2

∫

d4x
√

−ḡ {ωσC̄2 (1)

+ bσ(Ē − 2
3
�̄R̄) + 2bσ∆̄4σ − 1

12
(c +

2
3

b)[R̄ − 6(∇̄σ)2 − (�̄σ)]2)} ,

where Sc [ḡµν ] = Sc [gµν ] is an unknown conformal functional,
which serves as an integration constant in eq. for Γind .

The solution (1) has serious merits:
1) Being simple, 2) Being exact in case Sc [ḡµν ] is irrelevant.
Example: FRW metrics.

An important disadvantage is that it is not covariant or, in o ther
words, it is not expressed in terms of original metric gµν .
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Now we obtain the non-local covariant solution and after
represent it in the local form using auxiliary fields.
First one has to establish the relations

√−gC2 =
√

−ḡC̄2 ,
√

−ḡ ∆̄4 =
√−g ∆4 ,

√−g(E − 2
3
�R) =

√

−ḡ(Ē − 2
3
�̄R̄ + 4∆̄4σ)

and also introduce the Green function

∆4 G(x , y) = δ(x , y) .

Using these formulas we find, for a functional A(gµν ) = A(ḡµν),

δ

δσ

∫

x

A (E − 2
3
�R)

∣

∣

∣

∣

= 4
√−g∆4 A .

where
∫

x

=

∫

d4x
√

−g(x) ,

∣

∣

∣

∣

=

∣

∣

∣

∣

ḡµν→gµν
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As a consequence, we obtain

δ

δσ(y)

∫∫

x y

1
4

C2(x)G(x , y)
(

E − 2
3
�R

)

y

∣

∣

∣

∣

=

∫

d4x
√

−ḡ(x) ∆̄4(x) Ḡ(x , y) C̄2(x)
∣

∣

∣ =
√−g C2(y) .

Hence, the part of Γind which is responsible for Tω = −ωC2, is

Γω =
ω

4

∫∫

x y

C2(x)G(x , y) (E − 2
3
�R)y .

Similarly one can check that the variation Tb = b (E − 2
3�R) is

produced by the term

Γb =
b
8

∫∫

x y

(E − 2
3
�R)x G(x , y) (E − 2

3
�R)y .
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Finally, we can use simple relation

gµν
δ

δgµν

∫

x

R2(x) = −6
√−g �R .

to establish the remaining local constituent of Γind

Γc = −3c + 2b
36(4π)2

∫

x

R2(x) .

The general covariant solution for Γind is the sum,

Γind = Sc[gµν ] −
3c + 2b
36(4π)2

∫

x

R2(x)

+
ω

4

∫∫

x y

C2(x)G(x , y) (E − 2
3
�R)y

+
b
8

∫∫

x y

(E − 2
3
�R)x G(x , y) (E − 2

3
�R)y .

One can rewrite this expression using auxiliary scalars .
Ilya Shapiro, Lectures on curved-space QFT, February - 2016



The nonlocal terms can be rewritten in a symmetric form
(

E − 2
3
�R

)

x
G(x , y)

[

ω

4
C2 − b

8
(E − 2

3
�R)

]

y

=
b
8

∫∫

x y

(

E − 2
3
�R − ω

b
C2

)

x
G(x , y)

(

E − 2
3
�R − ω

b
C2

)

y

− ω2

8b

∫∫

x y

C2
x G(x , y)C2

y .

These form is appropriate for rewriting it via auxiliary fiel ds.
Then we arrive at the local covariant expression for EA

Γind = Sc[gµν ] −
3c + 2b
36(4π)2

∫

x

R2(x) +
∫

x

{

1
2
ϕ∆4ϕ− 1

2
ψ∆4ψ

+
ω

8π
√
−b

ψC2 + ϕ

[
√
−b

8π
(E − 2

3
�R) − ω

8π
√
−b

C2
]}

.
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The above form of EA is the best one for Γind .
I.Sh. and A.Jacksenaev, Phys. Lett. B (1994)

Similar expression has been independently introduced by
P. Mazur & E. Mottola, 1997-1998.

Comments:

1) Imposing boundary conditions on the two auxiliary fields
ϕ and ψ is equivalent to defining boundary conditions for the
Green functions G(x , y).

2) Introducing the new term
∫

C2
x G(x , y)C2

y into the action may
be viewed as redefinition of the conformal functional Sc [gµν ].

However, writing the non-conformal terms in the symmetric
form, essentially modifies the four-point function. Using ψ
we restore the structure generated by anomaly.
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Recent generalization.

Quantum effects of chiral fermion produce an imaginary
contribution which violates parity,

〈T µ
µ 〉 = −ω1C2 − bE4 − c�R − ǫP4 ,

where the Pontryagin density term appears,

P4 =
1
2
εµναβ Rµνρσ Rαβ

ρσ , ǫ =
i

48 · 16π2 .

L.Bonora, S.Giaccari, B.de Souza, JHEP (2014), arXiv:1403.2606.

It is a relatively easy exercise to derive the corresponding
anomaly-induced effective action.

S. Mauro, I.Sh., PLB (2015) arXiv:1412.5002.
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First, one can prove the conformal symmetry of this term

P4 =
1
2
εµναβ Cµνρσ Cαβ

ρσ .

After that we immediately arrive at

Γind = Sc [gµν ]−
3c + 2b
36(4π)2

∫

x
R2 +

∫

x

{1
2
ϕ∆4ϕ− 1

2
ψ∆4ψ

+ϕ

[
√
−b

8π

(

E − 2
3
�R

)

− 1

8π
√
−b

(

ωC2 + ǫP4
)

]

+
1

8π
√
−b

ψ
(

ωC2 + ǫP4
)

It is natural to change variables,

χ =
ψ − ϕ√

2
, ξ =

ψ + ϕ√
2

,

Then the total gravitational action becomes

Γgrav = SEH + SHD + Sc[gµν ] +

∫

x

{

ξ∆4χ + k1
(

E − 2
3
�R

)(

ξ − χ
)

+ k2 χ
(

ωC2 + ǫP4
)

+ k3R2
}

.
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The coefficients are, as before,

k1 =
1

8π

√

−b
2
, k2 =

1

8π
√
−2b

, k3 = − 2b + 3c
36 (4π)2 ,

The action

Γgrav = SEH + SHD + Sc[gµν ] +

∫

x

{

ξ∆4χ + k1
(

E − 2
3
�R

)(

ξ − χ
)

+ k2 χ
(

ωC2 + ǫP4
)

+ k3R2
}

.

is a special case of the Chern-Simons modified general relati vity,

R. Jackiw and S.Y. Pi, Phys. Rev. D 68 (2003), gr-qc/0308071.

A. Lue, L. Wang, M. Kamionkowski, Phys.Rev.Lett. 83 (1999) 1506.

S. Alexander, N. Yunes, Phys.Rept. 480 (2009) 1.

with a special form of the kinetic term.
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Applications of the anomaly-induced EA

• Classification of vacuum states in the vicinity of a black hol e

Anomaly is, in part, responsible for the Hawking radiation
S.M. Christensen, S.A. Fulling, PRD (1977).

The anomaly-induced effective action of gravity enables on e to
perform a kind of systematic classification of the vacuum sta tes
for the quantum fields on the black hole background.

We can distinguish the different vacuum states by choosing
different boundary conditions for the auxiliary fields ϕ and ψ.

R. Balbinot, A. Fabbri & I.Sh., PRL 83; NPB 559 (1999).

Generalization for the Reissner-Nordstrom black hole,
P.R. Anderson, E. Mottola & R. Vaulin, PRD 76 (2007).
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At the classical level, the black hole (BH) does not emit
radiation, but such emission can take place if we take quantu m
effects into account.

After being discovered by Hawking (1975), the same result has
been obtained from analytical estimates of 〈Tµν〉 for quantum
matter fields in a fixed Schwarzschild BH geometry.

S.M. Christensen & S.A. Fulling, PRD 15 (1977).

Detailed analytical and numerical study, based on the analy sis of
〈Tµν〉 in the classical black hole background:

P. Candelas, PRD 21 (1980);
D.N. Page, PRD 25 (1982);
M.R. Brown, A.C. Ottewill and D.N. Page, PRD 33 (1986);
V.P. Frolov and A.I. Zelnikov, PRD 35 (1987);
P.R. Anderson, W.A. Hiscock and D.A. Samuel, PRD 51 (1995). ...
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A fundamental property is the existence of three different
vacuum quantum states.

i) The Boulware |B〉 state reproduces the Minkowski vacuum |M〉
in the limit r → ∞ , where 〈B|Tµν |B〉 ∼ r−6.
On the horizon this quantity is divergent in a free falling fr ame.

ii) For Unruh vacuum |U〉 the value 〈U|Tµν |U〉 is regular on the
future event horizon but not on the past one. Asymptotically in
the future 〈U|Tµν |U〉 has the form of a flux of radiation at the
Hawking temperature TH = 1/8πM.
This vacuum state is the most appropriate to discuss
evaporation of black holes formed by gravitational collaps e of
matter.

iii) The Israel-Hartle-Hawking |H〉 state
〈H|Tµν |H〉 for r → ∞ describes a thermal bath of radiation at TH .
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The existence of three vacuum states reflects distinct posit ions
of observers and the construction of different in and out
modes with respect to the corresponding coordinates.

The main difference between classical and quantum theories is
that, in the first case we know how to transform the relevant
quantities when we change the coordinate system.

The natural question is how to perform a transition between
different vacuum states |H〉, |B〉 and |U〉 ?

The anomaly-induced effective action doesn’t make any
reference to a particular quantum state, but it includes the
conformal invariant functional Sc[gµν ] – a source of uncertainty.
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Strategy: one has to fix the extended set of boundary
conditions, including the ones for the auxiliary scalars ϕ and ψ.

The procedure for identifying the vacuum state is as follows :

1) Solving equations for ϕ and ψ.
The solutions always depend on the set of integration consta nts.

2) One has to find “appropriate” boundary conditions to identif y
〈V |Tµν |V 〉 for the given vacuum state |V 〉 = (|B〉, |U〉, |H〉) .

3) Use

〈Tµν〉 −→ 2√−g
δΓind

δgµν
= 〈Sµν〉 ,

where of course 〈S〉 = 〈T 〉.
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The general solution is ϕ(r , t) = d · t + w(r) , where w(r)
satisfies the equation

dw
dr

=
B
3

r+
2MB

3
−A

6
− α

72M
+

1
r − 2M

(4
3

BM2+
C

2M
−AM− α

24

)

− C
2Mr

−
[

αM
r3 +

24AM − α

144 M2

]

r2 ln r
r − 2M

+
(24AM − a)

(

r3 − 8M3
)

ln(r − 2M)

3r(r − 2M)48M2 .

(d ,A,B,C) are constants which specify the homogeneous
solution �

2ϕ = 0 and hence the quantum state.

For ψ we have a similar solution, but with (d ′,A′,B′,C′).

Due to the independence of ϕ and ψ. the two sets are
independent on each other.
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In case of a Boulware state |B〉 we request

|B〉 → |M〉 when r → ∞ .

In the Minkowski vacuum we can safely set ϕ = ψ = 0.

This asymptotic conditions enables one to arrive at the
asymptotic expressions

〈B|Sν
µ|B〉 → α2 − β2

2 (24)2 (2M)4
(

1 − 2M/r
)2 ×









−1 0 0 0
0 1/3 0 0
0 0 1/3 0
0 0 0 1/3









for r → 2M and

〈B|Sν
µ|B〉 ∝ O

(

r−6) for r → ∞ .

This behavior fits perfectly will with the ones observed with in
other methods.
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Unruh vacuum case

Choosing another values of the integration constants we mee t
the following asymptotic behavior near the horizon r → 2M:

〈U|S b
a |U〉 ∼ α2 − β2

2(48M2)2

(

1/f −1
1/f 2 −1/f

)

,

regular on the future horizon, a, b = r , t . The asymptotic form

r → ∞ 〈U|S ν
µ |U〉 → α2 − β2

2r2(24M)2









−1 −1 0 0
1 1 0 0
0 0 0 0
0 0 0 0









,

These results are in exact agreement with the standard ones o n
the Hawking radiation: B.S. DeWitt, Phys. Rep. C19 (1975) 297.

once the luminosity L of the radiating BH is identified with

L
4π

=
(α2 − β2)

2(24M)2 .
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• Cosmological application: Starobinsky Model.

Starobinsky model based on quantum effects.

Fischetti, Hartle and Hu (1978);
Starobinsky, (1980-1983) ;
Mukhanov, Chibisov, (1982) ;
Anderson, Vilenkin, ... (1983-1986)
Hawking, Hertog and Real, (2001) .

Modified Starobinsky model

Fabris, Pelinson, Solà, I.Sh., ... .
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•• Cosmological Model based on the action

Stotal = − M2
P

16π

∫

d4x
√−g (R + 2Λ) + Smatter + Svac + Γ̄ind .

Equation of motion for a(t), dt = a (η)dη, k = 0

¨̈a
a
+

3ȧ ˙̈a
a2 +

ä2

a2 −
(

5 +
4b
c

)

äȧ2

a3 − M2
P

8πc

(

ä
a
+

ä2

a2 − 2Λ
3

)

= 0 ,

k = 0,±1. Particular solutions (Starobinsky, PLB-1980)

a(t) = a0eHt , k = 0 ,

where Hubble parameter H = ȧ/a is

H2 = − M2
P

32πb

(

1 ±
√

1 +
64πb

3
Λ

M2
P

)

.

A. Pelinson, I.Sh., F. Takakura, NPB (2003).
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For 0 < Λ ≪ M2
P there are two solutions:

H ≈
√

Λ/3 ; (IR)

H ≈

√

− M2
P

16πb
− Λ

3
≈ MP√

−16πb
. (UV )

Perturbations of the conformal factor

σ(t) → σ(t) + y(t).

The criterion for a stable (UV ) inflation is

c > 0 ⇐⇒ N1 <
1
3

N1/2 +
1
18

N0 ,

in agreement with Starobinsky (1980).

The original Starobinsky model is based on the unstable case
and involves special choice of initial data. This situation can be
improved further by using the stable version and an appropri ate
transition scheme.
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In the unstable phase there are very different solutions, so me of
them violent (hyperinflation). How can we know that the
transition from stable to unstable phase really happens? A.
Pelinson et al, NPB(PS) (2003). Phase portrait of a stable case:
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Starobinsky (1980) : x =

(

H
H0

)
3
2

, y =
Ḣ

2
√

H3
0 H

, dt =
dx

3H0 x2/3 y
.
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Simple test of the unstable version of Starobinsky Model.
A.Pelinson, I.Sh. et al., IRGA-NPB(PS)- 2003.,

Consider late Universe, k = 0, H0 =
√

Λ/3.

Only photon is active, N0 = 0 , N1/2 = 0 , N1 = 1 .

Graviton typical energy is H0 ≈ 10−42 GeV , =⇒ all massive
particles (even neutrino) mν ≥ 10−12 GeV decouple from
gravity. c < 0 =⇒ today inflation is unstable.

Stability for the small H = H0 case: H → H0 + const · eλt

λ3 + 7H0λ
2 +

[

(3c − b)4H0
2

c
− M2

P

8πc

]

λ − 32πbH0
3 + M2

PH0

2πc
= 0 .

The solutions are λ1 = −4H0 , λ2/3 = −3
2

H0 ± MP
√

8π|c|
i .

Λ > 0 protects our world from quantum corrections!
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Transition. Suppose at UV (H ≫ MF ) there is SUSY, e.g. MSSM,

N1 = 12 , N1/2 = 32 , N0 = 104 .

This provides stable inflation, because

1
3

N1/2 +
1
18

N0 > N1 =⇒ c > 0 .

For realistic SUSY model inflation is independent on initial data .

Fine!

But why should inflation end? Already for MSM
(N1, 1/2, 0 = 12, 24, 4), c < 0, inflation is unstable .

Natural interpretation:
I.Sh. Int.J.Mod.Ph.D. (2002); A. Pelinson et al NPB (2003).

All sparticles are heavy ⇒ decouple when H becomes smaller
than their masses.

Direct calculations confirmed that the transition c > 0 =⇒ c < 0
is smooth, indicating a possibility of a smooth graceful exi t.
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• Using anomaly for deriving EA of massive fields.

Why the energy scale H decreases during inflation?

In the exponential phase Hubble parameter H(t) = const.

Another unclear point: Using anomaly-induced EA for massive
fields is not a correct approximation.

Maybe all difficulties can be solved if taking masses of the fie lds
into account?

Consider a reliable Ansatz for the EA of massive fields.
J.Solà, I.Sh. PLB - 2002;
also A.Pelinson, I.Sh. & F.Takakura, Nucl.Ph. 648B (2003).

In part, it is based on
R.D.Peccei, J.Solà, C.Wetterich, Ph.Lett. B 195 (1987) 183
and S. Deser, Ann. Phys. 59 (1970) 248.

The idea is to construct the conformal formulation of the SM and
use it to derive EA for massive fields.
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Conformal formulation of massive theory

The conformally non-invariant terms:

m2
s ϕ

2 , mf ψ̄ψ , and LEH = − 1
16πG

(R + 2Λ) .

Replacing dimensional parameters by the new scalar χ:

ms,f →
ms,f

M
χ , M2

P → M2
P

M2 χ
2 , Λ → Λ

M2 χ
2 .

M is related to a scale of conformal symmetry breaking.
Massive terms get replaced by Yukawa and (scalar)4 type
interactions with χ. In the IR χ ∼ M.

In the gravity sector

L∗

EH = − M2
P

16πM2

{

[Rχ2 + 6 (∂χ)2] +
2Λχ4

M2

}

in order to provide local conformal invariance.
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The new theory is conformal invariant

σ = σ(x),
{

χ→ χ e−σ , gµν → gµν e2σ

ϕ→ ϕe−σ , ψ → ψ e−3/2 σ

The conformal symmetry comes together with a new scalar χ,
absorbing conformal degree of freedom. Fixing χ→ M we come
back to original formulation.
The conformal anomaly becomes

〈T 〉 = −
{

wC2 + bE + c�R +
f

M2 [Rχ2 + 6(∂χ)2] +
g

M4 χ
4
}

,

f and g are β-functions for (16πG)−1 and ρΛ = Λ/8πG ,

f =
∑

i

Nf

3 (4π)2 m2
f , f̃ =

16πf
M2

P

,

g =
1

2(4π)2

∑

s

Ns m4
s − 2

(4π)2

∑

f

Nf m4
f ,

Nf and Ns are multiplicities of the fields.
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Anomaly-induced EA in terms of gµν = ḡµν · e2σ and χ = χ̄ · e−σ

Γ̄ = Sc[ḡµν , χ̄] +

∫

d4x
√

−ḡ
{

wσC̄2 + bσ(Ē − 2
3
∇̄2R̄) + 2bσ∆̄σ

+
f

M4 σ[R̄χ̄
2 + 6(∂χ̄)2] +

g
M4 χ̄

4σ
}

− 3c + 2b
36

∫

d4x
√−gR2 .

This may be seen as a local version of Renormalization Group .
In curved space-time RG corresponds to the scaling

gµν → gµν · e−2τ =⇒ Γ[e−2τgαβ ,Φi ,P, µ] = Γ[gαβ ,Φi(τ),P(τ), µ] .

In the leading-log approximation we meet the RG improved
classical action of vacuum

Svac [gαβ ,P(τ), µ] , where P(τ) = P0 + βP τ .

The equivalence in all terms which do not vanish for σ = τ .
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Cosmological implications

St = Smatter + S∗

EH + Svac + Γ̄ .

The equation of motion for Λ = 0, g = 0

a2 ¨̈a+3 a ȧ ˙̈a−
(

5 +
4b
c

)

ȧ2 ä+a ä2− M2
P

8πc

(

a2ä + aȧ2) [1− f̃ ·ln a] = 0 ,

Let us solve by M2
P → M2

P [1 − f̃ · ln a],

σ̇ = H = Ho

√

1 − f̃σ(t) , Ho =
MP√
−16b

.

This leads to the simple solution

σ(t) = Ho t − H2
0

4
f̃ t2 .

Remarkably, this formula fits with the numerical solution wi th a
wonderful 10−6 precision!

f̃ > 0 ⇒ we arrive at the tempered inflation!!
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Anomaly-induced inflation slows down if taking masses of
quantum fields into account.

2200 2400 2600 2800 3000

9200

9400

9600

9800

10000

σ(t) = ln a(t) ≈ H0 t − H2
0

4
f̃ t2 , H0 ∝ MP

The total amount of e-folds may be as large as 1032, but only 65
last ones, where H ∝ M∗ (SUSY breaking scale) are relevant.
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From the formal QFT viewpoint, there is no solution, because for
the transition period, when

H ∼ masses of quantum matter fields

we have no method, approach, idea or approximation to perfor m
calculations, except for dS space, which is useless here.

The simplest, purely phenomenological approach is to take a
final point of the stable tempered inflation epoch ... and use
it as initial point for the unstable phase. Where we are going to
end up in this way?

A. Pelinson, Tiberio de Paula, I.Sh., A. Starobinsky, From stable to
unstable anomaly-induced inflation. arXiv:1509.08882..
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The qualitative output of this phenomenological approach i s
positive, in the sense that the final point of the stable inflat ion
(related to SUSY breakdown) belongs to the “right” integrat ion
curve of the unstable inflation.
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One can check that this curve really ends up at the classical
radiation-dominated solution.

This result gives us a chance to have a consistent inflation
based on QFT results.
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We have seen that the anomaly-induced corrections remove
initial cosmological singularity. What about other cases?

There are indications that the black hole singularity at r = 0
disappears if the semiclassical effects are taken into acco unt.
Frolov & Vilkovisky, PLB (1980).
Frolov & I.Sh., PRD (2009).
Lu, Perkins, Pope, Stelle, PRL-2015, arXiv:1502.01028; PRD-2015.

Singularities represent a “WINDOW” to QG. The semiclassica l
effects may CLOSE IT, making observation of QG impossible.
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Conclusions.

• Integrating conformal anomaly is very efficient and
extremely economic and explicit way to derive EA.

• The conformal symmetry can not be exact, it is only a useful
approximation. And its effectiveness is mainly restricted to the
one-loop level.

• In order to arrive at some applications one is forced to deal
with the non-conformal massive quantum fields.

• The success of anomaly-based approach is closely related
to the fact we know very well how to deal with divergences and
hence control UV limit of QFT in curved space.

• Currently it is unclear how to go beyond the UV limit. This
problem represents the most challenging and very difficult p art
of the semiclassical approach.
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Lecture 4.

• Cosmological Constant Problem.

Contents:

• Myth and Legends of Cosmological Constant.

• Cosmological Constant at classical level.

• Cosmological Constant (CC) Problem and trying to solve it.

• Renormalization Group Running of CC.

• Covariance and Physical Renormalization Group for CC.

• Applications to Cosmology and Astrophysics
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Recommended reading:

• S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.

• I.Sh., J. Solà, JHEP 02 (2002) 006; J. Phys. A40 (2007) 6583;
Phys. Lett. B682 (2009) 105.

• E. Bianchi, C. Rovelli, arXiv:1002.3966 [astro-ph.CO].
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The history of the cosmological constant (CC) started when
A. Einstein introduced a constant term into his equations.

Original purpose was to get a static cosmological solution.

Nowadays we know Universe is expanding according to the
Hubble law. So, why do not we remove the CC from the scene?

Mathematically, the CC term comes to our mind first when we
want to formulate covariant action for gravity

Sgrav = − 1
16π G

∫

d4x
√−g (R + 2Λ) , ρΛ =

Λ

8π G
.

So, what is the problem? Is there some?
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• Myth and Legends of Cosmological Constant.

The greatiest one: The CC term can be calculated in the
framework of Quantum Field Theory (QFT) or other Quantum
Theory and, surprisingly, it has a strange value, 120 orders of
magnitude larger than the one observed in cosmology.

Real deal: In QFT we can not derive any independent massive
(or massless) parameter from the first principles.

The values of all massive parameter are defined through a
process which includes experimental measurement.

And CC is not an exception.

More precisely: naive calculation always provide an infinit e
value for a massive parameter, with both potential and
logarithmic-type divergences. After infinity is subtracte d, we
have to fix the finite value. And this involves a measurement.
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Not all those quantities which are calculated to be infinite,
are in fact equal to zero.

W. Pauli

The famous “120 orders of magnitude” correspond to the
Planck-scale cut-off of quartic divergence in the CC sector .

Taking this naive cut-off as a physical result is an absurd.

With the same logic absolutely all masses should have Planck
value. Since this is not the case, with the same logic we shoul d
have “me problem”, “ mτ problem”, “ mµ problem”, “ mW

problem”, “ mZ problem”, “ mH problem”, “ mν problem”, etc.

In reality, there is no problem with neither one of them, sinc e the
corresponding values are fixed by renormalization conditio ns
and eventually by a measurements.
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For the case of CC term, the “measurement” means a full set of
available experimental and observational data at the scale of the
Universe. All of them (SN-Ia, CMB, LSS, ...) are likely conve rging
to the nonzero, positive value

ρ0
Λ ≈ 0.7 ρ0

c .

Definitely, at this level there is no problem with the CC term. We
have a “measured” value and this is all the story. We see CC is
positive and so it is. It is just fine.

So, where is the CC problem?

The answer is: The CC problem does exist, it is caused by finite
and really big contributions to the CC in the QFT framework.
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• Λ -term at the classical level. Is it a Constant?

The action of renormalizable theory (e.g., SM) in curved spa ce is

Stotal = − 1
16πG

∫

d4x
√−g (R + 2Λ) + SHD + Smatter .

Higher derivative terms SHD are necessary in quantum theory.

See, e.g., Birrell, Davies (1980); Buchbinder, Odintsov, Sh.(1992).

In the low-energy domain, one can in principle disregard SHD

and the dynamical equations take on the Einstein form

Rν
µ − 1

2
R δνµ = 8πG T ν

µ + Λ δνµ .

For isotropic fluid in the locally co-moving frame

T ν
µ = diag (ρ, −p, −p, −p) .

The Λ-dependent term has exactly the form (1), with

ρvac
Λ =

Λ

8πG
= −pvac

Λ .
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Definitely, it is a wrong idea to consider the Λ-term as a fluid with
negative pressure, repulsive gravity and so on and so forth.

ρvac
Λ =

Λ

8πG
= −pvac

Λ

is just a useful form to present the vacuum CC term.

The CC term is not a part of the action of matter, it is not a
strange fluid. It is just the simplest possible covariant ter m.

Amazingly, it is not a constant term!

Without gravity the CC term is an irrelevant constant. Howev er, it
acquires dynamical significance through the Einstein equat ions.
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Consider another parametrization of the metric

gµν =
χ2

M2
P

ḡµν ,

where ḡµν is some fiducial metric, for instance, it can be ηµν .

Furthermore, χ = χ(x) is a new scalar field.

The CC term looks rather different in these new variables:

SΛ = −
∫

d4x
√−g ρΛ = −

∫

d4x
√

−ḡ fχ4 , f =
Λ

8πM2
P

.

This is quartic term in the potential for the scalar interact ion.

The same change of variables transforms
∫ √−gR - term into

the action of a scalar field χ with the negative kinetic term and
conformal coupling to curvature.
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• Main CC Problem (I) and attempts to solve it.

Why we can not remove the CC from the scene, set it zero?

The reason is that, from the theoretical side, there are many
sources of the CC, and simply set it to zero is very difficult.

These sources are as follows:

1) CC is necessary for the consistent QFT in curved space;

2) Induced CC (vacuum energy) always comes from the SSB in
the SM of particle physics;

3) Possible variation of the Λ-term due to quantum effects.
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Observation about general structure of renormalization in
curved space.

Starting from the first paper
R. Utiyama & B.S. DeWitt, J. Math. Phys. 3 (1962) 608.
we know that the divergences and counterterms in QFT in
curved space-time satisfy two conditions:

• They are covariant if the regularization is consistent with
covariance.

• They are local functionals of the metric.

See the book
I.L. Buchbinder, S.D. Odintsov & I.Sh., Effective Action in Quantum
Gravity (IOPP, 1992).
for introduction and recent papers
I.Sh. Class.Quant.Grav. (2008 - Topical review). arXiv: 0801.0216.
P. Lavrov & I.Sh., Phys.Rev. D81 (2010) 044026.
for a more simple consideration and more rigid proof.
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What may happen if we use a non-covariant regularization?

Example: cut-off regularization for the Energy-Momentum
Tensor of vacuum.

B.S. DeWitt, Phys. Reports. (1975)

E.K. Akhmedov, arXiv: hep-th/0204048.

ρvac =
1
2

∫

d3k
(2π)3

√

~k2 + m2 ,

pvac =
1
6

∫

d3k
(2π)3

~k2

√

~k2 + m2
,

For each mode we have, in the massless limit, EOS of radiation .
Naturally, after integration with cut-off we will get the EO S for the
radiation in the quartic divergences.

But, Lorentz invariance requires the EOS to be pvac = −ρvac .
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Indeed, this discrepancy only reflects the non-covariant na ture
of the momentum cut-off regularization.

Similarly, the quadratic divergences must have the EOS iden tical
to the one of the Einstein tensor. But it can be, instead, any
other EOS in a non-covariant regularization scheme.

Usually, only logarithmic divergences are stable even unde r
non-covariant regularization.

In order to have the covariant cut-off, one has to choose, e.g ,
Schwinger-DeWitt proper-time representation with the cut -off on
the lower limit of the integral.

New discussion of this issue:
M.Asorey, P.Lavrov, B.Ribeiro & I.Sh., Vacuum stress-tensor in SSB
theories. arXive: 1202.4235
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Reminder about QFT in curved space-time:

Renormalizable theory of matter fields on classical curved
background requires classical action of vacuum

Svac = SHE + SHD , SHE = − 1
16πG

∫

d4x
√−g (R + 2Λ) .

Important remark: Without independent vacuum parameter
Λ = Λvac the theory is inconsistent .

Loops of massive particle give divergences of the Λvac -type.

If Λvac ≡ 0 , these divergences can not be removed by
renormalization, and we have a kind of theoretical disaster .

Of course the same is true for all other terms in Svac , including
Hilbert term and higher derivative terms.
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RG equations for CC and G:

(4π)2 µ
d ρvac

Λ

dµ
= (4π)2 µ

d
dµ

(

Λvac

8πGvac

)

=
Nsm4

s

2
− 2Nf m

4
f .

(4π)2 µ
d

dµ

(

1
16πGvac

)

=
Nsm2

s

2

(

ξ − 1
6

)

+
Nf m2

f

3
.

It is not clear how these equations can be used in cosmology,
where the typical energies are very small.

However, even the UV running means the ρvac
Λ can not be much

smaller then the fourth power of the typical mass of the theor y.

Consequence: the natural value from the MSM perspective is

ρvac
Λ ∼ M4

F ∼ 108 GeV 4 .
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Induced CC from SSB in the Standard Model.

In the stable point of the Higgs potential V = −m2φ2 + fφ4 we
meet Λind = 〈V 〉 ≈ 108 GeV 4 – same order of magnitude as Λvac !

This is induced CC, similar to the one found by Zeldovich (196 8).
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The observed CC is a sum ρobs
Λ = ρvac

Λ + ρind
Λ . Since ρvac

Λ is an
independent parameter, the renormalization condition is

ρvac
Λ (µc) = ρobs

Λ − ρind
Λ (µc) .

Here µc is the energy scale where ρobs
Λ is “measured”.
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Finally, the main CC relation is

ρobs
Λ = ρvac

Λ (µc) + ρind
Λ (µc) .

The ρobs
Λ which is likely observed in SN-Ia, LSS and CMB is

ρobs
Λ (µc) ≈ 0.7 ρ0

c ∝ 10−47 GeV 4.

The CC Problem is that the magnitudes of ρvac
Λ (µc) and ρind

Λ (µc)
are a huge 55 orders of magnitude greater than the sum!

Obviously, these two huge terms do cancel.

“Why they cancel so nicely” is the CC Problem (Weinberg, 1989 ).

The origin of the problem is the difference between the MF

scale of ρind
Λ and ρvac

Λ and the µc scale of ρobs
Λ .

Obviously, CC Problem is nothing else but a sort of hierarchy
problem, perhaps the most difficult one.
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There were attempts to fix the overall CC value to zero and
replace it by quintessence, Chaplygin gas, k -essence etc.

Warning: 5-th element looks nice only due to Milla Jovovich.

In reality we have to trade 55-orders fine-tuning to the ∞-orders
one, plus another 55 for the quintessence.
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Further aspects of the CC Problem are as follows:

1) The Universe is not static, hence both ρvac
Λ and ρind

Λ can
independently run, at least in the Early Universe.

2) There are also possible abrupt changes of the overall
observed CC due to the phase transitions in the Early Univers e.

3) Finally, it looks like our Universe was somehow “prepared ”,
from the initial moment of its “creation”, with a 55 -order
precision, such that today ρobs

Λ ∼ ρc .

4) This fine-tuning, up to now, is impossible to explain.
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5) The last observation on the CC Problem.

ρvac
Λ is an independent parameter which has to be adjusted, with

at least 55 orders of magnitude precision, to cancel ρind
Λ .

Therefore, a solution of the CC problem has to start by
explaining the value of ρind

Λ from the first principles.

However this quantity depends on the VEV of the Higgs field, on
scalar coupling, on W and Z masses, all other couplings, on the
EW phase transition, on chiral phase transition and also on
higher loop (up to 21 loops!!) corrections within MSM. And also
on the details of possible physics beyond MSM, of course.

55 orders of precision require all this. So, we can see that
“solving” the CC problem from the first principles requires, as a
preliminary step, deriving the particle mass spectrum of th e
Standard Model (and its extensions) from the first principle s.

We are currently far from this level of knowledge in fundamen tal
physics. For this reason it is right to call it the great CC problem.
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• Can symmetries help to solve the CC Problem?

There were many attempts to solve the CC problem introducing
more symmetries. A remarkable example is SUSY.

However, the CC problem emerges at very low energies, where
SUSY is broken.

Thus, SUSY may solve the problem, but only at high energies,
where CC problem does not exist.

In (super)string theory, situation is even more complicate d
because the choice of a vacuum is not definite.

Furthermore, even if some string vacuum would “indicate” ze ro
CC, it is unclear how this can affect the low-energy physics.

At low energies, we know that the appropriate theory is QFT
(specifically the SM, with SSB etc) and not a string theory.
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• Auto-relaxation mechanisms

There was a number of interesting attempts to create a sort of
automatic mechanism for relaxing the CC

Dolgov; Peccei, Solà, Wetterich; Hawking; Ford et al.
Recently: Štefančić; Grande, Solà, Štefančić.

Weinberg (1989) discussed some of these approaches:
they merely move fine tuning from CC to other parameter(s).

At the same time, it seems no comprehensive proof of this
“no-go theorem” was given.

The only visible way to a solution:
Maybe one can modify SM or Einstein equations in such a way
that gravity does not “feel” induced CC.
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• Antropic arguments.

Weinberg, Garriga & Vilenkin, Donoghue, ...

This approach may be the most realistic, it also agrees with t he
QFT principles .

The idea is to study the limits on the CC and other parameters
(e.g. neutrino mass) from the fact that the universe is compa tible
with the human life and civilization.

For example, negative CC does not let the cosmic structure fo rm
sufficiently fast, too large positive CC leads to other probl ems.

The “shortcoming” of this approach is that we never learn why
the two counterparts of the CC do cancel.
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• Renormalization Group (RG) solutions.

At low energies the quantum effects of some kind is supposed
to produce an efficient screening of the observable CC.

Some realizations of this idea:

1) IR effects of quantum gravity. Qualitative discussion -
Polyakov, 1982, 2001.

2) Attempt to support this idea by direct calculations on fixed
dS background – Tsamis & Woodard et al, 1995-2010.

3) More real thing: IR quantum effects of the conformal factor
in 4d – Antoniadis and Mottola, 1992.

4) Using the assumed non-Gaussian UV fixed point in Quantum
Gravity, assymptotic safety – Reuter, Percacci et al, from 2000.

5) Driving induced CC between the GUT scale MX and the
cosmic scale µc by the quantum effects of GUT’s. – I.Sh., 1994;
Jackiw et al, 2005.
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General Situation and effective approach to the CC Problem.

• There are vacuum and induced contributions to CC. Both of
them are ≥ 55 orders of magnitude greater than the observed
sum. the vacuum part ρvac

Λ is unique independent part of CC.

• The main CC problem (I) is a hierarchy problem due to the
conflict between particle physics scale ∼ 100 GeV and the
cosmic scale µc ∼ 10−42 GeV . That is why we need 55-order (at
least!) fine-tuning.

• From the QFT viewpoint vanishing overall CC would be much
worst thing. In this case we would need ∞-order fine-tuning.

• The coincidence problem (II) is: Why ρobs
Λ ∝ ρc at the

present epoch. The two problems are closely related.

We take a phenomenological point of view and don’t try solvin g
problems (I) & (II). Instead we consider problem (III): whether
CC may vary due to IR quantum effects, e.g., of matter fields.
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CC can vary due to the RG running?

At high energies scalar ms and fermion mf lead to RG equation

(4π)2 µ
dρΛ
dµ

=
m4

s

2
− 2m4

f + ... . (1)

To use this RG in cosmology, we have to answer two questions:

• What is µ?

•• At which energy scale Eq. (1) can be used?

The answer to • is almost obvious: in the late Universe µ ∼ H .

The answer to •• is not that simple.

If applied to the late Universe, (1) results in a very fast running of
CC, breaking the standard cosmological model.

This does not happen, because in QFT there is a phenomenon
called decoupling.
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Decoupling at the classical level.

Consider propagator of massive field at very low energy

1
k2 + m2 =

1
m2

(

1 − k2

m2 +
k4

m4 + ...

)

.

In case of k2 ≪ m2 there is no propagation of particle.

What about quantum theory, loop corrections?

Formally, in loops integration goes over all values of momen ta.

Is it true that the effects of heavy fields always become irrel evant
at low energies?
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For simplicity, consider a fermion loop effect in QED.

In the UV, the mass of quantum fermion is negligible, this
simplifies the form factor, and we arrive at

β̃ Fµν ln
(

�

µ2

)

Fµν .

The momentum-subtraction β-function

β1
e =

e3

6a3 (4π)2

[

20a3 − 48a + 3(a2 − 4)2 ln
(2 + a

2 − a

)

]

,

a2 =
4�

�− 4m2 . Special cases:

UV limit p2 ≫ m2 =⇒ β1 UV
e =

4 e3

3 (4π)2 + O
(m2

p2

)

.

IR limit p2 ≪ m2 =⇒ β1 IR
e =

e3

(4π)2 · 4 p2

15 m2 + O
( p4

m4

)

.

This is the standard form of the Appelquist and Carazzone
decoupling theorem (PRD, 1977).
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One can obtain the general expression which interpolates
between the UV and IR limits.

e t( )
-2

t

These plots show the effective electron charge as a function of
log(µ/µ0) in the case of the MS-scheme,
and for the momentum-subtraction scheme, with ln(p/µ0) .

An interesting high-energy effect is a small apparent shift of the
initial value of the effective charge.
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In the gravitational sector we meet Appelquist and Carazzon e -
like decoupling, but only in the higher derivative sectors.
In the perturbative approach, with gµν = ηµν + hµν , we do not
see running for the cosmological and inverse Newton constan ts.
Why do we get βΛ = β1/G = 0 ?

Momentum subtraction running corresponds to the insertion of,
e.g., ln(�/µ2) formfactors into effective action.

Say, in QED: − e2

4
FµνFµν +

e4

3(4π)2 Fµν ln
(

− �

µ2

)

Fµν .

Similarly, one can insert formfactors into

Cµναβ ln
(

− �

µ2

)

Cµναβ .

However, such insertion is impossible for Λ and for 1/G,
because �Λ ≡ 0 and �R is a full derivative.

Further discussion:
Ed. Gorbar & I.Sh., JHEP (2003); J. Solà & I.Sh., PLB (2010).

Ilya Shapiro, Lectures on curved-space QFT, February - 2016



Is it true that physical βΛ = β1/G = 0 ?

Probably not. Perhaps the linearized gravity approach is simply
not an appropriate tool for the CC and Einstein terms.

Let us use the covariance arguments. The EA can not include
odd terms in metric derivatives. In the cosmological settin g this
means no O(H) and also no O(H3) terms, etc. Hence

ρΛ(H) =
Λ(H)

16πG(H)
= ρΛ(H0) +

3ν
8π

(

H2 − H2
0

)

, ν = const .

Then the conservation law for G(H; ν) gives

G(H; ν) =
G0

1 + ν ln
(

H2/H2
0

) , where G(H0) = G0 =
1

M2
P

.

Here we used the identification

µ ∼ H in the cosmological setting.
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The same ρΛ(µ) follows from the assumption of the Appelquist
and Carazzone - like decoupling for CC.

A.Babic, B.Guberina, R.Horvat, H.Štefančić, PRD 65 (2002);
I.Sh., J.Solà, C.España-Bonet, P.Ruiz-Lapuente, PLB 574 (2003).

We know that for a single particle

βMS
Λ (m) ∼ m4 ,

hence the quadratic decoupling gives

βIR
Λ (m) =

µ2

m2 βMS
Λ (m) ∼ µ2m2 .

The total beta-function will be given by algebraic sum

βIR
Λ =

∑

kiµ
2m2

i = σM2 µ2 ∝ 3ν
8π

M2
P H2 .

This leads to the same result in the cosmological setting,

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p

(

H2 − H2
0

)

.
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One can obtain the same G(µ) in one more independent way.

I.Sh., J. Solà, JHEP (2002); C. Farina, I.Sh. et al, PRD (2011).

Consider MS-based renormalization group equation for G(µ):

µ
dG−1

dµ
=

∑

particles

Aij mi mj = 2ν M2
P , G−1(µ0) = G−1

0 = M2
P .

Here the coefficients Aij depend on the coupling constants,
mi are masses of all particles. In particular, at one loop,

∑

particles

Aij mi mj =
∑

fermions

m2
f

3(4π)2 −
∑

scalars

m2
s

(4π)2

(

ξs −
1
6

)

.

One can rewrite it as

µ
d(G/G0)

dµ
= −2ν (G/G0)

2 =⇒ G(µ) =
G0

1 + ν ln
(

µ2/µ2
0

) . (∗)

It is the same formula which results from covariance and/or f rom
AC-like quadratic decoupling for the CC plus conservation l aw.
(∗) seems to be a unique possible form of a relevant G(µ).
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All in all, it is not a surprise that the eq.

G(µ) =
G0

1 + ν ln
(

µ2/µ2
0

) .

emerges in different approaches to renorm. group in gravity :

• Higher derivative quantum gravity.
A. Salam & J. Strathdee, PRD (1978);
E.S. Fradkin & A. Tseytlin, NPB (1982).

• Non-perturbative quantum gravity with (hipothetic) UV-st able
fixed point.
A. Bonanno & M. Reuter, PRD (2002).

• Semiclassical gravity.
B.L. Nelson & P. Panangaden, PRD (1982).
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So, we arrived at the two relations:

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p

(

µ2 − µ2
0

)

(1)

and G(µ) =
G0

1 + ν ln
(

µ2/µ2
0

) . (2)

Remember the standard identification

µ ∼ H in the cosmological setting.

A. Babic, B. Guberina, R. Horvat, H. Štefančić, PRD (2005).

Cosmological models based on the assumption of the standard
AC-like decoupling for the cosmological constant:

• Models with (1) and energy matter-vacuum exchange:
I.Sh., J.Solà, Nucl.Phys. (PS), IRGA-2003;
I.Sh., J.Solà, C.España-Bonet, P.Ruiz-Lapuente, PLB (2003).

• • Models with (1), (2) and without matter-vacuum exchange:
I.Sh., J.Solà, H.Štefančić, JCAP (2005).
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• Models with constant G ≡ G0 and permitted energy
exchange between vacuum and matter sectors.

For the equation of state P = αρ the solution is analytical,

ρ(z; ν) = ρ0 (1 + z)r ,

ρΛ(z; ν) = ρΛ0 +
ν

1 − ν
[ ρ(z; ν)− ρ0 ] ,

The limits from density perturbations / LSS data: |ν| < 10−6.

Analog models:
Opher & Pelinson, PRD (2004); Wang & Meng, Cl.Q.Gr. 22 (2005).

Direct analysis of cosmic perturbations:
J. Fabris, I.Sh., J. Solà, JCAP 0702 (2007).

Given the Harrison-Zeldovich initial spectrum, the power
spectrum today can be obtained by integrating the eqs. for
perturbations.

Initial data based on w(z) from J.M. Bardeen et al, Astr.J. (1986).
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Results of numerical analysis for the • model:
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The ν-dependent power spectrum vs the LSS data from the
2dfFGRS. The ordinate axis represents P(k) = |δm(k)|2 where
δm(k) is the solution at z = 0. ν = 10−8, 10−6, 10−4, 10−3.
In all cases Ω0

B ,Ω
0
DM ,Ω0

Λ = 0.04, 0.21, 0.75.
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•• Models with variable G = G(H) but without energy
exchange between vacuum and matter sectors.

Theoretically this looks much better!

ρΛ(H) = ρΛ(H0) +
3ν
8π

M2
p

(

H2 − H2
0

)

.

By using the energy-momentum tensor conservation we find

G(H; ν) =
G0

1 + ν ln
(

H2/H2
0

) , where G(H0) =
1

M2
P

.

These relations exactly correspond to the RG approach
discussed above, with µ = H .

I.Sh., J.Solà, H.Štefančić, JCAP (2005).
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The limits on ν from density perturbations, etc.

J.Grande, J.Solà, J.Fabris & I.Sh., Cl. Q. Grav. 27 (2010) .

An important general result is: In the models with variable Λ
and G in which matter is covariantly conserved, the solutions
of perturbation equations do not depend on the wavenumber k .

As a consequence we meet relatively weak modifications of the
spectrum compared to ΛCDM.

The bound ν < 10−3 comes just from the “F-test”. It is related
only to the modification of the function H(z) .

R. Opher & A. Pelinson, astro-ph/0703779.
J.Grande, R.Opher, A.Pelinson, J.Solà, JCAP 0712 (2007).

One can obtain the same restriction for ν also from the
primordial nucleosynthesis (BBN).
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Can we apply the running G(µ) to other physical problems?

In the renormalization group framework the relation

G(µ) =
G0

1 + ν ln
(

µ2/µ2
0

) , where µ = H

in the cosmological setting.

What could be an interpretation of µ in astrophysics?

Consider the rotation curves of galaxies. The simplest
assumption is µ ∝ 1/r .

Applications for the point-like model of galaxy:

J.T.Goldman, J.Perez-Mercader, F.Cooper & M.M.Nieto, PLB (1992).
O. Bertolami, J.M. Mourao & J. Perez-Mercader, PLB 311 (1993).
M. Reuter & H. Weyer, PRD 70 (2004); JCAP 0412 (2004).
I.Sh., J.Solà, H.Štefančić, JCAP (2005).
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We can safely restrict the consideration by a weakly varying G,

G = G0 + δG = G0(1 + κ) , |κ| ≪ 1 .

The value of ν is small, the same should be with κ = δG/G0.
Perform a conformal transformation

ḡµν =
G0

G
gµν = (1 − κ)gµν .

In O(κ), metric ḡµν obeys Einstein equations with G0 = const.

The nonrelativistic limits of the two metrics

g00 = −1 − 2Φ
c2 and ḡ00 = −1 − 2ΦNewt

c2 ,

ΦNewt being Newton potential and Φ is a modified potential.

g00 = −1 − 2Φ
c2 ≈ −1 − 2ΦNewt

c2 − κ =⇒ Φ = ΦNewt +
c2 δG
2 G0

.

For the nonrelativistic limit of the modified gravitaty we ob tain

−Φ,i = −Φ,i
Newt −

c2 G,i

2 G0
, where we used G,i = (δG),i .
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The last formula − Φ,i = −Φ,i
Newt −

c2 G,i

2 G0
is very instructive.

• Quantum correction comes with the factor of c2 =⇒ can
make real effect at the typical galaxy scale.

E.g., for a point-like model of galaxy and µ ∝ 1/r it is
sufficient to have ν ≈ 10−6 to provide flat rotation curves.

I.Sh., J.Solà, H.Štefančić, JCAP (2005).

•• µ ∝ 1/r is, obviously, not a really good choice for a
non-point-like model of the galaxy.

The reason is that this identification produces the
“quantum-gravitational” force even if there is no mass at al l !!

What would be the “right” identification of µ ?
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Let us come back to QFT, which offers a good hint:
µ must be ∼ energy of the external gravitational line in the
Feynman diagram in the almost-Newtonian regime.

The phenomenologically good choice is

µ

µ0
=

(ΦNewt

Φ0

)α

,

where α is a phenomenological parameter We have found that
α is generally growing with the mass of the galaxy.

D. Rodrigues, P. Letelier & I.Sh., JCAP (2010).

QFT viewpoint: α reflects µ ∼ ΦNewt is not an ultimate choice.

With greater mass of the galaxy the “error” in identification
becomes greater too, hence we need a greater α to correct this.
α must be very small at the scale of the Solar system.

Regular scale-setting procedure gives the same result:
S. Domazet & H. Štefančić, PLB (2011).
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Last, but not least, the astro-ph application is
impressively successful

D. Rodrigues, P. Letelier & I.Sh., JCAP (2010). (9 samples)
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Rotation curve of the spiral galaxy NGC 3198. αν = 1.7 × 10−7.
[Collaboration THINGS (2008)] .
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One more example, this time with descendent rotation curve.
αν = 6.7 × 10−7.
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Rotation curve of the galaxy NGC 2841. RGGR is based on
hypothetical covariant quantum corrections without DM.
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One more example: low-surface brightness galaxy with
ascendent rotation curve. αν = 0.2 × 10−7.
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Rotation curve of the galaxy DDO 154. RGGR is based on
hypothetical covariant quantum corrections without DM.
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What about the Solar System?

C. Farina, W. Kort-Kamp, S. Mauro & I.Sh., PRD 83 (2011).

We used the dynamics of the Laplace-Runge-Lenz vector in the
G(µ) = G0/(1 + µ log(µ/µ0)) - corrected Newton gravity.

Upper bound for the Solar System: αν ≤ 10−17.

One of the works now on track: extending the galaxies sample.

P. Louzada, D. Rodrigues, J. Fabris, ..., in work: 50+ disk galaxies.

Davi Rodrigues, ..., in progress: elliptical galaxies.

The general tendency which we observe so far is greater α
needed to for larger mass of the astrophysical object: from
Solar System (upper bound) to biggest tested galaxies.
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Very new, yet unpublished, example.

Rotation curve of the giant elliptic galaxy NGC 4374: RGGR vs
MOND. αν = 17 × 10−7. Special thanks to PN.S. Collaboration.
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It looks like we do not need CDM to explain the rotation curves
of the galaxies. However, does it really mean that we can real ly
go on with one less dark component?

Maybe not, but it is worthwhile to check it. It is well known th at
the main requests for the DM come from the fitting of the LSS,
CMB, BAO, lenthing etc.

However there is certain hope to relpace, e.g., ΛCDM by a
ΛWDM (e.g. sterile neutrino) with much smaller ΩDM .

The idea to trade 0.04, 0.23, 0.73 =⇒ 0.04, 0.0x, 0.9(1-x)

Such a new concordance model would have less relevant
coincidence problem, and in general such a possibility is
interesting to verify.

First move:
J. Fabris, A. Toribio & I.Sh., Testing DM warmness and quantity via
the RRG model. arXiv:1105.2275; PRD (2012).

We are using “our” Reduced Relativistic Gas model.
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The Reduced Relativistic Gas model is a Simple cosmological
model with relativistic gas.

G. de Berredo-Peixoto, I.Sh., F. Sobreira, Mod.Ph.Lett. A (2005);
J. Fabris, I.Sh., F.Sobreira, JCAP (2009).

The model describes ideal gas of massive relativistic parti cles
with all of them have the same kinetic energy.

The Equation of State (EOS) of such gas is

P =
ρ

3

[

1 −
(mc2

ε

)]2
=

ρ

3

(

1 − ρ2
d

ρ2

)

.

In this formula ε is the kinetic energy of the individual particle,
ε = mc2/

√

1 − β2. Furthermore, ρd = ρ2
d0(1 + z)3 is the mass

(static energy) density. One can use one or another form of th e
equation of state (1), depending on the situation.
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The deviation from Maxwell or relativistic Fermi-Dirac
distribution is less than 2.5%. The nice thing is that one can
solve the Friedmann equation in this model analytically.

The model was successfully used to impose an upper bound to
the warmness of DM from LSS data, providing the same results
as more complicated models.

J. Fabris, I.Sh., F.Sobreira, JCAP (2009).

So, why it is “our” and not just our model?

Because we were not first. The same EOS has been used by
A.D. Sakharov in 1965. to predict the oscillations in the CMB
spectrum for the first time!!

A.D. Sakharov, Soviet Physics JETP, 49 (1965) 345.
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In the recent paper
J. Fabris, A. Toribio & I.Sh., Testing DM warmness and quantity via
the RRG model. arXiv:1105.2275 [astro-ph.CO]; PRD-2012

we have used RRG without quantum effects to fit
Supernova type Ia (Union2 sample), H(z), CMB (R factor),
BAO, LSS (2dfGRS data)
In this way we confirm that ΛCDM is the most favored model.

However, for the LSS data alone we met the possibility of an
alternative model with a small quantity of a WDM.

This output is potentially relevant due to the fact the LSS is the
test which is not affected by the possible quantum RG running
in the low-energy gravitational action.

Such a model almost has no issue with the coincidence CC
problem (II), because Ω0

Λ ≃ 0.95 .

Ilya Shapiro, Lectures on curved-space QFT, February - 2016



Conclusions

• CC term is a very natural and in fact necessary concept,
which should be separated from myths and legends.

• It looks like there is no real chance to solve the great CC
problem from the “first principles”, especially because for this
end one needs the real knowledge of these principles.

• We can learn a lot by thinking about the CC problem, such
thinking is definitely not “forbidden”.

• The question of whether CC can be variable is, to some
extent, reduced to existing-nonexisting paradigm.

• In the positive case we arrive at the very rich cosmological
and astrophysical model with one free parameter ν plus certain
freedom of scale identification.
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