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Contents of the mini-course

• GR and its limits of applicability, Planck scale. Quantum
gravity and semi-classical approach. Formulation of quant um
field theory on curved background.

• Covariance and renormalizability in curved space-time.
Renormalization group and conformal anomaly.
Anomaly-induced effective action and Starobinsky model.

• Effective approach in curved space-time. The problem of
cosmological constant and running in cosmology.
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Lecture 1.

GR and its limits of applicability, Planck scale.
Quantum gravity and semi-classical approach.

GR and singularities.

Dimensional approach and Planck scale.

Quantum gravity and/or string theory.

Quantum Field Theory in curved space and its importance.

Formulation of classical fields in curved space.

Quantum theory with linearized parametrization of gravity .
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Classical Gravity – Newton’s Law,

~F12 = − G M1 M2

r2
12

r̂12 or U(r) = −G
M1 M2

r
.

Newton’s law work well from laboratory up to the galaxy scale .
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For galaxies one needs, presumably, to introduce a HALO of
Dark Matter, which consists from particles of unknown origi n,

or modify the Newton’s law - MOND,

F = F (~r , ~v) .
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The real need to modify Newton gravity was because it is not
relativistic while the electromagnetic theory is.

• Maxwell 1868 ... • Lorentz 1895 ... • Einstein 1905

Relativity: instead of space + time , there is a unique
space-time M3+1 (Minkowski space) . Its coordinates are

xµ = (ct , x , y , z) .

The distances (intervals) are defined as

ds2 = c2dt2 − dx2 − dy2 − dz2 .
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How to incorporate gravity?
The Minkowski space is flat, as the surface of a table.

GR (A. Einstein, 1915): Gravitation = space-time metric.

• Geometry shows matter how to move.
• Matter shows space how to curve.
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General Relativity and Quantum Theory

General Relativity (GR) is a complete theory of classical
gravitational phenomena. It proved to be valid in the wide ra nge
of energies and distances.

The basis of the theory are the principles of equivalence and
general covariance.
There are covariant equations for the matter (fields and part icles,
fluids etc) and Einstein equations for the gravitational fiel d gµν

Gµν = Rµν − 1
2

Rgµν = 8πG Tµν − Λ gµν .

We have introduced Λ, cosmological constant (CC) for
completeness.

The most important solutions of GR have specific symmetries.

1) Spherically-symmetric solution. Planets, Stars, Black holes.
2) Isotropic and homogeneous metric. Universe.
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Spherically-symmetric solution of Schwarzschild.

This solution corresponds to the spherical symmetry in the
static mass distribution and in the classical solution.
The metric may depend on the distance r and time t , but not on
the angles ϕ and θ.

For the sake of simplicity we suppose that there is a point-li ke
mass in the origin of the spherical coordinate system. The
solution can be written in the standard Schwarzschild form

ds2 =
(

1 − rg

r

)

dt2 − dr2

1 − rg/r
− r2dΩ .

where rg = 2GM.
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Performing a 1/r expansion we arrive at the Newton potential

ϕ(r) = −GM
r

+
G2M2

2r2 + ...

Schwarzschild solution has two singularities:
At the gravitational radius rg = 2GM and at the origin r = 0.

The first singularity is coordinate-dependent, indicating the
existence of the horizon.

Light or massive particles can not propagate from the interi or of
the black hole to an outside observer. The r = rg horizon looks
as singularity only if it is observed from the “safe” distanc e.

An observer can change his coordinate system such that no
singularity at r = rg will be observed.

On the contrary, r = 0 singularity is physical and indicates a
serious problem.
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Indeed, the Schwarzschild solution is valid only in the vacu um
and we do not expect point-like masses to exist in the nature.
The spherically symmetric solution inside the matter does n ot
have singularity.

However, the object with horizon may be formed as a
consequence of the gravitational collapse, leading to the
formation of physical singularity at r = 0.

After all, assuming GR is valid at all scales, we arrive at the
situation when the r = 0 singularity becomes real.

Then, the matter has infinitely high density of energy, and
curvature invariants are also infinite. Our physical intuit ion tells
that this is not a realistic situation.

Something must be modified.
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Standard cosmological model

Another important solution of GR is the one for the
homogeneous and isotropic metric (FLRW solution).

ds2 = dt2 − a2(t) ·
(

dr2

1 − kr2 + r2dΩ
)

,

Here r is the distance from some given point in the space (for
homogeneous and isotropic space-time. The choice of this po int
is not important). a(t) is the unique unknown function,

k = (0, 1,−1) defines the geometry of the space section M3 of
the 4-dimensional space-time manifold M3+1.

Consider only the case of the early universe, where the role o f k
and Λ is negligible and the radiation dominates over the matter.
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Radiation-dominated epoch

is characterized by the dominating radiation with the relat ivistic
relation between energy density and pressure p = ρ/3 and
T µ
µ = 0. Taking k = Λ = 0, we meet the Friedmann equation

ȧ2 =
8πG

3
ρ0a4

0

a4 , .

Solving it, we arrive at the solution

a(t) =
( 4

3
· 8πGρ0a4

0

)1/4
×

√
t ,

This expression becomes singular at t → 0. Also, in this case
the Hubble constant

H = ȧ/a =
1
2t

also becomes singular, along with ρr and with components of
the curvature tensor.

The situation is qualitatively similar to the black hole sin gularity.
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Applicability of GR

The singularities are significant, because they emerge in th e
most important solutions, in the main areas of application o f GR.

Extrapolating backward in time we find that the use of GR leads
to a problem, while at the late Universe GR provides a consist ent
basis for cosmology and astrophysics. The most natural
resolution of the problem of singularities is to assume that

• GR is not valid at all scales .

At the very short distances and/or when the curvature become s
very large, the gravitational phenomena must be described b y
some other theory, more general than the GR.

But, due to success of GR, we expect that this unknown theory
coincides with GR at the large distance & weak field limit.

The most probable origin of the deviation from the GR are
quantum effects.
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Need for quantum field theory in curved space-time.

Let us use the dimensional arguments.

The expected scale of the quantum gravity effects is associa ted
to the Planck units of length, time and mass. The idea of Planck
units is based on the existence of the 3 fundamental constant s:

c = 3 · 1010 cm/s ,

~ = 1.054 · 10−27 erg · sec ;

G = 6.67 · 10−8 cm3/sec2 g .

One can use them uniquely to construct the dimensions of

length lP = G1/2
~

1/2 c−3/2 ≈ 1.4 · 10−33 cm;

time tP = G1/2
~

1/2 c−5/2 ≈ 0.7 · 10−43 sec;

mass MP = G−1/2
~

1/2 c1/2 ≈ 0.2 · 10−5g ≈ 1019 GeV .
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One can use these fundamental units in different ways.

In particle physics people use to set c = ~ = 1 and measure
everything in GeV . Indeed, for everyday life it may not be nice.

E.g., you have to schedule the meeting “just 1027 GeV−1 from
now”, but “ 15 minutes” may be appreciated better.

However, in the specific area, when all quantities are (more o r
less) of the same order of magnitude, GeV units are useful.

One can measure Newton constant G in GeV .
Then G = 1/M2

P and tP = lP = 1/MP .

Now, why do not we take MP as a universal measure for
everything? Fix MP = 1, such that G = 1. Then everything is
measured in the powers of the Planck mass MP .

“20 grams of butter” ≡ “ 106 of butter”

Warning: sometimes you risk to be misunderstood !!
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Status of QFT in curved space

One may suppose that the existence of the fundamental units
indicates fundamental physics at the Planck scale.

It may be Quantum Gravity, String Theory ...
We do not know what it really is.

So, which concepts are certain?

Quantum Field Theory and Curved space-time definitely are.

Therefore, our first step should be to consider QFT of matter
fields in curved space.

Different from quantum theory of gravity, QFT of matter field s in
curved space is renormalizable and free of conceptual probl ems.

However, deriving many of the most relevant observables is y et
an unsolved problem.
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Formulation of classical fields on curved background

• We impose the principles of locality and general covariance .

• Furthermore, we require the symmetries of a given theory
(specially gauge invariance) in flat space-time to hold for t he
theory in curved space-time.

• It is also natural to forbid the introduction of new paramete rs
with the inverse-mass dimension.

These set of conditions leads to a simplest consistent quant um
theory of matter fields on the classical gravitational backg round.

• The form of the action of a matter field is fixed except the
values of a few parameters which remain arbitrary.

• The procedure which we have described above, leads to the
so-called non-minimal actions.
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Along with the nonminimal scheme, there is a more simple,
minimal one. According to it one has to replace

∂µ → ∇µ , ηµν → gµν , d4x → d4x
√−g .

Below we consider the fields with spin zero (scalar), spin 1/2
(Dirac spinor) and spin 1 (massless vector) .

The actions for other possible types of fields (say, massive
vectors or antisymmetric bµν , spin 3/2 , etc), can be
constructed using the same approach.
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Scalar field

The minimal action for a real scalar field is

S0 =

∫

d4x
√−g

{

1
2

gµν ∂µϕ∂νϕ− Vmin(ϕ)

}

,

where Vmin(ϕ) = −1
2

m2ϕ2 − λ

4!
ϕ4

is a minimal potential term.

The possible nonminimal structure is

Snon−min =
1
2

∫

d4x
√−g ξ ϕ2 R .

The new quantity ξ is called nonminimal parameter.

Since the non-minimal term does not have derivatives of the
scalar field, it should be included into the potential term, a nd
thus we arrive at the new definition of the classical potentia l.

V (ϕ) = − 1
2

(

m2 + ξR
)

ϕ2 +
f
4!
ϕ4 .
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In case of the multi-scalar theory the nonminimal term is
∫

d4x
√−g ξij ϕ

iϕj R .

Further non-minimal structures involving scalar are indee d
possible, for example

∫

Rµν∂µϕ∂νϕ .

However, these structures include constants of inverse mas s
dimension, therefore do not fit the principles declared abov e.

In fact, these terms are not necessary for the construction o f
consistent quantum theory.
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Along with the non-minimal term, our principles admit some
terms which involve only metric. These terms are convention ally
called “vacuum action” and their general form is the following

Svac = SEH + SHD

where SEH =
1

16πG

∫

d4x
√−g {R + 2Λ } .

is the Einstein-Hilbert action with the CC

SHD includes higher derivative terms. The most useful form is

SHD =

∫

d4x
√−g

{

a1C2 + a2E + a3�R + a4R2} ,

where C2(4) = R2
µναβ − 2R2

αβ + 1/3 R2

is the square of the Weyl tensor in n = 4,

E = RµναβRµναβ − 4 RαβRαβ + R2

is the integrand of the n=4 Gauss-Bonnet topological invariant.
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In n = 4 case some terms in the action

Svac = SEH + SHD

gain very special properties.

SHD includes a conformal invariant
∫

C2 , topological and surface
terms,

∫

E and
∫

�R.

The last two terms do not contribute to the classical equatio ns
of motion for the metric.

Moreover, in the FRW case
∫

C2 = const and only
∫

R2 is
relevant!

However, as we shall see later on, all these terms are important,
for they contribute to the dynamics at the quantum level, e.g .,
through the conformal anomaly.

The basis E ,C2,R2 is, in many respects, more useful than
R2

µναβ , R2
αβ , R2, and that is why we are going to use it here.
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For the Dirac spinor the minimal procedure leads to the
expression

S1/2 = i
∫

d4x
√−g

(

ψ̄ γα∇αψ − im ψ̄ψ
)

,

where γµ and ∇µ are γ-matrices and covariant derivatives of the
spinor in curved space-time.

Let us define both these objects.

The definition of γµ requires the tetrad (vierbein)

eµ
a · eνa = gµν , ea

µ · eµb = ηab .

Now, we set γµ = eµ
a γ

a, where γa is usual (flat-space) γ-matrix.

The new γ -matrices satisfy Clifford algebra in curved space-time

γµγν + γνγµ = 2gµν .
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The covariant derivative of a Dirac spinor ∇αψ should be
consistent with the covariant derivative of tensors. We sup pose

∇µψ = ∂µψ +
i
2

wab
µ σab ψ ,

wab
µ is usually called spinor connection and

σab =
i
2

(γaγb − γbγa) .

The conjugated expression is

∇µ ψ̄ = ∂µ ψ̄ − i
2
ψ̄ wab

µ σab .

In order to establish the form of the spinor connection, cons ider
the covariant derivative acting on the vector ψ̄γαψ .

∇µ(ψ̄γ
αψ) = ∂µ(ψ̄γ

αψ) + Γαµλψ̄γ
λψ .

The solution has the form

wµab =
1
2

(

eα[b∂µ eα
a] + Γαλµ eα[b eλ

a]

)

.
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The minimal generalization for massless Abelian vector fiel d Aµ

is straightforward

S1 =
1
4

∫

d4x
√−g Fµν Fµν ,

where Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ .

In the non-Abelian case we have very similar structure.

Aµ → Aa
µ ,

Fµν → Ga
µν = ∂µAa

ν − ∂νAa
µ − gf abcAb

µAc
ν .

In both Abelian and non-Abelian cases the minimal action kee ps
the gauge symmetry. The non-minimal covariant terms for spins
1/2 and 1 have inverse mass dimension and the vacuum terms
are the same as before.

Interaction with external gravity does not spoil gauge inva riance
of a fermion or charged scalar coupled to a gauge field. Also,
the Yukawa interaction can be obtained via the minimal
procedure,

∫

d4x
√−gϕψ̄ψ.
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The quantization in curved space can be performed by means of
the path integral approach.

The generating functional of the connected Green functions
W [J , gµν ] is defined as

eiW [J,gµν ] =

∫

dΦ eiS[Φ,g]+iΦ J ,

dΦ is the invariant measure of the functional integral
and J(x) are independent sources for the fields Φ(x).

• The classical action is replaced by the Effective Action (EA )

Γ[Φ, gµν ] = W [J(Φ), gµν ]− J(Φ) · Φ , Φ =
δW
δJ

,

which depends on the mean fields Φ and on gµν .

The QFT in curved space, as it is formulated above,
is renormalizable and consistent.
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The main difference with QFT in flat space is that in curved
space EA depends on the background metric, Γ[Φ, gµν ]

In terms of Feynman diagrams, one has to consider graphs with
internal lines of matter fields & external lines of both matter and
metric. In practice, one can consider gµν = ηµν + hµν .

→ + +

+ + + + ...

Ilya Shapiro, Lectures on curved-space QFT, February - 2016



An important observation is that
all those “new” diagrams with hµν legs have superficial degree
of divergence equal or lower that the “old” flat-space diagra ms.

Consider the case of scalar field which shows why the
nonminimal term is necessary

→ + +

+ + + ... .
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In general, the theory in curved space can be formulated as
renormalizable. One has to follow the prescription

St = Smin + Snon.min + Svac .

Renormalization involves fields and parameters like coupli ngs
and masses, ξ and vacuum action parameters.

Introduction: Buchbinder, Odintsov & I.Sh. (1992).

Relevant diagrams for the vacuum sector

+ + + + ... .

All possible covariant counterterms have the same structur e as

Svac = SEH + SHD
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More observations about higher derivatives

The consistent theory can be achieved only if we include

SHD =

∫

d4x
√−g

{

a1C2 + a2E + a3�R + a4R2} ,

C2(4) = R2
µναβ − 2R2

αβ + 1/3 R2 is the square of the Weyl tensor.

In quantum gravity such a HD term means massive ghost, the
gravitational spin-two particle with negative kinetic ene rgy. This
leads to the problem with unitarity, at least at the tree leve l.

One can achive unitary and superrenormalizable quantum
gravity by constructing a theory with complex poles only.

L. Modesto, I.Sh, arXiv:1512.07600.
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On another side, real or complex ghosts provide removal of
r = 0 Newtonian singularity, e.g., in the four-derivative gravi ty,

ϕ(r) = −GM
(

1
r
− 4

3
e−m(2)r

r
+

1
3

e−m(0)r

r

)

K. Stelle, Phys. Rev. D 16 (1977) 953.

In the 4+ derivative gravity there is similar cancelation of
Newtonian singularity.

L. Modesto, Tiberio P. Netto, I.Sh. arXiv:1412.0740, JHEP.

In the non-local theory

S = − 1
2κ

∫

d4x
√−g

{

R + Gµν
a(�)− 1

�
Rµν

}

, a(�) = e−�/m2
.

there is also a non-singular Newtonian limit

ϕ(r) = −GM
r

erf
(mr

2

)

.

A. Tseytlin, hep-th/9509050, PLB also W. Siegel, hep-th/0309093.
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In the framework of semiclassical theory, gravity is extern al and
unitarity of the gravitational S-matrix is not really important.

The consistency criteria include: physically reasonable
solutions and their stability under small perturbations.

Fabris, Pelinson and I.Sh., NPB, hep-th/0009197;
Fabris, Pelinson, Salles and I.Sh., JCAP, arXiv:1112.5202;
F. Salles and I.Sh., PRD, arXiv:1401.4583.

The stability does not actually depend on quantum correctio ns.
It is completely defined by the sign of the classical coefficie nt
a1 of the Weyl-squared term.

The sign of the Weyl-squared term defines whether graviton or
ghost has positive kinetic energy, also whether ghost is als o a
tachyon etc.
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Conclusions

• QFT of matter fields in curved space-time is definitely a very
important object of study, because it concerns real and not
completely well-understood physics.

• QFT of matter fields in curved space-time can be always
formulated as renormalizable theory if the corresponding t heory
in flat space-time is renormalizable.

• The action of QFT of matter fields in curved space-time
includes additional non-minimal term in the scalar sector a nd
also higher derivative terms in the vacuum (gravity) sector .

• Different from QG, the higher derivative terms do not
necessary pose a problem, because we do not need physical
interpretation for the gravitational propagator. The issu e of
stability of classical solutions remains important, of cou rse.
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Lecture 2.

Methods for evaluating quantum corrections:
divergent part.

Local momentum representation. Covariance.

Schwinger-DeWitt method. Examples of Renormalization.

Renormalization group.
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In curved space the Effective Action (EA) depends on metric

Γ[Φ] → Γ[Φ, gµν ] .

Feynman diagrams: one has to consider grafs with internal
lines of matter fields and external limes of both matter and
metric. In practice, one can consider gµν = ηµν + hµν .

Is it possible to get EA for an arbitrary background in this way?
Perhaps not. But it is sufficient to explore renormalization !

An important aspect is that the general covariance in the
non-covariant gauges can be shown in the framework of
mathematically rigid Batalin-Vilkovisky quantization sc heme:

• P. Lavrov and I.Sh., Phys. Rev. D81 (2010).

Strong arguments supporting locality of the counterterms f ollow
from the “quantum gravity completion” consideration.

Still, it would be very nice to have an explicitly covariant m ethod
of deriving counterterms at all loop orders.
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Riemann normal coordinates.

A.Z.Petrov, Einstein Spaces. (Pergamon Press, 1969).
T.S. Bunch & L. Parker, Phys. Rev. D20 (1979) 2499. + InSpire.

Consider manifold M3,1 and choose a point with coordinates x ′
µ.

The normal coordinates yµ = xµ − x ′
µ satisfy several conditions.

The lines of constant coordinates are geodesics which are
completely defined by the tangent vectors

ξµ =
dxµ

dτ

∣

∣

∣

∣

x′

, τ(x ′) = 0

and τ is natural parameter along the geodesic. Moreover, we
request that metric at the point x ′ be the Minkowski one ηµν .
For an arbitrary function A(x)

A(x ′ + y) = A′ +
∂A
∂yα

∣

∣

∣

∣

yα +
1
2

∂2A
∂yα∂yβ

∣

∣

∣

∣

yαyβ + ... ,

where the line indicates yµ = 0.
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Direct calculations show that

Γλαβ(x) =
2
3

R′
λ
(αβ)ν yν − 1

2
R′

λ
να(µ ; β) yµ yν + ... ,

r.h.s. depends only on the tensor quantities at the point y = 0.
From this follows the expansion for the metric

gαβ(y) = ηαβ − 1
3

R′

αµβνyµyν − 1
6

R′

ανβλ;µyµyνyλ + ... .

and Rµρνσ(y) = R′

µρνσ + R′

µρνσ;λyλ + ...

The most fortunate feature of these series is that coefficien ts are
curvature tensor and its covariant derivatives at one point y = 0.

We gain a tool for deriving local quantities, e.g., countert erms.
The covariance is guaranteed by construction!

The procedure is as follows:
• Introduce local momentum representation at the point y = 0.
• Develop Feynman technique in the momentum space.
• Calculate diagrams with the new propagators and vertices.
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Everything is manifestly covariant with respect to the
transformations in the point x ′.

Example . Scalar field propagator. The bilinear operator

Ĥ = − 1√−g
δ2S0

δϕ(x) δϕ(x ′)
.

It has the form Ĥ =
(

�− m2 − ξR
)

x .

Expanding Ĥ in normal coordinates in O(R)

Ĥ = ∂2 − m2 − ξR +
1
3

Rµ
α
ν
βyαyβ∂µ∂ν − 2

3
Rα

β yβ∂α + ... .

The equation for the propagator is

Ĥ G(x , x ′) = − δ(x , x ′) .

which leads to the following expression:

G(k) =
1

k2 + m2 +
1
3

(1 − 3ξ)R
(k2 + m2)2 − 2

3
Rµνkµkν
(k2 + m2)3 +O

(

1
k3

)

.

One can continue this expansion to further orders in curvatu re.
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It is clear that higher orders in an expansion

G(k) =
1

k2 + m2 +
1
3

(1 − 3ξ)R
(k2 + m2)2 − 2

3
Rµνkµkν
(k2 + m2)3 +O

(

1
k3

)

will always produce less divergences when replaced into
internal line of the loop Feynman diagram.

The same effect occurs in the expansion in yα for vertices.

For instance, any divergent diagram in renormalizable flat- space
QFT has

d + D ≤ 4 ,

where D is superficial degree of divergence and d is number of
derivatives on external lines.

Clearly, the terms with background curvatures will have sma ller
d + D and the maximal number of metric derivatives in vacuum
diagrams is four.

The described method is explicitly covariant.
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Combining the information from the two methods

• Usual Feynman technique with external hµν ;
• Local momentum representation.

The necessary counterterms in curved space are covariant lo cal
expressions constructed from matter fields and metric.

Consider a theory power-counting renormalizable in flat spa ce.

Using Feynman technique with external hµν tails we observe an
increase of the number of propagators and vertices
=⇒ superficial degree of divergence decrease.

Using local momentum representation: the new terms always
have some extra negative powers of momenta k , compensated
by the background curvatures and their derivatives
=⇒ superficial degree of divergence decrease.

Therefore, independent of the approach, the new counterter ms
do not have O(1/mass) -factors and the theory remains
power-counting renormalizable in curved space.
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Types of the counterterms:

• Minimal, e.g., m2ϕ2, (∇ϕ)2, iψ̄γµ∇µψ.

• Non-minimal in the scalar sector, Rϕ2.

E.g., the quadratically divergent diagram

=⇒

in the λϕ4 theory produces log. divergences corresponding to
∫

d4√−gRϕ2 counterterm.

• Vacuum terms Λ, R, R2, C2, etc.

Renormalization doesn’t depend on the choice of the metric!
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Renormalization in matter fields sector
It is possible to perform renormalization in curved space in a
way similar to the one in flat space.

Counterterms are controlled by symmetries & power counting .

In the simple case of the scalar λϕ4-theory,

S0 =

∫

d4x
√−g

{ 1
2

gµν ∂µϕ∂νϕ +
1
2

(

m2 + ξR
)

ϕ2 − f
4!
ϕ4

}

,

we meet, in dim. regularization, the following counterterm s:

∆Sscal =

∫

dnx
√−g µn−4

10
∑

k=1

αk

(

1
n − 4

)

× Lk ,

where L7 = (∇ϕ)2 , L8 = m2ϕ2 ,

L9 = Rϕ2 , L10 = ϕ4 , L1,...,6 = L1,...,6(gµν) .

αk (x) are polynomials of the order equal to the loop order.
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The situation is similar for any theory which is renormaliza ble in
flat space: only ξRϕ2 counterterms represent a new element in
the matter sector.

Moreover, due to covariance, multiplicative renormalizat ion
factors, e.g., Z1, in

ϕ0 = µ
n−4

2 Z 1/2
1 ϕ ,

are exactly the same as in the flat space.

The renormalization relations for the scalar mass m and
nonminimal parameter ξ have the form

m2
0 = Z2 m2 , ξ0 −

1
6
= Z̃2

(

ξ − 1
6

)

+ Z3 .

At one loop we have, also,

Z̃2 = Z2 , Z3 = 0 .

So, in principle, we even do not need to perform a special
calculation of renormalization for ξ at the 1-loop order.
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Renormalization in the vacuum sector

Remember the action of vacuum is Svac = SEH + SHD ,

where SEH =
1

16πG

∫

d4x
√−g {R + 2Λ } .

and SHD =

∫

d4x
√−g

{

a1C2 + a2E + a3�R + a4R2} ,

The possible counterterms are:

∆Svac =

∫

dnx
√−g µn−4

6
∑

k=1

α̂k

(

1
n − 4

)

× L̂k ,

where L̂Λ = 1 , L̂G = R , L̂1 = C2 ,

L̂2 = E , L̂3 = �R , L̂4 = R2 .

αk (x) are polynomials of the order equal to the loop order.
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General situation

• The theory such as SM, GUT etc,
which is renormalizable in flat space , can be formulated as
renormalizable in curved space

• The action of the theory can be divided into following three
sectors:
1. Minimal matter sector;
2. Non-minimal matter sector;
3. Vacuum (metric-dependent) sector.

• The renormalization satisfies the hierarchy
1. =⇒ 2. =⇒ 3.

In the minimal sector it is identical to the one in flat space.

• The conformal invariance is supposed to hold in the one-loop
counterterms, ξ = 1/6, a4 = 0.
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Renormalization group equations

Renormalization group (RG) is one of the most efficient metho ds
of Quantum Field Theory, also in Stat. Mechanics.

In QFT there are many versions of RG

• Perturbative RG based on the minimal subtraction scheme of
renormalization (MS).

• Perturbative RG which is based on a more physical, e.g.,
momentum subtraction scheme of renormalization.

• Non-Perturbative RG based on the path integral integration over
momenta beyond some cut-off (Wilson approach).

• Intermediate approach with the cut-off dependence for the Green
functions by Polchinsky.

• The same in the EA formalism, by Wetterich, Morris, Percacci,
Reuter et al.
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• Consider the standard MS-based formalism of RG in curved
space . Let us denote Φ the full set of matter fields

Φ = ϕ, ψ, A

and P the full set of parameters: couplings, masses, ξ and
vacuum parameters.

The bare action S0[Φ0,P0] depends on bare quantities, S[Φ,P]
is the renormalized action.

Multiplicative renormalizability:

S0[Φ0,P0] = S[Φ,P] ,

(Φ0,P0) and (Φ,P) are related by proper renormalization
transformation. The generating functionals of the bare and
renormalized Green functions are

eiW0[J0] =

∫

dΦ0 ei(S0[Φ0,P0]+Φ0·J0) ,

eiW [J] =

∫

dΦ ei(S[Φ,P]+Φ·J) .
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The transformation for matter fields is

Φ0 = µ
n−4

2 Z 1/2
1 Φ .

Make this change of variables and denote

J0 = µ
4−n

2 Z−1/2
1 J .

Then
W0[J0] = W [J ] .

Consequently, for the mean field we meet

Φ̄0 =
δW [J0]

δJ0
=

δW [J ]
δJ

δJ
δJ0

= µ
n−4

2 Z 1/2
1 Φ̄ .

Finally, for the effective action we find

Γ0[Φ0,P0] = W0[J0]− Φ̄0 · J0 = W [J ]− Φ̄ · J = Γ[Φ,P] .
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S0 and Γ0 are 4 - dimensional integrals,
while S and Γ are n - dimensional integrals.

Γ depends on the dimensional parameter µ, while Γ0 does not
depend on µ by construction.

Therefore,
Γ0[gαβ ,Φ0,P0, 4] = Γ[gαβ ,Φ,P, n, µ] ,

and we arrive at the differential equation

µ
d

dµ
Γ[gαβ ,Φ,P, n, µ] = 0 .

Taking into account the possible µ- dependence of P and Φ we
recast this equation into
{

µ
∂

∂µ
+ µ

dP
dµ

∂

∂P
+

∫

dnxµ
dΦ(x)

dµ
δ

δΦ(x)

}

Γ[gαβ ,Φ,P, n, µ] = 0 .
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We define, as in flat space-time

βP(n) = µ
dP
dµ

, βP(4) = βP

γΦ(n) = µ
dΦ
dµ

, γΦ(4) = γΦ .

Then, the RG equation is cast in the form
{

µ
∂

∂µ
+

∫

x,n
γΦ(n)

δ

δΦ
+ βP(n)

∂

∂P

}

Γ[gαβ ,Φ,P, n, µ] = 0 .

This is the general RG equation which can be used for differen t
purposes, depending on the physical interpretation of µ.

Here
∫

x,n
=

∫

dnx
√−g and

∫

x
=

∫

x,4
.
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Short distance limit.

Perform a global rescaling of quantities according to their
dimension

Φ → Φk−dΦ , P → Pk−dP , µ → kµ, l → k−1l.

The effective action Γ does not change.

Since Γ does not depend on xµ explicitly, one can replace
l → l × k−1 by the transformation of the metric gµν → k2gµν .

Then, in addition to RG, we meet an identity

Γ[gαβ ,Φ,P, n, µ] = Γ[k2gαβ , k−dΦΦ, k−dP P, n, k−1µ] ,

whereas the curvatures transform as

R2
µναβ ∼ k−4, R2

αβ ∼ k−4, R ∼ k−4 .
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Replace k = e−t ,

d
dt

Γ[e2t gαβ , e−dΦtΦ, edP t P, n, e−tµ] = 0 .

For t = 0 we meet
{

∫

dnx
(

2gαβ
δ

δ gαβ
− dΦ

δ

δΦ

)

− dP
∂

∂P
−µ

∂

∂µ

}

Γ[gαβ ,Φ,P, n, µ] = 0.

Together with the RG equation it gives the solution

Γ[gαβe−2t ,Φ,P, n, µ] = Γ[gαβ ,Φ(t),P(t), n, µ] ,

where P(t) and Φ(t) satisfy RG equations for “effective charges”

dΦ
dt

= (γΦ − dΦ)Φ ,
dP
dt

= βP − PdP .
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The limit t → ∞ means, the limit of short distances and great
curvatures.

It is equivalent to the standard rescaling of momenta in the
flat-space QFT.

However, one has to be careful!

The time-dependence of the metric is very similar to the
rescaling (we denote time as τ in order to avoid confusion)

gαβ → gαβ · eHτ , where H = const .

However, this situation does not correspond to the RG, becau se
scalar curvature remains constant R = −12H2.

For the most interesting physical applications we need some
special scale-setting procedure, to associate µ with some
physically relevant quantity (lecture IV - seminar).
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What are the terms in the EA which are behind the RG?

An example of finite (nonlocal) corrections (factor 1/64π2 ,)

Leff = Cµναβ

[

1
60ǫ

+
8Y

15a4 +
2

45a2 +
1

150

]

Cµναβ

+λφ2
[

Y (a2 − 4)
12a2 − 1

36
−
(

1
2ǫ

− Y
) (

ξ − 1
6

)]

R + ... ,

where
1
ǫ
=

1
2 − ω

+ ln
(

4πµ2

m2

)

− γ ,

Y = 1 − 1
a

ln
(

2 + a
2 − a

)

, a2 =
4�

�− 4m2 .

One can get a full form of the Appelquist and Carazzone theore m
for gravity out of these expressions.

Gorbar & Sh. JHEP, 2003, hep-ph/0210388, 0303124; 0311190;
Gorbar, Berredo-Peixoto & Sh. 2005, and others.

Ilya Shapiro, Lectures on curved-space QFT, Fabruary - 2016



Schwinger-DeWitt technique
is the most useful method for practical 1-loop calculations .

Consider the typical form of the operator

Ĥ = 1̂�+ Π̂ + 1̂m2 .

It depends on the metric and maybe other external parameters
(via Π̂). The one-loop EA is given by the expression

i
2

Tr ln Ĥ .

Let us perform variation with respect to the external parame ters.

i
2
δ Tr ln Ĥ =

i
2

Tr Ĥ−1 δ Ĥ .

The Schwinger proper-time representation for the propagat or

Ĥ−1 =

∫

∞

0
ids e−is Ĥ .

Then, we transform δ Ĥ ·
∫

∞

0
ids e−is Ĥ = δ

∫

∞

0

ds
i s

e−is Ĥ .
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After all, we arrive at

i
2

Tr log Ĥ = const − i
2

Tr
∫

∞

0

ds
s

e−is Ĥ ,

where constant term can be disregarded.

The next step is to introduce

Û(x , x ′ ; s) = e−is Ĥ

Ĥ acts on the covariant δ -function and it proves useful to define

Û0(x , x ′ ; s) =
D1/2(x , x ′)

(4πi s)n/2
exp

{

iσ(x , x ′)

2s
− m2s

}

.

σ(x , x ′) - geodesic distance between x and x ′. It satisfies an
identity 2σ = (∇σ)2 = σµσµ .

D is the Van Vleck-Morett determinant

D(x , x ′) = det
[

− ∂2σ(x , x ′)

∂xµ ∂x ′ν

]

,

which is a double tensor density, with respect to x and x ′.
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A useful representation for the evolution operator Û(x , x ′ ; s) is

Û(x , x ′ ; s) = Û0(x , x
′ ; s)

∞

∑

k=0

(is)k âk (x , x
′) ,

âk (x , x ′) are Schwinger-DeWitt coefficients.

The evolution operator satisfies the equation

i
∂Û(x , x ′ ; s)

∂s
= − ĤÛ(x , x ′ ; s) , U(x , x ′ ; 0) = δ(x , x ′) .

Using these relations one can construct the equation for the
coefficients âk (x , x ′):

σµ∇µâ0 = 0 ,

(k+1)âk+1+σ
µ∇µâk+1 = ∆−1/2

�(∆1/2âk )+Π̂âk , k = 1, 2, 3, ... .

It is sufficient to know the coincidence limits

lim
x→x′

âk (x , x ′) .
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If we consider more general operator

S2 = Ĥ = 1̂�+ 2ĥµ∇µ + Π̂ ,

the linear term can be indeed absorbed into the covariant
derivative ∇µ → Dµ = ∇µ + ĥµ.

The commutator of the new covariant derivatives will be

Ŝµν = R̂µν − (∇ν ĥµ −∇µĥν)− (ĥν ĥµ − ĥµĥν)

and we arrive at

â1

∣

∣

∣
= â1(x , x) = P̂ = Π̂ +

1̂
6

R −∇µĥµ − ĥµĥµ .

and

â2

∣

∣

∣
= â2(x , x) =

1̂
180

(R2
µναβ − R2

αβ +�R)

+
1
2

P̂2 +
1
6
(�P̂) +

1
12

Ŝ2
µν .

The great advantage of these expressions is their universality.
They enable to analyze EA in various QFT models.
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In 4-dimensional space-time â2

∣

∣

∣
logarithmic divergences, while

â1

∣

∣

∣
defines quadratic divergences.

The derivation of the “magic” coefficient

a2 ≡ Tr â2

∣

∣

∣

is, in many cases, the most important thing.
The divergent part of EA, in the dimensional regularization , is

Γ̄
(1)
div = − µn−4

ǫ

∫

dnx
√−g tr â2(x , x) , where ǫ = (4π)2(n − 4) .

The last formula is a very powerful tool for deriving the
divergences in the models of field theory in flat and curved
space-times or even in Quantum Gravity.

Sometimes it has to be modified, for example the sign gets
changed for a fermionic case.

In complicated cases we need the generalized Schwinger-DeWitt
technique (Barvinsky & Vilkovisky, 1985) .
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Further coefficients âk , k ≥ 3 correspond to the finite part.

They are given by the expressions like

1
m2 O(R3) ,

1
m2 Rµν�Rµν , . . . (a3 case)

and therefore contribute only to the finite part of EA.

Practical calculation of the coefficients âk , k ≥ 3 is possible,
despite rather difficult.

The â3 coefficient has been derived by Gilkey (1979) and by
Avramidy (1986), who also derived â4 coefficient .
In 1989-1990 I. Avramidy and A. Barvinsky & G.V. Vilkovisky derived
important resummation of the Schwinger-DeWitt series.
As an important application one can obtain, for massive
theories, the exact one-loop form factors of the terms

R2 , C2 , F 2
µν , (∇φ)2 , φ4 .

E.Gorbar, I.Sh., G.de Berredo-Peixoto, B.Gonçalves,
JHEP (2003); CQG (2005); PRD (2009).
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In the EA Γ[Φ, gµν ] one can separate the part Γ[gµν ] which doesn’t
depend on matter fields.

It corresponds to the Feynman diagrams, with the internal lines
of matter fields and the external lines of the metric only.

Γ[gµν ] is called the EA of vacuum. It is the most important part of
EA, as far as gravitational applications are concerned.

Path integral representation of the vacuum EA

eiΓvac[gµν ] =

∫

dΦ eiS[Φ; gµν ] .

Here Φ is the set of all matter fields and gauge ghosts.
Γvac admits a loop expansion, at the tree level it is equal to Svac .
Already at this level one can make some strong statements
about possible and impossible form of quantum corrections.
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Consider one-loop divergences for the free fields, scalars,
spinors and massless vectors in curved space-time.

Scalar field. Ns-component case.

Ĥ = δi
j

(

�− m2
s − ξR

)

x , where i, j = 1, 2, ...,Ns.

The identification with the general expression

Ĥ = 1̂�+ 2ĥµ∇µ + Π̂ gives ĥµ = 0 , Π̂ = −δi
j (m

2
s + ξR).

Then, Ŝµν = 0 and P̂ = δi
j

[(

ξ − 1
6

)

R − m2
s

]

.

Finally,

Γ̄
(1)
div = −Ns µ

n−4

ǫ

∫

dnx
√−g

{1
2

m4
s + m2

s

(

ξ − 1
6

)

R

+
1
2

(

ξ−1
6

)2
R2 +

1
180

(

R2
µναβ−R2

αβ

)

−1
6

(

ξ−1
5

)

�R
}

.
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For a complex scalar field, the divergent part of the EA is twic e
of the previous result. This is nothing but the overall factor Ns.

In general, free fields give additional and independent
contributions to the vacuum divergences.

In the n = 4 conformal case ms = 0, ξ = 1/6

Γ̄
(1)
div = −µ

n−4

360ǫ

∫

dnx
√−g

{

3C2 − E + 2�R
}

.

Both classical action

Sc
0 =

∫

d4x
√−g

{

1
2

gµν ∂µϕ∂νϕ+
1
12

Rϕ2
}

and the log. divergence are conformal invariant

gµν −→ gµν e2σ(x) , ϕ −→ ϕe−σ(x) .

In the conformal scalar case the pole terms are conformal
invariant or surface structures.

!! This result holds only in certain regularizations and may be
violated in others.
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Spinor field. We meet another operator

Ĥ = i ( γα∇α − i mf ) .

The 1-loop EA is

Γ̄(1) = − i
2

Tr log Ĥ .

The sign change is due to the odd Grassmann parity of the
fermion field, while Tr is taken in the usual “bosonic” way.

After some algebra we arrive at the following expression

Γ̄
(1)
div = −µ

n−4

ǫ

∫

dnx
√−g

{

m2
f

3
R − 2m4

f +
1
20

C2(4)− 11
180

E +
1
30

�R
}

.

Again, in the conformal case mf = 0 we meet only the
conformal-invariant counterterms.
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Vector field

In the massless case we do not need to distinguish Abelian and
non-Abelian vectors, since only the free parts are importan t.

Consider a single Abelian vector. The action must be
supplemented by the gauge fixing and ghost terms.

The 1-loop contribution to the vacuum EA

Γ̄(1) =
i
2

Tr log Ĥ − i Tr log Ĥgh ,

Ĥ and Ĥgh are bilinear forms of the field and ghost actions.

The divergent part is

Γ̄
(1)
div = −µ

n−4

180ǫ

∫

d4x
√−g

{

18(C2 −�R)− 31 E
}

.

The divergences include conformal-invariant and surface t erms.
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An example of RG equation.

The divergent part of the EA of vacuum for the theory with Ns

scalars, Nf spinors and Nv vectors

Γ̄
(1)
div = − µn−4

n − 4

∫

dnx
√−g

{

βEHR + βCC + βW C2 + βE E + βR2R2 + βd�R
}

,

where βi =
ki

(4π)2 and kCC =
1
2

m4
s − 4m4

f ,

kEH = Nsm2
s

(

ξ − 1
6

)

+
2Nf m2

f

3
, kR2 =

Ns

2

(

ξ − 1
6

)2
,

w = kW =
Ns

120
+

Nf

20
+

Nv

10
,

b = kE = − Ns

360
− 11 Nf

360
− 31 Nv

180
,

c = k� =
Ns

180
+

Nf

30
− Nv

10
.
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Consider the Weyl-squared term.

∆SW =
µn−4

ǫ

∫

dnx
√−g wC2 , w =

Ns

120
+

Nf

20
+

Nv

10
.

Renormalized action = to the bare one, SW (n) + ∆SW = S0
W .

Obviously, this means a0
1 = µn−4

(

a1 +
w
ǫ

)

. Taking

0 = µ
da0

1

dµ
= µn−4

[

(n − 4)
(

a1 +
w
ǫ

)

+ µ
da1

dµ

]

In this way we arrive at µ
da1

dµ
= −(n − 4)a1 −

w
(4π)2 .

or βW = µ
da1

dµ

∣

∣

∣

∣

n=4
= − w

(4π)2 .

For the coupling parameter λ = −(2a1)
−1 we have

µ
dλ
dµ

= − w
2 (4π)2 λ

2 ,

indicating asymptotic freedom, since in all cases w > 0.
Ilya Shapiro, Lectures on curved-space QFT, Fabruary - 2016



In a similar way one can derive RG equations for a2,3,4 and also
for Λ and G , namely

da3

dt
= µ

da3

dµ
=

Ns

2 (4π)2

(

ξ − 1
6

)2

,

(4π)2 d
dt

(

Λ

8πG

)

=
Nsm4

s

2
− 2Nf m

4
f .

(4π)2 µ
d

dµ

(

1
16πG

)

=
Nsm2

s

2

(

ξ − 1
6

)

+
Nf m2

f

3
.

These equations describe the short distance behavior of the
corresponding effective charges.

However, it is not really clear how to apply them, e.g., to
cosmology or to the black hole physics.
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Conclusions

• Plane diagrams and local momentum representation,
together, tell us the full story of renormalization in curve d space.

• The renormalization program is a full success of we are
interesting in getting free of divergences.

• Perturbative Renormalization Group is formulated without
difficulties within Minimal Subtraction scheme.

• Unfortunately the problems start right at the point when we
need to calculate finite part of EA. For, example, there is no
unique interpretation of µ or t = ln(µ/µ0) for the case of
inflation and, in fact, in many other cases.
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