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Hydrodynamic regime always there

P(T,) ~ dN/(Sdy)

The most important

guestion facing

the study of flow in

heavy ion collisions

How does hydro turn on??
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Hydrodynamic regime always there
p(TO) ~ dN/(dy)

Naive expectation: At 7. if hydro holds!

® ¢, has a dip, to 0 (transition) or to a minimum (crossover)

e 11/s changes from ~ N? (HG) to ~ N? (QGP) Order of magnitude



The hope
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The hope:Flow can lead to something of this type...




This is Cu—Cu@200 GeV
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This is Au+tAu@11.8 GeV

At the moment, vy is not it!
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certainly been found when scaling in both energy
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| plan to show you that...

The first scaling follows naturally from QCD-inspired initial conditions

The second scaling Can be accomodated by a not-unreasonable
modification of these

The third scaling is very tricky (impossible?) to model within hydro, but
arises naturally in weakly coupled systems! (Kn > 1)
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It is easy to see that, by kinematics, vy, ~ log+/s
Universal fragmentation is more involved, but ultimately undestandable
within QCD phenomenology



A generic intuitive explanation: Brodsky-Gunion-Kuhn (BGK)!

e Each target-projectile collision produces parton at y*, uniformly
distributed between vy ~and y/

e Each Target/Projectile (T/P) wounded nucleon produces a string
. i T,P «
disintegrating between y;.” and y*.

e Total multiplicity ~ > independent string fragmentations

— Number of strings at projectile/target ~ N]ijz; of projectile/target

(Universal fragmentation for different \/s/yiim, same Npart)

— Density linearly interpolates between them away from limiting rapidities
(" Triangle” seen experimentally in (dN/dn)aa/(dN/dn),p )
Initial Bjorken flow (y = 7n ) but no boost-invariance except for
symmetric systems



But this picture has a problem |...
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Brahms white paper

Even at RHIC top centrality there is no boost-invariance!



But this picture has a (related?) problem...
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S d4f = | rapidity density at y=0
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NOT Feynmann scaling! He predicted, from local Boost-invariance and
dimensional analysis, dN/dp, ~ 1/Q , that (Nyy;) ~ In+/s . It appears its
(Niot) ~ (In4/8)2. Does mid-rapidity know about limiting fragmentation?



Not Landau either!

Limiting fragmentation of dN/dy
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Landau becomes Bjorken after a few 17,
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That means approximate limiting framgnetaiton well away from mid-rapidity

(Not perfect, even with ideal EoS,inapplicable in cross-over/hadronic),but
not to mid-rapidity, Which is why Landau dN/dy # In (1/s)

Need initial Boost-invariance (y = n) for limiting fragmentation up to
mid-rapidity, but large stopping in the middle to account for dIN/dy



A simple explanation: limiting fragmentation up to y = 0 — triangles!

dN/dy

B / J\ dN/dy
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e Slope ~ Nﬁit,independent of /s
o x-intercept ~ 3" ~ In\/s

. . . P T
So intersection at maximum, also ~ <Npa,7"t + Npart) In4/s

Boost invariance, even in symmetric collisions, goes away like in data !
Asymmetric systems (eg p-A,A-A at large ; )— BGK as C of M at large y



adronic phase

QGE and and freeze-out
initial state hydrodynamic expansion
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So far everything | told you related to the "formation time”, ~ Q; ! (Or
some such scale). At this time, system is partonic everywhere. For system
to "know" if its QGP or HG, its pressure gradient and 7)/s, one has to wait
until the later equilibration time ~ O (1) x R x Kn So....
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Remember That we have a phase transition!
So, if there is Bjorken flow (distinct slices not talking to each-other), there
will be slices dominated by partons and others by hadrons at equilibrium
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We can estimate this critical rapidity very roughly, by just

plugging the experimental N2 t% distribution into the back-of-the-
par

envelope entropy formula, g—z = 4% ~ NpamT[fm2gT? We
get' /usr/share/applications/gnome-screenshot.desktop’ The "critical” vy
should be well within detection (critical \/s@low energy SPS)




What can these considerations tell us about hydro and phase transitions?
Perhaps very much...

e Initially (“formation time") the system is partonic
e But at equilibrium its partonic at y < y.(T > T.) and hadronic otherwise

e System “probably” nearly ideal as a QGP y < y,, a lousy liquid (Kn ~ 1)
at central rapidity, a lousy hadron gas away

e But both free streaming and ideal liquid conserve entropy, so in those
two limits not much should change with dN/dy.

So perhaps very little... but vy is a different story!
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But both EoS and /s should have a scale, T,
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At T, (mixed phase) speed of sound experiences a dip (not to 0,as its a

cross-over,but a dip). Above T, /s ~ N? , below T,, /s ~ N? .



What does vy depend on? follow Gombeaud+Borghini+Ollitraut

Eccentricity v, € + O (¢?) since € small and dimensionless

Knudsen number -2 = =2 e (1-0O(Q1)Kn)~ %2 o (1 ~0() 21%)

speed of sound From what we know of shock-wave expansion
2 ~ = = . . [
lideal. r—so0 ™ Cs and 7 — oo is an OK approximation since anisotropy

in flow saturates quickly wrt lifetime of system



Beyond linearity...

V9 saturates!,on a scale 7,9
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If you dont change 7/s but increase lifetime, you generally get same vs/e.
Putting everything together...



/N\ LOE0CA0a Au+Au Cu+Cu
'--.t DEEIEEHQHEI!;HD 3233:3 E' 200GeV
g2 3t Hag 62.4GeV © 62.4GeV
= 00000000 By 19.6GeV * 22.4GeV
._‘-é oo:-osa(,ogggm
- 2r LY
-
= 1F 0-6% Central
=]
N B i
Inl-y,....
U2 n 1 T
2o ¢ |1-0q L - tanh | ——
€ —~ CsS TR Tv2
DipsQT, N ~~~ ~ y,

Changes@QT, Smooth with y saturation

To describe universal fragmentation in dN/dn , T' changes smoothly with 7,
, R independet of it. This destroys universal fragmentation of vy /¢ !
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It is difficoult to see how any initial condition describing universal
fragmentation in dN/dn with an an EoS and set of transport coefficients
containing T, can also describe universal fragmentation in vy /e

For this, One would have to have non-scaling in initial conditions where
the effects of longitudinal flow and entropy production at high /s would
"miraculously” cancel out. This is unnatural (see earlier def.)




For lower energies... Integrating over all rapidity...
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Lower energy scans can help!
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Experimental: Do observables dependent on flow know about EoS,7n/s,
or do they just universally fragment?

e (pr) ... universal fragmentation?
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| Au+Augs 1 Gev

-
o

0.5

x —
o E

T
P+tPp  200GeV ¢ ®
200 GeV e ]
Cu+CugraGev o o
200 GeV

S

STAR

collaboration

1008.3133

VS

T (MeV)
w
o
o

200

100

Models
1' Experiments HSD
. A AGS HSD with Cronin effect
BWNAYY e UrQMD 2.0
@® RHIC - — - — Hydro + Phase Transition
Il I | ‘
1 10 ’

10
\]S—NN (GeV)




e HBT R, s any softening in EoS?
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y-integrated scaling of HBT radii very simple (consistent with "fast
break-up at critical energy), but some structure with R, at low energy.
Hydro explains this by a combination of factors (S.Pratt,0907.1094)
What happens locally in rapidity?



e Particle species (No limiting fragmentation for baryons. Is appearance
of scaling connected to "horn" baryon/meson anomaly?)
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Theory: Hydrodynamic assessment of scaling with non-boost invariant
Initial conditions: How serious are the effects elucidated here

e Scaling naturalness should be demanded of any model, especially
"complicated” ones
e New ideas for viscosity measurements...



vy fluctuations (http://arxiv.org/nucl-th /0703031)

Initial eccentricity fluctuations If hydro not turbulent

dvg = a10€ + CL2(56)2 -+ ...

(chaos would imply something like dvy ~ dee™ ~ See?N/dv)

Boost-invariant simulations show that vy o € (2nd order coefficient
small) so

5'U2 - de

V2 €
but this is not the only source of fluctuations!



A " dust” A "fluid"
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BIG fluctuations @
in all collective observables

finite mean free path deterministic!

Imperfection of fluid = fluctuation in momentum observabled due to
random nature of microscopic dynamics



How big?

Assume no correlations between initial state and “dynamical” fluctuations,
and “Poissonian” scaling of fluctuations with inverse Knudson number
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use molecular dynamics to tune 5 and mean free path.




uRQMD with “tuned” o (as a toy model)

1

10 - ‘
- @, ((J(Kn+o32)l'2
[ ]
\\‘\. ‘
el N
00&
0 A\\
100 - N
Experimental bounds
10™ 10° 10" 10

-1

Kn

work in progress (comparison with partonic QMD), but in principle could
be a powerful indicator of good fluidity.

Rise of M at lower /s ABOVE <<A€) )

— transition to fluid?
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An energy/size scan of the vy fluctuation would help clarifying weather the
"perfect fluid” is transition,approach,or is always there! Polarization and



perfect fluidity

(P.Hoyer, PLB187 162 (1987) (a pretty prophetic paper): In a perfect fluid,
because of local isotropy, no polarization production is possible. Hoyer
suggested measuring production plane since its # 0 in p-p




So far measured at AGS only, and compatible with p — p.
Order of magnitude estimate for mean free path correction and local

vorticity:
i b fp d <ﬁa>
Pq ~ tanh [ T (emkd—g_y’j
Sudden jumps in polarization observable in /s OR A < transition!

Problem:This probes the mean free path,potentially, at the very end
including hadronic phase. A locally isotropic QGP followed by an succession
of elementary hadronic collisions could produce polarization (Barros and
Hama, 0712.3447 )

Zero result — " perfect fluid” fast f.o.
Sudden transitions with /s — transition to fluid
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Potentially this is exactly what we are looking for! A signature for fluidity
not requiring a large system!



Polarization (GT et al,PRC76:044901,2007)

Bad news: Polarization is a mess
many factors, at all stages of collision, contribute to the final observable

Good news: Polarization is a
mess

MESS = mess
mess

Many directions possible. Comparing directions — understanding physics




Global polarization and initial conditions (Liang et al,PRL, nucl-th/0410079)

Initial angular momentum in non-central collisions = quark polarization
due to QCD spin-orbit interactions = hadron polarization due to local
hadronization (coalescence? angular momentum conservation?)




But signature depends crucially on localization of produced partons in z
(Firestreak /Bjorken initial condition).
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Probe of “Bjorken” conditions, if not of hydro. Small mfp could spoil it.



(very few!!l) conclusions
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This would be the ideal QGP signature... and we are not there yet! There
are good reasons to fear that such a signature is unrealistic. Certainly, jet
suppression and elliptic flow do not qualify. But the scaling suggests they
might at some point, if we find where/how it breaks




(very few!!l) conclusions

Simple scalings have been found to hold for 4¥ 4V Vo
dy’ dy y207

% natural within our understanding of QCD

|, Is also natural, provided interesting dynamics happens in the
overlap region (non-pQCD)
vo unnatural within hydrodynamics, alternatives need to be looked into

(scaling more natural in a weakly coupled system )

Experimental measurements of limiting fragmentation in other soft
observables ((pr) , Rout.sidze ) could help clarify the situation.

3D viscous hydro needed to make these statements more quantitative



