6th International Workshop on

Critical Point

and

Onset of Deconfinement

August 23-29, 2010

@ Joint Institute for Nuclear Research

How to extract physics from v_{dyn} Peter Christiansen, Lund Work done together with Eva Haslum and Evert Stenlund

Outline

What is v_{dyn} and what does it measure

 Original idea: S. Voloshin for STAR, INPC2001, arXiv:nucl-ex/0109006v1. C.Pruneau, S.Gavin, and S.Voloshin, (PRC 66, 044904, 2002).

 Mathematical properties and simple models for v_{dyn} (PRC 80, 034903, 2009)

Example: Forward-backward fluctuations in pp

- Generalization of v_{dyn} to continuous variables
- Conclusions

Motivation for studying fluctuations

Large fluctuations expected near QCD tri-critical point

 Provide "L2" discrimination between models (not only mean, but also fluctuations)

> How to extract physics from v-dyn CPOD2010 - Peter Christiansen (Lund)

Ex.:2d ising model

Idea explained via 2d contour plot

.....

n = #kaons

Mean (1d)

m = #pions

.....

....

۲

We study systems where the ratios m/N and n/N (N=m+n) are almost constant.

27/8-2010

Idea explained via 2d contour plot

n = #kaons

m = #pions

Statistical fluctuations: \sqrt{m} and \sqrt{n}

Mathematical expression for v_{dvn}

• Consider $\left| \frac{m}{\langle m \rangle} - \frac{n}{\langle n \rangle} \right|$

- It has mean 0!

• We define

$$v = V \left[\left| \frac{m}{\langle m \rangle} - \frac{n}{\langle n \rangle} \right| \right] = \left\langle \left| \frac{m}{\langle m \rangle} - \frac{n}{\langle n \rangle} \right|^2 \right\rangle$$

Easy statistical behavior (no event mixing): $v_{stat} = \frac{1}{\langle m \rangle} + \frac{1}{\langle n \rangle}$ Allows the study of dynamical fluctuations: $v_{dyn} = v - v_{stat} = \frac{\langle m(m-1) \rangle}{\langle m \rangle^2} - 2 \frac{\langle mn \rangle}{\langle m \rangle \langle n \rangle} + \frac{\langle n(n-1) \rangle}{\langle n \rangle^2}$ 3 terms: cancels trivial correlations, e.g., centrality!
Independent of efficiencies

27/8-2010

What dynamical fluctuations are measured by v_{dyn} • Definition: $v_{dyn} = \frac{\langle m(m-1) \rangle}{\langle m \rangle^2} - 2 \frac{\langle mn \rangle}{\langle m \rangle \langle n \rangle} + \frac{\langle n(n-1) \rangle}{\langle n \rangle^2}$ For M=m+n, then the pair probability (mm) is: $p = P_m = \frac{\langle m \rangle}{\langle M \rangle} \qquad P_{mm} = \frac{\langle m(m-1) \rangle}{\langle M(M-1) \rangle}$ So we can rewrite v_{dyn} as: $v_{dyn} = \frac{\langle M(M-1) \rangle}{\langle M \rangle^2} \left| \frac{P_{mm}}{p^2} - 2 \frac{P_{mn}}{p(1-p)} + \frac{P_{nn}}{(1-p)^2} \right|$ • $M=2 \rightarrow pair probabilities can be written uniquely as:$ $P_{mm} = p^2 + \varepsilon P_{mn} = 2 p (1-p) - 2 \varepsilon P_{nn} = (1-p)^2 + \varepsilon \longrightarrow v_{dyn} = \frac{1}{2} \left| \frac{\varepsilon}{p^2 (1-p)^2} \right|$ • Consider M/2 pairs \rightarrow $v_{dyn} = \frac{1}{\langle M \rangle} \left| \frac{\varepsilon}{p^2 (1-p)^2} \right|$

27/8-2010

Comment on 1/<M> dependence

Ν

Consider N independent sources

Number of correlated pairs goes as N

2

- Number of uncorrelated pairs goes as N*(N-1)
- \rightarrow 1/N dependence in this case!
- Feature of the model!

It measures the pair correlations

 NB! It does not have to go as 1/<M> if you increase or decrease (CGC?) the correlations in central collisions

An example: Forward-backward correlations

For symmetric intervals we have p=½, e.g.:
Fwd: 1 < η < 2 and Bck: -2 < η < -1
Interest from phenomenology
Strong correlation between N_{fwd} and N_{tak} (UA5+STAR)
Signals collective behavior in pp
NB! v_{dn} filters out these correlations

Forward backward fluctuations

PYTHIA 8.108 Min bias pp $\sqrt{s} = 200 \text{ GeV}$ No p_T cut! Bck:-1<q<0 Fwd:0<q<1

Forward backward fluctuations

PYTHIA 8.108 Min bias pp $\sqrt{s} = 200 \text{ GeV}$ No p_T cut! Bck:-1< η <0 Fwd:0< η <1

 N_{bck} + + N_{bck} - N_{fwd} + + N_{fwd}

N_{bck}

• (Stenlund) sum rule:

 $\nu_{dyn}(N_{fwd}^{ch}, N_{bck}^{ch}) = \frac{1}{2} \left[\nu_{dyn}(N_{fwd}^{plus}, N_{bck}^{plus}) + \nu_{dyn}(N_{fwd}^{plus}, N_{bck}^{minus}) - \nu_{dyn}(N_{fwd}^{plus}, N_{fwd}^{minus}) \right]$

• NB! Note the minus sign.

Primarily probe charge conservation and transport

27/8-2010

How to extract physics from v-dyn CPOD2010 - Peter Christiansen (Lund) ch

- Fluctuations measured by v_{dyn} for PYTHIA are dominated by charge conservation
- general limit of method: strangeness (K⁻+K⁺), baryon number (p+pbar) → negative dynamical fluctuations
 NB! Results in positive v_{dyn} for sums, e.g., m=K⁻+K⁺
 To search for long range correlations: v_{dyn} (+,+) vs (+ & +)

• Alternative: Study e.g., π⁰ vs π⁺ How to extract physics from v-dyn CPOD2010 - Peter Christiansen (Lund)

m = #pions \rightarrow x = N, stock i, T

Generalized expression and interpretation

• The general expression becomes: $v_{dyn} = \frac{\langle x^2 \rangle - \langle \sigma_x^2(x) \rangle}{\langle x \rangle^2} - 2 \frac{\langle x y \rangle}{\langle x \rangle \langle y \rangle} + \frac{\langle y^2 \rangle - \langle \sigma_y^2(y) \rangle}{\langle y \rangle^2} \quad \sigma_{v_{dyn}} \sim \frac{v}{\sqrt{N_{events}}}$ • And is consistent with the old definition because for numbers: $\sigma_x^2 = x$

 Because we know that v_{dyn} cancels trivial correlations we can consider a local Gaussian model:

 $P(x, y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho_l^2}} \exp\left[-\frac{1}{2}\frac{1}{1-\rho_l^2}\left|\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - 2\rho_l\frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right|\right]$ • Then we find that

$$v_{dyn} = -2 \rho_{local} \left| \frac{\sigma_x \sigma_y}{\langle x \rangle \langle y \rangle} \right|$$

27/8-2010

Simulated examples

Results are as predicted on previous slide (curves)

• Statistical error increases when ρ_{1} is decreased How to extract physics from v-dyn CPOD2010 - Peter Christiansen (Lund)

Problem: How to determine σ ?

- For numbers there is a natural statistics:
 - Poisson
- There is no general continuous statistic
 - We have to determine σ example by example
 - And it is not clear how! And if it is at all possible....
- If we compare to a model we can always use v: $v = \frac{\langle x^2 \rangle}{\langle x \rangle^2} - 2 \frac{\langle x y \rangle}{\langle x \rangle \langle y \rangle} + \frac{\langle y^2 \rangle}{\langle y \rangle^2}$

But then the result we get is model dependent. In one model the fluctuations can be dynamical and in another not (or have different sign!).

Conclusions

- Dynamical fluctuations of number variables
 - Measures non-trivial part of pair probabilities
 - Limited by conservation e.g. charge and strangeness
 - Sum rule is needed to understand v_{dvn} for sums
- Dynamical fluctuations of continuous variables
 - Mathematically easy to define and interpret
 - Determine of the statistical σ is not straight forward and could introduce model dependence

 Could provide 2rd order discrimination for models that describe the global correlations

Backup slides

Σp_{T} vs N dynamical fluctuations

• Interest to understand the rise of $< p_T >$ with multiplicity in pp \rightarrow try to use v_{dn}

$$v = \frac{\langle m^2 \rangle}{\langle m \rangle^2} - 2 \frac{\langle m \sum p_T \rangle}{\langle m \rangle \langle \sum p_T \rangle} + \frac{\langle (\sum p_T)^2 \rangle}{\langle \sum p_T \rangle^2}$$

• We need Σp_T vs N and not $\langle p_T \rangle$ vs N for v to be able to remove the trivial correlations

• The statistical fluctuations of m and pT are: $\sigma_m^2 = m \qquad \sigma_{\sum p_T}^2 = \langle p_T \rangle^2 n + \sigma_{p_T}^2 n$

• So that \mathbf{v}_{dn} becomes: $v = \frac{\langle m(m-1) \rangle}{\langle m \rangle^2} - 2 \frac{\langle m \sum p_T \rangle}{\langle m \rangle \langle \sum p_T \rangle} + \frac{\langle (\sum p_T)^2 \rangle - \langle \sigma_{\sum p_T}^2 \rangle}{\langle \sum p_T \rangle^2}$

27/8-2010

Extracting $\sigma^{2}_{\Sigma pt}(N^{+}_{fwd})$

PYTHIA √s = 200 GeV, fwd: 0 < η < 2, bck: -2 < η < 0
No p_T cut and only positive particles to avoid charge conservation effects

$v_{d,n} (N_{fwd}^{+} \Sigma pt(+,fwd)) and v_{d,n} (N_{bdk}^{+} \Sigma pt(+,fwd))$

PYTHIA $\sqrt{s} = 200$ GeV, fwd: 0 < η < 2, bck: -2 < η < 0

As expected we find almost minimal negative fluctuations for $v_{dn} (N^+_{fwd} \Sigma pt(+,fwd)) (stars)$ – this is due to auto correlations!

For v_{dn} (N⁺_{bdk} Σpt(+,fwd)) (*circles*) we find no dynamic fluctuations!

This observable could perhaps 2rd order discriminate between models: string recombination, dipoles, flow...
 27/8-2010 How to extract physics from v-dyn CPOD2010 - Peter Christiansen (Lund)

Interpretation of dynamical fluctuations measured by v_{dn}

The expression:

$$v_{dyn} = \frac{1}{\langle M \rangle} \left| \frac{\varepsilon}{p^2 (1-p)^2} \right|$$

- Is dynamical in the sense that it measures the part of the pair-probabilities that deviates from that expected from the single particle probabilities
- v_{dn} < 0: m and n shows smaller than statistical fluctuations, e.g., conservation.
- v_{gn} > 0: m and n shows larger than statistical fluctuations, e.g., phase transition.

Why study the 3 terms together $v_{dyn} = \frac{\langle m(m-1) \rangle}{\langle m \rangle^2} - 2 \frac{\langle mn \rangle}{\langle m \rangle \langle n \rangle} + \frac{\langle n(n-1) \rangle}{\langle n \rangle^2}$

Each of the terms are sensitive to "centrality variations", i.e., for a sum of Poisson distributions we are sensitive to the global variation:

$$\frac{\langle m(m-1)\rangle}{\langle m\rangle^2} = \frac{\langle G(G-1)\rangle}{\langle G\rangle^2}$$

This global variation is the same for all 3 terms
 → Adding the 3 terms this depence falls out!

V_{dyn} (N_{fwd} , N_{bok}) vs N_{fwd} + N_{bok}

• I want to use that $v_{dn} (N^+_{fwd}, N^+_{bk}) \sim 0$ to make sure that when I construct $v_{dn} (N^+_{bk} \Sigma pt(+, fwd))$ I do not have any dynamical fluctuations at the particle level!

 Otherwise the fluctuations could originate from particle number fluctuations

27/8-2010

I believe that the fluctuations in bin 4 <|η|<5 are dominated by the net-protons

27/8-2010