

Measuring Dynamical K/ π and p/ π Fluctuations in Au+Au Collisions from the STAR Experiment

Terence J Tarnowsky for the STAR Collaboration August 24, 2010 Critical Point and Onset of Deconfinement 2010 Dubna, Russia

Motivation Behind Correlations and Fluctuations

- Many theoretical predictions that behavior of correlations and fluctuations in a deconfined phase different than that in hadron gas.
- Experimental justification from studies of the thermodynamics of phase transitions.
- Even w/o such guidance, can search for discontinuities in fluctuations and correlations as functions of incident energy and centrality (not an inclusive list):
 - Particle ratio fluctuations (K/ π , p/ π , K/p).
 - Forward-Backward multiplicity correlations.
 - Balance Functions
 - Net Charge Fluctuations
 - Etc.

Search for the QCD Critical Point

- In a phase transition near a critical point, an increase in non-statistical fluctuations is expected.
- Finite system-size effects may influence fluctuation measurements.
 - Finite-size scaling of fluctuations may indicate existence of critical point.
 - E.g. Change in behavior of quark susceptibilities.
 Aoki, Endrodi, Fodor, Katz, and Szabó *Nature* 443, 675-678 (2006)
- These may manifest in finalstate measurements.

RHIC

RHIC is an extremely versatile machine!

T. Tarnowsky

CPOD 2010, Dubna August 24, 2010 • Intersecting storage ring (ISR) hadron collider.

• 6 intersection points, currently

2 major experiments:

- PHENIX

– STAR

- Center-of-mass collision energies
 - $-\sqrt{s_{NN}} = 20-200 \text{ GeV}$ for heavy ions (e.g. Au, Cu). $-\sqrt{s_{NN}} = 22-500 \text{ GeV}$ for polarized protons.
- Two independent, superconducting rings, allow for asymmetric collisions (e.g. d+Au).
- New ion source (EBIS) will allow for U+U collisions.
- New possibilities for heavy ion collisions at CM energies as low as $\sqrt{s_{NN}} = 5$ GeV.

RHIC "Energy Scan"

- Using RHIC to run an "energy scan" to search for predicted QCD critical point.
- For Run 10, we have Au+Au collisions at $\sqrt{s_{NN}} = 200, 62.4, 39, 11.5, and 7.7 GeV.$
- Can examine our fluctuations observables to look for non-montonic behavior as a function of collision energy.

STAR Detector

- STAR is a large acceptance detector.
 - Good η and ϕ coverage for measuring fluctuations.
- |η| < 1.0
- PID:
 - $-\pi$, K, p ID for $p_T < 1$ GeV.
- ToF upgrade will enhance PID capabilities.

T. Tarnowsky

Particle ID Using STAR Time-of-Flight

- Full ToF installed for Run 10. (First stage of energy scan program.)
- Excellent separation in m²(p) for π, K, p.

Characterize Fluctuations

• NA49 uses the variable σ_{dyn}

$$\sigma_{\rm dyn} = sign \left(\sigma_{\rm data}^2 - \sigma_{\rm mixed}^2 \right) \sqrt{\left| \sigma_{\rm data}^2 - \sigma_{\rm mixed}^2 \right|}$$

 σ is relative width of *K* / π distribution

- Measure deviation from Poisson behavior using v_{dyn} $v_{dyn,K\pi} = \frac{\langle N_K (N_K - 1) \rangle}{\langle N_K \rangle^2} + \frac{\langle N_\pi (N_\pi - 1) \rangle}{\langle N_\pi \rangle^2} - 2 \frac{\langle N_K N_\pi \rangle}{\langle N_K \rangle \langle N_\pi \rangle}$
- It has been demonstrated (for K/ π and p/ π) that,

$$\sigma_{dyn}^2 \approx v_{dyn}$$

Particle Ratio Fluctuations

K/π (K⁺ + K⁻)/(π^+ + π -)

Excitation Function for $\sigma_{dyn,K/\pi}$ STAR central Au+Au (0-5%) collisions with SPS central Pb+Pb collisions (0-3.5%).

August 24, 2010

Scaling w/ $dN/d\eta$ in Au+Au

TAR

August 24, 2010

• Charge dependent and independent $v_{dyn,K/\pi}$ was found to scale linearly with dN/d η (at small dn/d η) in Au+Au at 200 and 62.4 GeV

Au+Au 39 GeV, $v_{dyn,K/\pi}$

August 24, 2010

Au+Au 39 GeV, $(dN/d\eta)v_{dyn,K/\pi}$

- If similar to other energies, expect $v_{dyn,K/\pi}$ to scale linearly w/ dN/d η .
- Extrapolated value is near to mid-periperhal Au+Au 200 GeV (0.34).
- More study is needed to determine if linear scaling w/ dN/dη is actually broken.
- TOF values are larger than TPC because TOF is subset of TPC data $(1/N_{ch})$ dependence of v_{dyn}).

Excitation Function for $\sigma_{dyn,K/\pi}$ from STAR Au+Au data

Particle Ratio Fluctuations

$$p/\pi$$

(p⁺ + p⁻)/(π^+ + π -)

Excitation Function for $\sigma_{dyn,p/\pi}$ from STAR Au+Au data

T. Tarnowsky

August 24, 2010

System Size Dependence

Why Cu+Cu?

- Provides different energy density at same μ_B as Au+Au.
 - Look for deviations from behavior in Au+Au.
- Some observables (e.g. v₁, F-B correlations, ...) do not scale with N_{part} in Cu+Cu → Au+Au.
- Complete systematic checks.

Excitation Function for $\sigma_{dyn,p/\pi}$ Current Landscape

20

T. Tarnowsky

Excitation Function for $\sigma_{dyn,K/\pi}$ Current Landscape

Summary I

- The STAR experiment has results on fluctuations and correlations for ٠ several colliding systems and energies that provide new insights into particle production.
- New results from initial data collected during RHIC energy scan to ٠ search for QCD critical point.
 - For K/π :
 - First results from $\sqrt{s_{NN}} = 39$ GeV Au+Au are consistent w/ results from higher energies. Still investigating systematics. Additional data will be forthcoming.
 - Results from $\sqrt{s_{NN}} = 7.7$ GeV Au+Au under investigation.
 - For p/π :
 - First results from $\sqrt{s_{NN}} = 39$ and 7.7 GeV Au+Au.
 - At $\sqrt{s_{NN}} = 7.7$ GeV, good agreement w/ NA49 measurement.
 - Results more stable than K/π fluctuations
 - Charge separated results following soon.
 - TOF data is consistent fluctuations measured by the TPC.

 - $\sqrt{s_{NN}} = 11.5$ GeV Au+Au data production is on the horizon. $\sqrt{s_{NN}} = 27$ and $\sqrt{s_{NN}} = 18$ GeV Au+Au collisions are scheduled for Run 11.

Summary II

- K/ π and p/ π fluctuations Cu+Cu are constant from $\sqrt{s_{NN}} = 200-22.4$ GeV.
 - Cu+Cu 0-10% larger fluctuations than Au+Au 0-5%, consistent with N_{ch} scaling. Better agreement w/ Au+Au 0-5% if comparing Cu+Cu 0-5%.
 - UrQMD (not shown) predicts larger values for Cu+Cu 0-10% than the data shows.
- The RHIC Beam Energy Scan (BES) program is ongoing and is probing new regions of the QCD phase diagram, while revisiting energies studied at fixed target experiments using a mature collider and well understood detector setup.
 - Provide a comprehensive picture of the $T-\mu_B$ phase space at the same facility.