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Outline

• What is known about (tri)critical points  from exactly solvable 
statistical models

• The role of surface tension for (tri)critical point existence

• Order parameters: field theoretical vs.  stat.mechanical

• A surface tension induced generation of a Triple point  

• Conclusions 
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Well Known Statistical Models with CEP 

 CEP in spin systems -
THEORY

 Fisher Droplet Model (FDM)-

Condensation of gases

 Statistical Multifragmentation 
Model (SMM)

[without Coulomb interaction]- 
Liquid-Gas PT in nuclear matter

K.Wilson, ε 
expansion...

M. Fisher,  
Physica 3 (1967);
J.B. Elliott et al,  
nucl-ex/0608022 
(2006)

J. P. Bondorf et al, 
Phys. Rep. 257(1995);

K.A.B., Phys. Part. 
Nucl. 38 (2007);

Is valid at CEP only!         
Was not systematically 

extended to other systems

Describes the gas only! 

NO liquid phase!

Elaborate model, but liquid 
phase has limiting density! 

⇒problems at high pressure!
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Is valid at CEP only!         
Was not systematically 

extended to other systems

Describes the gas only! 

NO liquid phase!

Elaborate model, but liquid 
phase has limiting density! 

⇒problems at high pressure!

PROBLEM: for liquids  ε-expansion requires ODD     
powers of spin interaction!           see Sh. Ma, MThCPh       
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• In FDM and SMM the FREE ENERGY of  a V-volume cluster has                  
the Bulk, V**1,  Surface, V**(2/3), and Topological, -T ln (V), parts. 

• At the phase equilibrium the Bulk part of free energy vanishes (equal pressures). 

• At the (tri)critial point the Surface part of free energy vanishes                         
(the energy and entropy gaps between gaseous and liquid phases disappear; 
recall the critical opalescence). 

Free Energy in Statistical Models
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Free Energy in Statistical Models

What about the surface tension in QCD ? 
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Surface Tension from Confining String
Consider confining (unbroken) string between static q & anti q of length L and 

radius R<<L

q q-

Its free energy measured from Polyakov loop correlator is 

3

Fstr = σstrL

Fcyl(T, L, R) ≡ − pv(T )πR2L︸ ︷︷ ︸
thermal

+ σsurf(T )2πRL︸ ︷︷ ︸
surface

+ T τ ln
V

V0︸ ︷︷ ︸
small

.
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• No medium effects up to 0.3fm

• Strong effects at r > 0.4fm

Coulomb part confining part
L

L

color anticolor

outer pressure Ptot

Consider now this tube as the cylindrical bag of length L and radius R<<L

Neglect  effects of color sources and get cylinder FREE ENERGY as:

3

Fstr = σstrL

Fcyl(T, L, R) ≡ − pv(T )πR2L︸ ︷︷ ︸
bulk

+ σsurf(T )2πRL︸ ︷︷ ︸
surface

+ T τ ln
V

V0︸ ︷︷ ︸
small

.

σstr(T ) = σsurf(T ) 2πR − pv(T )πR2 +
T τ

L
ln

[
πR2L

V0

]

From bag model pressure pv(T = 0) = −(0.25)4 GeV4, R = 0.5 fm and
σstr(T = 0) = (0.42)2 GeV2 ⇒

σsurf(T = 0) = (0.2229 GeV)3 +0.5 pv R ≈ (0.183 GeV)3 ≈ 157.4 MeV fm−2.

For vanishing σstr one has σLQCD
str ≈ ln(L/L0)

R2 C

This is due to increase of surface fluctuations ⇒ in general

σstr(T ) Rk → ωk > 0 for k > 0

Parametrize σstr = σ0
str tν, where t ≡ Ttr−T

Ttr
→ +0

and find total pressure and total entropy density

ptot = pv(T )−σsurf(T )
R

≡ σsurf(T )
R

− σstr

πR2 →
[
σstr

ωk

] 1
k

[
σsurf −

ωk

π

[
σstr

ωk

]k+1
k

]

stot =
∂ ptot

∂ T
→

1

k σstr

[
σstr

ωk

] 1
k ∂ σstr

∂ T
σsurf

︸ ︷︷ ︸
dominant since σstr→ 0

+
[

σstr

ωk

] 1
k ∂ σsurf

∂ T
− k+2

π k

[
σstr

ωk

] 2
k ∂ σstr

∂ T

For finite σsurf and ∂ σstr

∂ T
< 0 ⇒ σsurf < 0 since stot > 0
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 String Tension vs Surface Tension

Equating the cylinder FREE ENERGY to string free energy

3

Fstr = σstrL
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thermal

+ σsurf(T )2πRL︸ ︷︷ ︸
surface

+ T τ ln
V

V0︸ ︷︷ ︸
small

.

σstr(T ) = σsurf(T ) 2πR − pv(T )πR2 +
T τ

L
ln

[
πR2L

V0

]

I.  We got a possibility to determine QGP bag surface tension directly from LQCD!
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K.A.B., G.M.Zinovjev,  arXiv:0907.5518

III.  At the cross-over temperature the bag surface tension must be negative!

II. At T= 0 the bag surface tension is rather large!
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K.A.B., G.M.Zinovjev,  arXiv:0907.5518

III.  At the cross-over temperature the bag surface tension must be negative!

II. At T= 0 the bag surface tension is rather large! From exactly solvable model of surface deformations                                                                                                     
K.A.B. et al, PRE 72 (2005) we know that  there is 

NOTHING wrong, if  surface F = E - TS  < 0 above critical T! 
This means only that entropy dominates! 
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µ

T

Hadrons

triCEP
QGP

Hadrons+QGbags

=> QGBST Model exploits the same mechanism for (tri)critical endpoint generation 
as in usual liquids: surface tension coefficient Σ plays a decisive role in it!

Hadrons: spherical shape of finite volume

QGP: an infinite cluster of nearly spherical shape

T

Hadrons

CEP
QGP

Hadrons + QGbags

15

Σ(T, µB) > 0 Σ(T, µB) > 0 Σ(TΣ(µB), µB) = 0

15

Σ(T, µB) > 0 Σ(T, µB) > 0 Σ(TΣ(µB), µB) = 0

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ(µB), µB) = 0

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ(µB), µB) = 0

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ, µB) = 0

µ

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ, µB) = 0

B B

Quark Gluon Bags with Surface Tension
Modern paradigm: near deconfinement there is sQGP = strongly interacting liquid 

K.A.B., V.K.Petrov, G.M.Zinovjev, 
Europhys. Lett. 85 (2009);
PRC 79 (2009); arXiv:0904.4420

K.A.B., PRC 76 (2007);  arXiv:0809.1023;

cross-over cross-over

2-nd order phase transition

Hadrons+QGbags: highly nonspherical shapes!
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cross-over cross-over

2-nd order phase transition

QGBST model: 1-st order deconfinement PT 
degenerates into cross-over  due to Σ < 0

Hadrons+QGbags: highly nonspherical shapes!
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QGBST Model
Volume spectrum of bags in isobaric ensemble

discrete = hadrons continuous = QG bags

2

nuclear multifragmentation [15], nucleation of real fluids [16], the compressibility factor of real fluids [17], clusters of
the Ising model [18] and percolation clusters [19].

On the basis of the statistical multifragmentation model (SMM) [20] commonly used to study nuclear multifrag-
mentation, there was recently formulated a simplified SMM version which was solved analytically both for infinite
[21, 22] and for finite [23–25] volumes of the system. In the SMM the surface tension temperature dependence differs
from that one of the FDM, but it was shown [22] that the value of Fisher exponent τSMM = 1.825 ± 0.025, which
contradicts to the FDM value τFDM ≈ 2.16, is consistent with ISiS Collaboration data [26] and EOS Collaboration
data [27]. Lately, our analytical results [22] were confirmed by the numerical studies [28, 29].

Such an experimentally obtained range of the τ index is of a principal importance because it gives a very strong
evidence that the SMM, and, thus, the nuclear matter, has a tricritical endpoint rather than a critical endpoint
[21, 22].

This success of the SMM initiated the studies of the surface partitions of large clusters within the Hills and Dales
Model [30, 31] and led to a discovery of the origin of the temperature independent surface entropy similar to the
FDM. As a consequence, the surface tension coefficient of large clusters consisting of the discrete constituents should
linearly depend on the temperature of the system [30] and must vanish at the critical endpoint. However, the present
formulation of the Hills and Dales Model [30, 31], which successfully estimates the upper and lower bounds of the
surface deformations of the discrete physical clusters, does not look suitable for quark-gluon bags. Therefore, in this
work we assume a certain dependence of the surface tension coefficient on temperature and baryonic chemical potential,
and concentrate on the impact of surface tension of the quark-gluon bags on the properties of the deconfinement phase
diagram and the QCD critical endpoint. A discussion of the origin of the surface tension is a subject of our future
work.

Here we will show that the existence of a cross-over at low values of the baryonic chemical potential along with the
1st order deconfinement PT at high baryonic chemical potentials leads to the existence of an additional PT of the 2nd

or higher order along the curve where the surface tension coefficient vanishes. Thus, it turns out that the QGBST
model predicts the existence of the tricritical rather than critical endpoint.

The paper is organized as follows. Sect. II contains the formulation of the basic ingredients of the GBM. In Sect. III
we formulate the QGBST model and analyze all possible singularities of its isobaric partition for vanishing baryonic
densities. This analysis is generalized to non-zero baryonic densities in Sect. IV. Sect. V is devoted to the analysis of
the surface tension induced PT which exists above the deconfinement PT. The conclusions and research perspectives
are summarized in Sect. V.

II. BASIC INGREDIENTS OF THE GBM

To remind the basic ingredients of the GBM let us consider the Van der Waals gas consisting of n hadronic species,
which are called bags in what follows, at zero baryonic chemical potential. Its grand canonical partition (GCP) is
given by [3]

The Grand canonical partition (GCP) of n hadronic bags
with the hard-core repulsion of the Van der Waals type (µB = 0)

Z(V, T ) =
∑

{Nk}

[ n∏

k=1

[(V − v1N1 − ...− vnNn) φk(T )]Nk

Nk!

]
θ (V − v1N1 − ...− vnNn) , (1)

thermal particle density of bags of mass mk and eigen volume vk and degeneracy gk

φk(T ) ≡ gk φk(T ) ≡ gk

2π2

∞∫

0
p2dp e−

(p2 + m2
k)1/2

T = gk
m2

kT
2π2 K2

(
mk
T

)

Using the standard Laplace transformation with respect to volume V ,
one gets the isobaric partition with the simple pole:

Ẑ(s, T ) ≡
∞∫

0

dV exp(−sV ) Z(V, T ) =
1

[s− F (s, T )]
(2)

with F (s, T ) ≡
n∑

j=1

exp (−vjs) gjφ(T, mj) . (3)

3

Assume: there exist the discrete mass-volume spectrum FH(s, T )
of hadrons lighter than M0 and the continuous volume spectrum FQ(s, T )

F (s, T ) ≡ FH(s, T ) + FQ(s, T ) =
n∑

j=1

gje
µj
T −vjsφ(T, mj) + u(T )

∞∫

V0

dv
exp [(sQ(T, µB) − s) v − Σ(T, µB) vκ]

vτ
(4)

gk φ(T, mk) ≡ gk

2π2

∞∫

0
p2dp e− (p2 + m2

k)1/2

T

Term FH has no s-singularities at any T and generates a simple pole only!

The bag spectrum FQ(s, T ) is chosen to give an essential singularity sQ(T ) ≡ pQ(T )
T

.

sQ(T ) defines QGP pressure pQ(T ) at zero baryonic density (MIT Bag Model).

The (reduced) surface tension coefficient σ(T ) = σo

T
·
[

Tcep−T
Tcep

]2k+1
(k = 0, 1, 2, ...).

σo = Const > 0, but can be a smooth function of T (and µB).

For k = 0 the two terms in the surface (free) energy of a v-volume bag have a simple interpretation [13]: thus, the
surface energy of such a bag is σ0vκ, whereas the free energy, which comes from the surface entropy σoT −1

cepvκ, is
−TσoT −1

cepvκ. Note that the surface entropy of a v-volume bag counts its degeneracy factor or the number of ways
to make such a bag with all possible surfaces. This interpretation can be extended to k > 0 on the basis of the Hills
and Dales Model [30, 31].

Surface free energy σovκ
[

Tcep−T
Tcep

]2k+1
consists of

surface energy ω vκT + σovκ
[

Tcep−T
Tcep

]2k+1
(strictly saying for k = 0 only)

and surface entropy ω vκ ≡ degeneracy factor of v-volume bag.

• k = 0 is known from FDM, k > 0 follows from the Hills and Dales Model (HDM)
for short range interaction between bags (suited for color confinement!)

K. A. B., L. Phair and J. B. Elliott, Phys. Rev. E 72 (2005) 047106;
K. A. B., J. B. Elliott, Ukr. J. Phys. 52 (2007)

• Power κ < 1 describes the bag’s effective surface. It can differ from 2
3

for spaghetti-like, lasagna-like bags or bubbles known from nuclear physics
see D. G. Ravenhall, C. J. Pethick and J. R. Wilson, PRL 50 (1983) 2066.

Compare to “polymerization” of gluonic quasiparticles:
J. Liao, E. Shuryak, PRD 73 (2006) 014509

• The crucial point for cross-over existence:
for T > Tcep the surface free energy is negative ⇒ nonspherical bags dominate!

In choosing such a simple surface energy parameterization we follow the original Fisher idea [13] which allows one
to account for the surface energy by considering some mean bag of volume v and surface vκ. The consideration of
the general mass-volume-surface bag spectrum we leave for the future investigation.

The surface energy should, in principle, be introduced into a discrete part of the mass-volume spectrum FH , but a
successful fitting of the particle yield ratios [6] with the experimentally determined hadronic spectrum FH does not
indicate such a necessity.
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Main parameters: 

QGBST Model incorporates the best features of Hadron Gas Model, 
Bag Model and Fisher droplet model 

3
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Term FH has no s-singularities at any T and generates a simple pole only!

The bag spectrum FQ(s, T ) is chosen to give an essential singularity sQ(T ) ≡ pQ(T )
T .

sQ(T, µB) defines pressure of QG bags pQ = TsQ(T, µB) at zero baryonic density (MIT Bag Model).

Σ(T, µB) is reduced surface tension coefficient

κ = 2
3
, Fisher exponent τ > 1

σo = Const > 0, but can be a smooth function of T (and µB).

g(r) =
n∆(r)

4 πr2∆r ρ

n∆(r) is number of particles in a layer of width ∆r

located at distance r, ρ – mean particle density

For a pressure p = T F ( p
T

, T, µB) find an average of

〈 vq exp [+Σ(T, µB) vκ] 〉 over v-spectrum for q ≥ τ − 1

〈 vq exp [+Σ(T, µB) vκ] 〉 =

=
n∑

j=1

gje
µj
T −vj

p
T φ(T, mj) vq

j eΣ(T,µB ) vκ
j + u(T )

∞∫

V0

dv
exp [(sQ(T, µB) − p/T ) v]

vτ−q
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.
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arXiv:0904.4420
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TriCEP: dΣ is continuous function  at                => 
                                                                  surface tension induced 2-nd order PT 

Parametrization of the surface tension coefficient

Σ±(T, µB) = ∓
1

T
σ±

(

±
T − TΣ(µB)

TΣ(µB)

)ζ±

σ± ∼



Tcep − TΣ −
(

∂TΣ

∂µB

)

cep
(µcep − µB)




ξ±

t ≡
Tcep − TΣ

Tcep
∼ (µcep − µB)ξT

Values of powers are defined as: ζ± ≥ 1, ξ± > 0 and ξT ≥ 1.

Case ζ+ = 0 corresponds to of Fisher parametrization of Σ.
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Order Parameter in LQCD
Should unambiguously distinguish all phases and all transitions:

hadrons, QGP, QG bags + hadrons above cross-over;
deconfinement, cross-over & surface tension induced PT 

LQCD:  SU(3)c X SU(3)f with physical quark masses = Im(Polyakov loop)
Borisenko, Petrov, Zinovjev, PLB 221 (1989)

20 years later it is confirmed in SU(3)c 
gluodynamics!

Gattringer et al arXiv1004.2200

-0.2 0.0 0.2 0.4
-0.4

-0.2

0.0

0.2

-0.2 0.0 0.2 0.4
-0.4

-0.2

0.0

0.2

T = 0.63 T
c

T = 1.32 T
c

Figure 1: Scatter plots of the spatially averaged Polyakov loop P in the
complex plane for configurations below (lhs. panel) and above Tc (rhs.). We
show the results for our 403 × 6 ensembles.

and the path integral measure of gluodynamics, that is broken spontaneously
above the deconfinement temperature Tc. As long as the volume is finite all
three sectors are populated, while in an infinite volume only one of the three
phase values survives. This center symmetry and its spontaneous breaking are
the basis for the above mentioned Svetitsky-Jaffe conjecture [1].

The relation of the deconfinement transition of SU(N) gauge theory to ZN -
symmetric spin models has an interesting implication: For such spin models it
is known that suitably defined clusters made from neighboring spins that point
in the same direction show the onset of percolation at the same temperature
where the ZN -symmetry is broken spontaneously. For, e.g., the Ising system
these percolating clusters were identified [6] as the Fortuin-Kasteleyn clusters
[7]. An interesting question is whether the cluster- and percolation properties
can be directly observed in a lattice simulation of gluodynamics – without the
intermediate step of the effective spin theory [2] for the Polyakov loops.

For the case of gauge group SU(2) such cluster structures were analyzed in
a series of papers [8, 9], while for SU(3) the formation of center clusters has
not yet been explored. In this paper we try to close this gap and study the
behavior of the local loops L(!x) and the possible formation of center clusters.
Furthermore, we study center clusters not only near Tc (where they directly can
be expected from the Svetitsky-Yaffe conjecture) but explore their emergence
and properties in a window of temperatures ranging from 0.63 Tc to 1.32 Tc.

2

1.  It has to be confirmed in full QCD

2.  It is unclear how to distinguish phases on both sides of cross-over

However:

ReL ReL

ImL
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Order Parameter in Liquids
At QM-2005  M. Thoma suggested to use the usual 

pair radial distribution function g(r) both for 
liquid QGP (=sQGP) and for gaseous QGP(=?)

3

Assume: there exist the discrete mass-volume spectrum FH(s, T )
of hadrons lighter than M0 and the continuous volume spectrum FQ(s, T )

F (s, T, µB) ≡ FH(s, T, µB) + FQ(s, T, µB) =
n∑

j=1

gje
µj
T −vjsφ(T, mj) + u(T )

∞∫

V0

dv
exp [(sQ(T, µB) − s) v − Σ(T, µB) vκ]

vτ
(4)

gk φ(T, mk) ≡ gk

2π2

∞∫

0
p2dp e− (p2 + m2

k)1/2

T

Term FH has no s-singularities at any T and generates a simple pole only!

The bag spectrum FQ(s, T ) is chosen to give an essential singularity sQ(T ) ≡ pQ(T )
T .

sQ(T, µB) defines pressure of QG bags pQ(T, µB) at zero baryonic density (MIT Bag Model).

Σ(T, µB) is reduced surface tension coefficient

κ = 2
3 , Fisher exponent τ > 1

σo = Const > 0, but can be a smooth function of T (and µB).

g(r) =
n∆(r)

4 πr2∆r ρ
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4 πr2∆r ρ

n∆(r) is number of particles in a layer of width ∆r

located at distance r, ρ – mean particle density

6 M. H. Thoma

For verifying and investigating the liquid state quantitatively one could consider exper-
imentally as well as theoretically the so called static structure function which is closely
related to the Fourier transform of the pair correlation function (3). The static structure
function is a standard tool for the experimental and theoretical analysis of liquids [ 19].
The qualitative behavior of the static structure functions for liquids and gases is shown
in Fig.4. In the case of a liquid the static structure function shows oscillations with de-
creasing amplitudes for large momenta. For an interacting gas, on the other hand, the
static structure function increases monotonically reaching quickly a saturation value.

S(p)
Liquid

Gas

p

1.5

1

0.5

2 4 6 8 10

Fig.4: Qualitative behavior of the static structure functions for a liquid and a gas.

In Ref.[ 20] we defined the static structure function for the case of the QGP and showed
that it is related to the longitudinal part of the QCD polarization tensor. Furthermore
we argued that QCD lattice simulations should be able to prove the liquid behavior of
the strongly coupled QGP by computing the static structure function. To demonstrate
the use of this definition and as a reference for lattice calculations, we have calculated the
static structure function within the Hard Thermal Loop (HTL) approximation, yielding
[ 20]

S(p) =
2NfT 3

n

p2

p2 + m2
D

, (5)

where Nf is the number of light quark flavors, n the parton density, and mD = 1/λD

the Debye screening mass which is proportional to gT in the HTL approximation. This
p-dependence clearly belongs to an interacting gas which is not surprising as the HTL
approximation is based on the high-temperature assumption, T ! Tc.

The pair correlation function follows from the Fourier transform of S(p) − 1 as

g(r) = −
NfT 3

2πn

m2
D

r
e−mDr, (6)

showing no peaks which corresponds, of course, also to the gas phase.
Finally, we want to point out that strongly coupled plasmas show in general a cross

section enhancement for the interaction of the particles within the plasma. The reason is
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2.  It is unclear how does g(r) behaves  at (tri)CEP

Clearly, the same should work for hadron gas to sQGP phase transition!

However:

1.  It is unclear how can g(r) distinguish phases on both sides of cross-over 

Signals 
near order 
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Condensation in Liquids
CONDENSATION in liquids is another physical process signaling 1-st PT:

liquid phase is a single infinite fragment; 
gaseous phase consists of small fragments; 
mixed phase is their mixture 

Formation of infinite fragment is a natural order parameter for deconfining sQGP

However, QGBST model shows that just mean volume is not suited for this role

It is necessary to account for the surface tension effect!

Gas to liquid PT   is  a formation of an infinite fragment  =>

3

Assume: there exist the discrete mass-volume spectrum FH(s, T )
of hadrons lighter than M0 and the continuous volume spectrum FQ(s, T )

F (s, T, µB) ≡ FH(s, T, µB) + FQ(s, T, µB) =
n∑

j=1

gje
µj
T −vjsφ(T, mj) + u(T )

∞∫

V0

dv
exp [(sQ(T, µB) − s) v − Σ(T, µB) vκ]

vτ
(4)

gk φ(T, mk) ≡ gk

2π2

∞∫

0
p2dp e− (p2 + m2

k)1/2

T

Term FH has no s-singularities at any T and generates a simple pole only!

The bag spectrum FQ(s, T ) is chosen to give an essential singularity sQ(T ) ≡ pQ(T )
T .

sQ(T, µB) defines pressure of QG bags pQ = TsQ(T, µB) at zero baryonic density (MIT Bag Model).

Σ(T, µB) is reduced surface tension coefficient

κ = 2
3
, Fisher exponent τ > 1

σo = Const > 0, but can be a smooth function of T (and µB).

g(r) =
n∆(r)

4 πr2∆r ρ

n∆(r) is number of particles in a layer of width ∆r

located at distance r, ρ – mean particle density

For a pressure p = T F ( p
T

, T, µB) find an average of

〈 vq exp [+Σ(T, µB) vκ] 〉 over v-spectrum for q ≥ τ − 1

〈 vq exp [+Σ(T, µB) vκ] 〉 =

T

p




n∑

j=1

gje
µj
T −vj

p
T φ(T, mj) vq

j eΣ(T,µB ) vκ
j + u(T )

∞∫

V0

dv
exp [(sQ(T, µB) − p/T ) v]

vτ−q




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µ

T

Hadrons

triCEP
QGP

QGbags+hadrons

15

Σ(T, µB) > 0 Σ(T, µB) > 0 Σ(TΣ(µB), µB) = 0

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ(µB), µB) = 0

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ, µB) = 0

B

cross-over

2-nd order phase transition

4

∼






Σ > 0, 〈 vq exp [+Σ vκ] 〉 < ∞ ≡ Hadronic phase

Σ > 0, 〈 vq exp [+Σ vκ] 〉 = ∞ ≡ Mixed phase, QGP

Σ = 0, 〈 vq exp [+Σ vκ] 〉 = ∞ ≡ at triCEP

Σ < 0, 〈 vq exp [+Σ vκ] 〉 < ∞ ≡ Nonspherical QGBags + Hadrons

Σ = 0 line ≡ phase boundary

(5)

Natural Order Parameters for TriCEP
Second OP is surface tension coefficient:

1. without Σ one cannot determine a condensation line  

2. sign of Σ  distinguishes two physically different states  at  a cross-over

1<τ≤ 2  => q ≥ 1

For this case OP can be 
mean volume
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Natural Order Parameters for CEP
For CEP the situation is similar:

4

∼





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Σ < 0, 〈 vq exp [+Σ vκ] 〉 < ∞ ≡ Nonspherical QGBags + Hadrons
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(5)

∼






Σ > 0, 〈 vq exp [+Σ vκ] 〉 < ∞ ≡ Hadronic phase

Σ = 0, 〈 vq exp [+Σ vκ] 〉 = ∞ ≡ CEP, Mixed phase (QGP)

Σ = 0, 〈 vq exp [+Σ vκ] 〉 < ∞ ≡ cross-over line

Σ < 0, 〈 vq exp [+Σ vκ] 〉 < ∞ ≡ Nonspherical QGBags + Hadrons

(6)

τ> 2  => q =τ-1 > 1

i.e. OP is not just a volume, 
but its power  > 1
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1. This scheme is valid for simple liquids as well  

2. In fact, such a scheme gives an alternative way to find τ and Σ  
in microscopic models from v-distribution, e.g. in LQCD

τ> 2  => q =τ-1 > 1

i.e. OP is not just a volume, 
but its power  > 1
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µ

T

Hadrons

triCEP QGP

Hadrons+QGbags

TripleP
15

Σ(T, µB) > 0 Σ(T, µB) > 0 Σ(TΣ(µB), µB) = 0 15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ, µB) = 0

Triple Point Generation for triCEP

Vanishing surface tension can  induce a Triple point!

1. It is naturally to expect that besides (tri)CEP it has a Triple point

2. in simple liquids triple point temperature < (tri)CEP temperature =>

Since sQGP is a strongly interacting liquid =>

One can expect a Triple point existence NOT the Triple point of 
Pisarski & McLerran!

This Triple point is unusual since it 
has 1-st, 1-st and 2-nd order PTs

2-nd order phase transition

cross-over

Motivation: different constituents have different interaction patterns =>
They should have different 

surface tension!

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ, µB) = 0
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µ

T

Hadrons

CEP

Hadrons+QGbags

TripleP
15

Σ(T, µB) > 0 Σ(T, µB) > 0 Σ(TΣ(µB), µB) = 0

15

Σ(T, µB) > 0 Σ(T, µB) < 0 Σ(TΣ, µB) = 0

Triple Point Generation for CEP

Such a possibility is expected for color superconducting PT

1. If dΣ has a discontinuity at Σ=0 line on r.h.s. of  Triple point => 
                                                                Usual Triple point: 1-st, 1-st & 1-st order PTs

2. If dΣ has no discontinuity at Σ=0 line on r.h.s. of  Triple point =>
                                               1-st, 1-st & 2-nd order PTs

In case of CEP there are 2 possibilities:

cross-over
In either case this PT is 

a surface tension induced PT 
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Conclusions 

Exactly solvable models for (tri)critical endpoint show us that the 
surface tension of QG bags plays a crucial role in the (tri)CEP existence.

QGBST Model allows us to introduce 2 order parameters to distinguish 
all phases located around (tri)CEP.  Both of order parameters are 
related to surface tension coefficient!

QGBST Model with (tri)CEP can be extended to generate a Triple point. 
A zero surface tension line plays a KEY ROLE  in a Triple point 
generation.
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Surface Free Energy:  F = E -TS
To find surface F one has to count for ALL surface deformations together with energy costs

Can be exactly done within Hills and Dales Model for v-volume cluster:  
                                                                                                     K.A.B. et al, PRE 72 (2005)

= + + + + +

Source of Source of SSurface urface EEntropyntropy
Is the surface deformations of the bag of !xed volume v !

One has to count ALL surfaces of the bag of !xed volume v !

Done EXACTLY within the Hills and Dales model for clusters in GCE
"approx. v conserv., small amplitudes of deformations#. K.A.B. et al PRE 72 "2005#

Simplest case "M. Fisher#

Checked on d =2 & 3 dimensional Ising clusters! Moretto et al PRL 94 "2005#,
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2
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c , λU ≈ 1.06 T −1
c
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Thus, there is NOTHING wrong, if  surface F < 0 above critical T! 
This means only that entropy dominates! 
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What about the surface tension in QCD ? 
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 Belief of Many: CEP is Chiral CEP 

Such a belief is based on MEAN-FIELD approximation

However: mean-field models are NOT TRULY statistical ones since they do not 
account for full phase volume

Chiral Symmetry in QCD is NOT EXACT in our world due to nonzero quark masses

=>  there is first principle arguments to believe that CS Restoration 
happens via 1-st order phase transition 

                                     => (tri)CEP in QCD has another origin than CSR

MEAN-FIELD models are good when the surface effect is negligible:

I. small constituents at low densities (e.g. VdWaals EOS)
II. interior of large constituent (e.g. dense liquid EOS )

MEAN-FIELD models do not work, if there is phase separating boundary
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