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Aim

Investigate the one loop polarization tensor of a non Abelian vector field (gluon)
in a chromo magnetic background field
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homogenous Abelian chromo magnetic field, is solution of the eom

Motivation

A chromo magnetic field is likely to be spontaneously generated by gluons due
to their magnetic moment (tachyonic mode)



some definitions

What means 'neutral’ and ’charged’ gluons?
consider SU(2)-field: Af(x) it is a neutral vector field, a € SU(2)

Q(r) = 2o (AL () + 42 (x)

Qu(x) = A, (z)

then Q7 (x) is a charged vector field whereas @, () is a neutral one
0,0"Qu(r) =

(DED* gy — 2igF,0) Qi (z) =

with the covariant derivative Di 0,£iB, in an Abelian magnetic background

make a transformation:

wave equations:

0

field B = 0™ °B, Q7L
lk
coupling between the fields:
+ -
Wv W,
- -




scalar field spinor field vector field
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E2 = B(2n+1) E2=B(2n+1+1)

In a technical sense, it is interesting to extend the formulas known from QED
in magnetic field (Schwinger proper time formalism) to non Abelian vector field

while we expected ’only’ technical complications, there appeared more serious
ones



Vacuum energy in a homogeneous magnetic background field

vacuum energy = effective potential
use zeta functional regularization

B [ dk —s
scalar: Ey = 5 ° n§>0 m? + k3 + B(2n + 1))
: dks 2 2 78
spinor: Ey = - 5 nE>O U_gil (m* + k5 + B(2n+1+0))
dk e
vector: Ey = il g E (k3 4+ B(2n+1+ 20))

n>0o0==+1



use proper time representation (pseudo Euclidean)

o0 3—1
(m?+ k2 + B(2n +1))7* =i+ / WL emi(mt i B i)
o tT(s—3)

carry out the summation over n and perform Wick rotation t — —it

B > dt 1 2
lar: E - . _ts—l —tm
seatt | 82 /0 t 2 sinh(Bt) ©
, B *dt 2
spinor: E, = 8?68/0 Tt coth(Bt)e
B > dt
vector: Ey = - 33 Cs /0 Tts_l [eP" + e P coth(Bt)]

cs=1+(y+Ind—2)s+...

This is the contribution from the tachyonic mode,
here one needs to make the ‘Anti’-Wick rotation :
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perform the renormalization and calculate the finite parts

. v In2 1 ,
lar: gren _ —+('(~1) ~0.16
scalar 0 12—|— = —|—6—|—§( )~ 0
In2 5
spinor: Ey" = —% — DT + £ 4¢'(—1) ~ 1.07
5} In2 1
vector: Eyf" = — g + I; + 3 +2¢'(—1) ~ —0.25

the ’Anti’~-Wick rotation in the tachyonic mode is so far the only complication
beyond pure technical ones



propagators

AN =L =[dse” p?=pi+pi+B(2n+1)

0
oo

v ' =2 = [ds Gupre™F k* = ki + k3 + k3 + k3
0

o0 2

p VNV = (ﬁﬁ) = [ds Eype™”  p*=pij+p3+BQ2n+1)

[ 0

with B, = 5HM,+Z'FW/ sinh(2sB)—|—5jﬂ, cosh(2sB)
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one loop polarization tensor (gluon self energy)

basic loop O — 5P ¢ t(p—k)”

integration over the loop momentum p (Schwinger 1973)

neutral charged
I g
S = tanh(s) A=pip_, m:3+%1nz_l
T = tanh(t) 1y =t + sinh(s) et

in addition there are tadpole graphs and ghosts
p+k




general structure

II; = Tjods dt M;(s,t) (©)

B
(4m)2

neutral charged

2
MW (s,t)=4—-2 (S :L i) cosh(2(s + t)) MW (s, t) = ( ) cosh(2s)
s
3
M(2,3,4) (S, t) — M(z) (37 t) _ COSh 2t 4+ . )
M®)(s,t) = —2 — cosh(2s) + cosh(2t) (3 + t)A

M(374a5) (S,t) —

: 2
MO(s,1) — sinh(2s)(2t* — cosh(2s) + 1)

2A

A = jp_, where pq =t + sinh(s) e**
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convergence for s — oo
note: M;(s,t) — e**m;(s,t)

therefore divide M; = e**m;(s,t) + M; — e**m;(s, t)

N~ ~~ -’

and I, = ms  + 1B

(] 1

perform ’Anti>-Wick rotation in part A: (s,t) — (s,t)e'™

after which the integrations do converge (IR)



result of calculation for neutral polarization tensor on-shell (12 = 0)

(3-32 -871+2+2 7n) Zeta[ 2]
Pi(2)= (4+4i)m +- ' 2 =_5.79894 +7.08982 i
2"\,,"?
|:'6—6"\,,"?—4,-‘T+1,,"r2_,-*::| Zeta[g]
Pi(3)= (5-51) Vm + - ' 2 =1.04427 - 8.86227 i
2’\;’?
Pi(5)= i~m + > Vr (24 (-4++42) zEta[§]| -_4.21405+1.77245 1
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for the charged polarisation tensor we need to go into more dateil

vector field

use variables s = qu, t = q(1 — u)
and notations H = qu(1 — u)d 4+ qu?(2n + 1)

with § =15 +12 + 2n + 1 (on-shell is § = 0)

- (—H
/ dq/ du M; eX_]‘:; n+1)

My -1

rewrite levels in the form E? = 2n + 1 with n = —1,0,1,...



structure of the denominator

remember,

M7 - no A in denominator

My =

1 =1
1 =2
1=3..

8 )Py

n=-—1 n=>0 n=1
1 1 1
1 p_ [

1 1 1
(4)?(p—)? (h4)*(p=)®  (pg) (p-)*
1 1 1

(r)Z(p=)t (k)T (p-)? (n-)*

the functions p4 and p_ have zeros!



\\ \ 10 / _
~ L —
~ _ ~ \\ - k:p/ kzl/ -
~ [
— T~ >~ N 5¢ , T - T FZGI’OSOf,LL_
! ~ ! N Y ! ~ ! !

SIS s SR YN e Sl e S q pseudo Euclidean
V = | \\N
-5t

< zeros of py

-10+
q FEuclidean

the original integration goes over pseudo Euclidean ¢’s:
in part A we make an ’Anti’~-Wick rotation, ¢ — iq, but part A does not have
zeros in the denominator

in part B we make a Wick rotation, ¢ — —iq, and we cross the zeros of p

one could think to calculate the pole contributions separately, however, for
u — 1 the poles merge on the Fuclidean g-axis

in this way, the integrals are not converging from the very beginning!!
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_ 1 1 1
v=1 T { e TP J
i —9 1 1 1

w-)* () (p=)” () (p-)*
1 1

(r)?(p=)t ()T (p-)? (n=)®

this is what we have in scalar case, no factors M; and no n = —1
hence no problems with Wick rotation

similar picture in spinor case

In this way this is a new problem occuring only for a charged vector field

Bordag@CPOD Dubna 2010



Conclusions

the attempt to calculate the polarization tensor for charged gluons in a magnetic
background field revealed unexpected difficulties

standard technical methods, Schwingers proper time representation, could be
generalized for the vector case, however, these did not allow to come to a well-
defined expression.

For some values of the external momentum, n = —1,0,1 in B(2n + 1), the in-
tegration path in pseudo Euclidean region appears quenched between pairs of

poles and the integrations in the initial expression do not converge.

It is to be mentioned that these are NOT ultraviolet divergences, these would
appear for ¢ — 0

Also, these are NOT infrared divergences which would appear for ¢ — oo

The problem is puzzling since it appears also for T' — oo where one would
expect perturbation theory to work (to some extent, at least)



Thank you for attention



