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Advantages of the method




Chemical fluctuations and their measures

Identity method* was developed to study event-by-event fluctuations of the chemical
composition of the hadronic system produced in nuclear collisions.

There are several measures which have already been developed to study chemical
fluctuations:

* 04, Used by NA49 to quantify e-b-e particle ratio (e.g. K/m) fluctuations.

* Vg4, Used by STAR. Simple relation o,,,* = v, connects both measures.
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Disadvantage of o, ,and v, : =
for wounded nucleon and thermodynamical models £ °F J ey
they decrease as 1/<N,,> and 1/V, respectively >_200-_ ¢
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This disadvantage is not present for the ¢ measure -400-
of chemical fluctuations (next slide) I single source:
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(*) M. Gazdzicki, K. Grebieszkow, M. Mackowiak and S. Mrowczynski (to be published)



Chemical fluctuations and their measures

. (I)x used already by NA49 to analyze p; and charge fluctuations.
There are two advantages of this measure:
&, (A+A)=,(N+N) if A+A is superposition of N+N and
®,=0 when inter-particle correlations in x are absent and single-particle x spectrum is
independent of multiplicity
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Chemical fluctuations and their measures

The study event-by-event chemical fluctuations has to consider one more effect which
affects all ‘chemical’ measures:

resolution effect
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¢, can be used only for perfect identification.

Identity method generalizes ¢, to account to experimental resolution case
keeping advantages of ¢,



Notation of the method

experimental mass resolution

m — measured particle mass;

p - mass distribution of all particles averaged over
events;

jp(m)dm =N - average multiplicity of an event;

M — total number of particles in all events;

h — particle type selected for fluctuation analysis;

p,, - mass distribution of h particles averaged
over events;

Iph(m)dm =N, -average multiplicity of h particles
in an event;

Wh

_ Pu(m)

p(m)

- for measured particle its

probability of being h (‘identity’).

It is defined by measured particle’s
mass m

perfect mass resolution

h — particle type selected for
fluctuation analysis;

i — all particles;

1l |fori=h particle

O |fori# h particle




W fluctuation measure

¥, which is defined analogous to ¢ measure, as:

single-particle variable L=W, —W,,
— _N, , s : o
where W, = W - average over single particle inclusive distribution
n —
eventvariable Z = E (Whi — Wh),
i=1
where n — multiplicity of an event
2 S
</I">
Y = —~Z
h
<N >
Let’s denote:
Y . — valueof LPwh for experimental mass resolution case

corr

Y — valueof Y, for perfect mass resolution case
h



Statistical variance due to finite resolution

Var,_ = %:"dm p(m)-w, (M)(1—w, (m))

Var,=0 for perfect mass resolution
Vary = w,*(1-w,) for no resolution in mass measurement

In the case of experimental data integral is replaced by sum:
1 M
var, = Mzwhi (M;)- (1 —wy,(m;))
i=1

The following relation can be proven:

by
= =(1-Var,_,
by

corr

/Varg)® | (¥)

Resolution function and inclusive particle yields are included in Var
relation is found to be this same for different types of correlations.

os/Varg element. This



Monte Carlo check of the relation (*)

lPI'ESI lPGOI'I"

Var/Var,

Points represent Monte Carlo simulations for different types of correlations, of mass
resolution and of particle yields.



NA49 (fixed target)
experiment at CERN SPS Key features:

Beam < hadron spectrometer
- 4 large volume TPCs (two of
them in B field)

Target

Vertex TPCs

Main TPCs == * good particle identification

by dE/dx, TOF, decay
topology, invariant mass

Vertex * Centrality determination:

Magnets Forward Calorimeter
(energy of projectile

e spectators)

Forward <

Calorimeter

Operating 1994-2002; p+p, C+C, Si+Si and Pb+Pb interactions
at center of mass energy 6.3 — 17.3 GeV for N+N pair

10



Example of application of identity method

In real data information about particle’s mass is provided via dE/dx information.
Energy 40A GeV, example binin q, p,.., P, ¢ :

NA49 dE/dx information is stored in
bins with specific g, p,.., Pp and ¢.
For every bin four Gaussian
functions are fitted (p,, P, Py, Pp)-

counts
T T T 77T
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dE/dx

Charge +; <p,,> = 4.82 GeV/c;
<p;>=0.3 GeV/c; <d>=1,375n
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Identity method applied to NA49 data:

using inclusive yields calculate statistical variance for no mass resolution

N N
Var,=—".(1——
s = N ( N )
for each particle calculate its probability of being h (‘identity’)
<dE/dx > |q,p,., P,
W, (<dE/dx >, |0, Py, P17, ) = o< 0E /A > [0,Py P,
p(<dE/dx > |q,P.e, P, )

from all particles in all events using inclusive yields calculate statistical variance for
experimental mass resolution

1 M
Var, zﬁzwh‘k dE/dXx > |0,P 0 ,P1,9)- (L =W, (<dE/dX > |0,P 0, Pr, D))
i=1
using the w, calculate 2 _
" </I">
LIJres — o Z
<N >

correct ¥, for the bias due to the experimental mass resolution:

v _ _=%_-(1-Var

corr

/Var,)™

es
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#entries

First look at the NA49 data

p fluctuations for Pb+Pb collisions at 40A GeV. Sample: 4k events.

Ranges of kinetic variables:
* g: neg. and pos. charge

* P.or: 0-40 GeV/c

* p: 0-2 GeV/c

*¢d from 0 to 2nt

10°§

10°

M = 661581

N =165.40

N, =42.16 —value calculated from dE/dx fit

Varg = 0.1899
Var,,, = 0.0223
¥ . - 1000=-17.3823 + 3.44916

correction W, /¥, = 1.2832

¥ .. -1000= -22.3048 + 4.4259

corr




Advantages of the identity method:

* Wisindependent of volume and volume fluctuations for independent source
models (strongly intensive fluctuation measure )

* event-by-event fits are not used (instead particle identity is used)

* mixed events are not used (W, ,,.q = 0)

* correction for finite mass resolution is independent of event properties and has a
simple analytical form

14



Thank you
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Additional slides



O4,n and v, , measures

O4yn IS defined the following way:

. 2 2 2 2
6dyn =Sl gr‘Gdata - Gmixed )\/‘Gdata o 6mixed
where g, is relative width (standard deviation divided by the mean) of the K/

distribution for the data and o4 is relative width of the K/m distribution for mixed
events.

Vgyn IS defined the following way:

_ <N((N —1)>

den,Kn T

<N_(N_-1)>
2 t BINE 2
<N, > <N_>

5 <NN_ >

<N ><N_>

where N_is the number of it in each event and N is the number of kaons in each event.



¢, measure

@is calculated as: 1 i=h where i is a particle and h is particle’s
X = i
0 i=h type selected for analysis.
Zx = X— i) single particle variable

where Xand Y are single particle variable and average over single-particle inclusive

distribution
N
Zx — Z(X| T X)I
i=1

where summation runs over particles in a given event

2 —
N LT 5
X measure
<N> X

*M. Gazdzicki and St. Mrowczynski, A method to study ‘equilibration' in nucleus-nucleus
collisions, Zeischrift fir Physik C54 (1992) 127
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@/ ¥ (K, 7)* 1000

single source:
<N_>=Poisson(10)
<N,>=Poisson(2)

s @ (K,7)* 1000
¥ (K, ) * 1000

| o B S S —
] i ! g ; s i g
_I\I\| | \IIIII‘ | IIIIII| | | I\\HI'

1 10 102 10°

number of sources in one event

4 single source:
| <N,>=Poisson(10)
L <N, >=Poisson(2)
27 L
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_Hl\l | | IIIIII| | | \\Hl\l | | IIIIII|

1 10 10? 10°
number of sources in one event



Variance of the statistical fluctuation due to finite resolution

Let us quantify the experimental resolution of the mass measurements by the
mean square deviation between the true number of particles h and the measured

one using the identity method.
First divide the whole mass interval into M small intervals dM, i=1,..,M (for a
moment i will be used instead of m).

The h type particles identity in an interval i is denoted: w,(m,)=——7-,

The expected number of particles in this interval is: N, = dM- o}

Mixing between particles in this interval leads to binomial fluctuations (if particle id
would be generated according to the identity value) around the real value of h
type particles with variance:

Var =N, -w, - (1-w)

The bin-by-bin fluctuations due to particle mixing are independent and thus the
variance for the whole event is equal to:

Var,_ = f:Vari —> O]dmp(m) -w, (M)(1—w, (m))



Variance of the statistical fluctuation due to finite resolution

Let us consider Var in two limiting cases

A. perfect separation between particles, Am —«

1
W, :{O—>Vari =0—Var(A)=0

B. no separation between particles, m;= mand o, = O

N
W, =W, = Wh = const(i)

Thus
Var(B)=Var, =N-w, -(1—-w,)

Is equal to the variance of the binomial distribution.
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Toy model to study chemical fluctuations

We consider only two types of particles K and mt. Their masses are noted m,and m_. The
mass distribution after resolution effect is Gaussian shape defined as:

For K:

P(K)

p(m;) =—=— \/76

exp(—(m; —m,)* /2c?),

For 1t
P(m)

P, (m,)= oo

where m; is measured mass.

———exp(—(m, —m_)* /25?),

23



Toy models in Monte Carlo check

—s8— 0,=55_=5 80n20
o —s—— ¢, =100,=5 80n20
943 e | R S — = ,=200,=580n20
~u —s— ¢,=200 =10 80n20
9..2 0.8 "W S — = ,=205,=10 80n20 with N=Poisson(10{
B —=—— 6,=20 6,=10 80n20 with npi=N-nka Different Monte Carlo
0.6 N —=— ©,=100,=10 50050 simulations are named
- 6,520 5_=10 50n50 after its color in the
legend.
0.4" o g
0.2 s — % T e —
0 T R . S o
0 0.2 04 0.6 0.8 1
Var . /Varg

For blue(B), green(GR), grey(G), black(BL), pink(P) and dark blue(N) number of kaons and
pions in an event is constant. For B, GR, G, BL it is 80 w and 20 K. For P and N it is 50 w and
50 K. o parameter represents mass resolution in Gausian distributions (previous slide).

In Dark Pink(DP) total multiplicity N is generated from Poisson distirbution with N=100.
20% of generated particles are kaons.

24



Identity for toy model

For every particle we can define quantity that it is a given type particle basing on its
measured mass m;:

P (m;)
pK(mi)_I_pn(mi)’

where p,(m;) and p_(m,) are normalized K and rt distributions for measured mass m..

w(m. ) =

2 10°F
2 -
t
5 i
# 10°F
w distribution for toy model ol
from slide nr 12. -
10°E
I | | ) | |

02 04 06 08 1

o



Method to study effect resolution

In order to study effect resolution we change distance between K and m masses, keeping
constant o.

Am=m, —m_

For Am=0 w, distributions for toy model For Am=eo w, distributions is:
defined on slide 8 is:

108

#particles
#particles

10°

—
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o
w

—

02 04 06 08

° III|
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¥, .. for mixed events

For mixed events W __
(noted as W, _...4) IS
consistent with O.

S R R R R S
0 20 40 60 80 100
A(m)



First look at the NA49 data

K fluctuations for Pb+Pb collisions at 40A GeV. Sample: 4k events.

Ranges of kinetic variables:

* g: neg. and pos. charge M = 661581
* P.or: 0-40 GeV/c
* py: 0-2 GeV/c N =165.40

*¢d from 0 to 2nt
N, = 11.62 — value calculated from dE/dx fit

Var, = 0.065

#entries

-

o
o

i

Var..=0.031

¥ .- 1000=1.91111+ 0.88088

correction W, /¥, = 3.65

i ¥ . -1000=6.98 + 3.22

corr
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