

Identity method: a new tool for the study of chemical fluctuations in particle production (first look at the NA49 data)

M. Maćkowiak Warsaw University of Technology for the NA49 Collaboration

Outline

- Chemical fluctuations and their measures
- Identity method
- First look at NA49 data with identity method
- Advantages of the method

Chemical fluctuations and their measures

Identity method* was developed to study event-by-event fluctuations of the chemical composition of the hadronic system produced in nuclear collisions.

There are several measures which have already been developed to study chemical fluctuations:

- σ_{dyn} used by NA49 to quantify e-b-e particle ratio (e.g. K/ π) fluctuations.
- v_{dyn} used by STAR. Simple relation $\sigma_{dyn}^2 \approx v_{dyn}$ connects both measures.

```
Disadvantage of σ<sub>dyn</sub> and ν<sub>dyn</sub>:
for wounded nucleon and thermodynamical models
they decrease as 1/<N<sub>w</sub>> and 1/V, respectively
```

This disadvantage is not present for the ϕ measure of chemical fluctuations (next slide)

(*) M. Gaździcki, K. Grebieszkow, M. Maćkowiak and S. Mrówczyński (to be published)

³

Chemical fluctuations and their measures

 φ_x used already by NA49 to analyze p_T and charge fluctuations. There are two advantages of this measure:

 $\phi_x(A+A)=\phi_x(N+N)$ if A+A is superposition of N+N and

 $\phi_x=0$ when inter-particle correlations in x are absent and single-particle x spectrum is independent of multiplicity

 ϕ_x for chemical fluctuations:

$$\mathbf{x} = \begin{cases} 1 & \mathbf{h}_{i} = \mathbf{h}_{1} \\ 0 & \mathbf{h}_{i} = \mathbf{h}_{2} \end{cases}$$

where h_i is a type of particle with index i and h_1 and h_2 are particle's types selected for analysis.

Chemical fluctuations and their measures

The study event-by-event chemical fluctuations has to consider one more effect which affects all 'chemical' measures:

ϕ_x can be used only for perfect identification.

Identity method generalizes φ_x to account to experimental resolution case keeping advantages of $\varphi_{x.}$

Notation of the method

experimental mass resolution

- m measured particle mass;
- ρ mass distribution of all particles averaged over events;

 $\int \rho(m)dm = N$ - average multiplicity of an event;

- M total number of particles in all events;
- h particle type selected for fluctuation analysis;
- ρ_{h} mass distribution of h particles averaged over events;

 $\int \rho_h(m)dm = N_h$ - average multiplicity of h particles in an event;

 for measured particle its probability of being h ('identity').

It is defined by measured particle's mass m

perfect mass resolution

- h particle type selected for fluctuation analysis;
- i all particles;

Ψ fluctuation measure

 $\Psi,$ which is defined analogous to φ measure, as:

single-particle variable
$$Z = W_{hi} - W_{h}$$
,
where $\overline{W_{h}} = \frac{N_{h}}{N}$ - average over single particle inclusive distribution
event variable $Z = \sum_{i=1}^{n} (W_{hi} - \overline{W_{h}})$,
where n – multiplicity of an event
 $\Psi_{w_{h}} = \frac{\langle Z^{2} \rangle}{\langle N \rangle} - \overline{z^{2}}$

Let's denote:

$$\Psi_{\rm res}$$
 – value of $\Psi_{\rm w_h}$ for experimental mass resolution case

$$\Psi_{\text{corr}}\,-\,$$
 value of $\Psi_{\text{w}_{h}}$ for perfect mass resolution case

Statistical variance due to finite resolution

$$Var_{res} = \frac{1}{M} \int_{0}^{\infty} dm \rho(m) \cdot w_{h}(m) (1 - w_{h}(m))$$

 $Var_A = 0$ for perfect mass resolution $Var_B = w_h^*(1-w_h)$ for no resolution in mass measurement

In the case of experimental data integral is replaced by sum:

$$Var_{res} = \frac{1}{M} \sum_{i=1}^{M} w_{hi}(m_i) \cdot (1 - w_{hi}(m_i))$$

The following relation can be proven:

$$\frac{\Psi_{\rm res}}{\Psi_{\rm corr}} = (1 - Var_{\rm res} / Var_{\rm B})^2 \quad (*)$$

Resolution function and inclusive particle yields are included in Var_{res}/Var_{B} element. This relation is found to be this same for different types of correlations.

Monte Carlo check of the relation (*)

Points represent Monte Carlo simulations for different types of correlations, of mass resolution and of particle yields.

NA49 (fixed target) experiment at CERN SPS

Key features:

- hadron spectrometer
 4 large volume TPCs (two of them in B field)
- good particle identification by dE/dx, TOF, decay topology, invariant mass
- Centrality determination:
 Forward Calorimeter
 (energy of projectile spectators)

Operating **1994-2002**; **p+p, C+C, Si+Si** and **Pb+Pb** interactions at center of mass energy **6.3** – **17.3 GeV for N+N pair**

Example of application of identity method

In real data information about particle's mass is provided via dE/dx information. Energy 40A GeV, example bin in q, p_{tot} , p_T , ϕ :

Identity method applied to NA49 data:

• using inclusive yields calculate statistical variance for no mass resolution

$$\operatorname{Var}_{B} = \frac{\operatorname{N}_{h}}{\operatorname{N}} \cdot (1 - \frac{\operatorname{N}_{h}}{\operatorname{N}})$$

• for each particle calculate its probability of being h ('identity')

$$w_{hi}(<\!dE/dx>_{i}|q,p_{tot},p_{T},\phi) = \frac{\rho_{h}(<\!dE/dx>_{i}|q,p_{tot},p_{T},\phi)}{\rho(<\!dE/dx>_{i}|q,p_{tot},p_{T},\phi)}$$

• from all particles in all events using inclusive yields calculate statistical variance for experimental mass resolution

$$\operatorname{Var}_{\operatorname{res}} = \frac{1}{M} \sum_{i=1}^{M} w_{hi} (\langle dE/dx \rangle_{i} | q, p_{tot}, p_{T}, \phi) \cdot (1 - w_{h} (\langle dE/dx \rangle_{i} | q, p_{tot}, p_{T}, \phi))$$

• using the w_h calculate

- correct $\Psi_{\rm res}$ for the bias due to the experimental mass resolution:

$$\Psi_{\rm corr} = \Psi_{\rm res} \cdot (1 - \operatorname{Var}_{\rm res} / \operatorname{Var}_{\rm B})^{-2}$$

First look at the NA49 data

p fluctuations for Pb+Pb collisions at 40A GeV. Sample: 4k events.

Advantages of the identity method:

- Ψ is independent of volume and volume fluctuations for independent source models (strongly intensive fluctuation measure)
- event-by-event fits are not used (instead particle identity is used)
- mixed events are not used ($\Psi_{mixed} = 0$)
- correction for finite mass resolution is independent of event properties and has a simple analytical form

Thank you

Additional slides

σ_{dyn} and v_{dyn} measures

 σ_{dvn} is defined the following way:

$$\sigma_{\rm dyn} = \operatorname{sign}(\sigma_{\rm data}^2 - \sigma_{\rm mixed}^2) \sqrt{\left|\sigma_{\rm data}^2 - \sigma_{\rm mixed}^2\right|}$$

where σ_{data} is relative width (standard deviation divided by the mean) of the K/ π distribution for the data and σ_{mixed} is relative width of the K/ π distribution for mixed events.

 v_{dvn} is defined the following way:

where N_{π} is the number of π in each event and N_{κ} is the number of kaons in each event.

ϕ_x measure

 Φ is calculated as:

$$\mathbf{x} = \begin{cases} 1 & i = h \\ 0 & i \neq h \end{cases}$$

 $z_x = x - \overline{x}$,

(.

where i is a particle and h is particle's type selected for analysis.

single particle variable

where χ and $\overline{\chi}$ are single particle variable and average over single-particle inclusive distribution

$$\mathsf{Z}_{\mathsf{x}} = \sum_{i=1}^{\mathsf{N}} (\mathsf{x}_{i} - \overline{\mathsf{x}}),$$

where summation runs over particles in a given event

$$\Phi_{x} = \sqrt{\frac{\langle Z_{x}^{2} \rangle}{\langle N \rangle}} - \sqrt{z^{2}}$$

 ϕ_x measure

*M. Gaździcki and St. Mrówczyński, A method to study `equilibration' in nucleus-nucleus collisions, Zeischrift für Physik **C54** (1992) 127

Variance of the statistical fluctuation due to finite resolution

Let us quantify the experimental resolution of the mass measurements by the mean square deviation between the true number of particles h and the measured one using the identity method.

First divide the whole mass interval into M small intervals dM_i , i=1,..,M (for a moment i will be used instead of m).

The h type particles identity in an interval i is denoted: $W_h(m_i) = \frac{\rho_h(m_i)}{\rho(m_i)}$,

The expected number of particles in this interval is: $N_i = dM \cdot \rho_i$

Mixing between particles in this interval leads to binomial fluctuations (if particle id would be generated according to the identity value) around the real value of h type particles with variance:

$$\operatorname{Var}_{i} = \operatorname{N}_{i} \cdot \operatorname{w}_{hi} \cdot (1 - \operatorname{w}_{hi})$$

The bin-by-bin fluctuations due to particle mixing are independent and thus the variance for the whole event is equal to:

$$Var_{res} = \sum_{i=1}^{M} Var_{i} \rightarrow \int_{0}^{\infty} dm\rho(m) \cdot w_{h}(m)(1 - w_{h}(m))$$

Variance of the statistical fluctuation due to finite resolution

Let us consider Var in two limiting cases

A. perfect separation between particles, $\Delta m \rightarrow \infty$

$$w_{hi} = \begin{cases} 1 \\ 0 \end{pmatrix} Var_i = 0 \rightarrow Var(A) = 0$$

B. no separation between particles, $m_i = m$ and $\sigma_i = \sigma$

$$w_{hi} = w_h = \frac{N_h}{N} = const(i)$$

Thus

$$Var(B) = Var_{B} = N \cdot w_{h} \cdot (1 - w_{h})$$

is equal to the variance of the binomial distribution.

Toy model to study chemical fluctuations

We consider only two types of particles K and π . Their masses are noted m_{K} and m_{π} . The mass distribution after resolution effect is Gaussian shape defined as:

For K:

$$\rho_{\kappa}(m_{i}) = \frac{P(K)}{\sqrt{2\pi\sigma}} \exp(-(m_{i} - m_{\kappa})^{2}/2\sigma^{2}),$$

For π :

$$\rho_{\pi}(m_{i}) = \frac{P(\pi)}{\sqrt{2\pi\sigma}} \exp(-(m_{i} - m_{\pi})^{2}/2\sigma^{2}),$$

where m_i is measured mass.

Toy models in Monte Carlo check

Different Monte Carlo simulations are named after its color in the legend.

For blue(B), green(GR), grey(G), black(BL), pink(P) and dark blue(N) number of kaons and pions in an event is constant. For B, GR, G, BL it is 80 π and 20 K. For P and N it is 50 π and 50 K. σ parameter represents mass resolution in Gausian distributions (previous slide). In Dark Pink(DP) total multiplicity N is generated from Poisson distirbution with N=100. 20% of generated particles are kaons.

Identity for toy model

For every particle we can define quantity that it is a given type particle basing on its measured mass m_i:

$$w(m_i) = \frac{\rho_{\kappa}(m_i)}{\rho_{\kappa}(m_i) + \rho_{\pi}(m_i)},$$

where $\rho_{\kappa}(m_i)$ and $\rho_{\pi}(m_i)$ are normalized K and π distributions for measured mass m_i .

Method to study effect resolution

In order to study effect resolution we change distance between K and π masses, keeping constant σ .

For $\Delta m=0 w_h$ distributions for toy model defined on slide 8 is:

For $\Delta m = \infty w_h$ distributions is:

 $\Psi_{\rm res}$ for mixed events

For mixed events Ψ_{res} (noted as Ψ_{mixed}) is consistent with 0.

First look at the NA49 data

K fluctuations for Pb+Pb collisions at 40A GeV. Sample: 4k events.

#entries

10⁵

10⁴

10³

0

Ranges of kinetic variables: M = 661581• q: neg. and pos. charge • p_{tot}: 0-40 GeV/c • p_T: 0-2 GeV/c N = 165.40• ϕ from 0 to 2π N_{κ} = 11.62 – value calculated from dE/dx fit $Var_{R} = 0.065$ $Var_{res} = 0.031$ $\Psi_{\rm res} \cdot 1000$ = 1.91111± 0.88088 correction $\Psi_{\rm corr}/\Psi_{\rm res}$ = 3.65 $\Psi_{\rm corr} \cdot 1000 = 6.98 \pm 3.22$ 0.2 0.4 0.6 0.8 1 Wĸ