

Dynamics of hot and dense nuclear and partonic matter

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

Critical Point and Onset of Deconfinement (CPOD) 23 - 29 August 2010, JINR, Dubna

Our ultimate goals:

Signals of the phase transition:

- Multi-strange particle enhancement in A+A
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event by event fluctuations and correlations

•••

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

Microscopic transport models provide a unique dynamical description of nonequilibrium effects in heavy-ion collisions !

Hadron-string transport models versus observables

Reasonable description of strangeness by HSD and UrQMD 2.0 (deviations < 20%) works very well, but where do we fail ?

Hadron-string transport models versus observables

Strangeness signals of QGP

Exp. data are not reproduced in terms of the hadron-string picture => evidence for nonhadronic degrees of freedom

Transport description of the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

From hadrons to partons

In order to study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent transport model with >explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!

>explicit phase transition from hadronic to partonic degrees of freedom

>IQCD EoS for partonic phase => phase transition is always a cross-over

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phase-space representation with the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Dynamical QuasiParticle Model (DQPM)

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

Plot from A. Peshier

DQPM well matches lattice QCD
DQPM provides mean-fields for gluons and quarks as well as effective 2-body interactions

and gives transition rates for the formation of hadrons \rightarrow PHSD

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

PHSD - basic concepts

Initial A+A collisions – HSD: string formation and decay to pre-hadrons

Fragmentation of pre-hadrons into quarks: using the quark spectralfunctions from the Dynamical QuasiParticle Model (DQPM)approximation to QCDDQPM: Peshier, Cassing, PRL 94 (2005) 172301;
Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Partonic phase: quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by DQPM

elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

- ✓ q + qbar (flavor neutral) <=> gluon (colored)
- ✓ gluon + gluon <=> gluon (possible due to large spectral width)
- ✓ q + qbar (color neutral) <=> hadron resonances

Hadronization: based on DQPM - massive, off-shell quarks and gluons with broad spectral functions hadronize to off-shell mesons and baryons: gluons \rightarrow q + qbar; q + qbar \rightarrow meson (or string); q + q + q \rightarrow baryon (or string) (strings act as ,doorway states' for hadrons)

Hadronic phase: hadron-string interactions – off-shell HSD

PHSD: hadronization

≻Hadronization: q+q_{bar} or 3q or 3q_{bar} fuse to color neutral hadrons (or strings) which furtheron decay to hadrons in a microcanonical fashion, i.e. obeying all conservation laws (i.e. 4momentum conservation, flavor current conservation) in each event

➤ Hadronization yields an increase in total entropy S (i.e. more hadrons in the final state than initial partons) and not a decrease as in the simple recombination model !

Off-shell parton transport roughly leads a hydrodynamic evolution
 of the partonic system
 W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919;

ASSING, E. Bratkovskaya, PKC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Application to nucleus-nucleus collisions

central Pb + Pb at 158 A GeV

energy balance

particle balance

only about 40% of the converted energy goes to partons; the rest is contained in the ,large' hadronic corona!

partonic energy fraction vs centrality and energy

Dramatic decrease of partonic phase with decreasing energy and centrality

Proton stopping at SPS

→looks not bad in comparison to NA49 data, but not sensitive to parton dynamics (PHSD = HSD)!

Rapidity distributions of π , K⁺, K⁻

> pion and kaon rapidity distributions become slightly narrower

PHSD: Transverse mass spectra at SPS

PHSD gives harder spectra and works better than HSD at SPS (and top FAIR, NICA) energies
However, at low SPS (and low FAIR, NICA) energies the effect of the

partonic phase is NOT seen in rapidity distributions and m_T spectra

Centrality dependence of (multi-)strange (anti-)baryons

enhanced production of (multi-) strange antibaryons in PHSD

PHSD: rapidity spectra at RHIC

PHSD gives harder spectra and works better than HSD at RHIC

Summary

• Some exp. data are not well reproduced in terms of the hadron-string picture => evidence for nonhadronic degrees of freedom

•PHSD provides a consistent description of off-shell parton dynamics in line with a lattice QCD equation of state

• The Pb + Pb data at top SPS energies are rather well described within PHSD including baryon stopping, strange antibaryon enhancement and meson m_T slopes (will be also seen at top FAIR, NICA energies)

PHSD provides a reasonable description of the rapidity spectra and meson m_T slopes for Au+Au collisions at the top RHIC energy

• At low SPS energies PHSD gives practically the same results as HSD (except for strange antibaryons) when the IQCD EoS (where the phase transition is always a cross-over) is used

→ Is the matter at low SPS (FAIR, NICA) a ,mixed phase' of hadrons and partons?

Thanks

Wolfgang Cassing Olena Linnyk Volodya Konchakovski Vadim Voronyk Vitalii Ozvenchyk

Viatcheslav D. Toneev Mark I. Gorenstein

•••

the numerous friends and colleagues !