On the critical behavior of (2+1)-dimensional QED

A. V. Kotikov!"
! Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, Russia

It is shown the analysis [1] for QED in 2+1 dimensions with N four-component
fermions in the leading and next-to-leading orders of the 1/N expansion. As it
was demonstrated in [1] the range of the admissible values N, where the dynamical
fermion mass exist, decreases strongly with the increasing of the gauge charge. So, in
Landau gauge the dynamical chiral symmetry breaking appears for N < 3.78, that is
very close to the results of the leading order and in Feynman gauge dynamical mass

is completely absent.

Quantum Electrodynamics in 241 dimensions (QED3) has acquired increasing attention
|[1-7] because of its similarities to (3+1) dimensional QCD. Moreover, last years a new strong
interest comes to QED3 in the relation with graphene properties (see [8] and discussions and
references therein). Graphene, a one-atom-thick layer of graphite, is a remarkable system
with many unusual properties that was fabricated for the first five years ago [9]. Theoretically
it was shown long time ago [10] that quasiparticle excitations in graphene are described by
the massless Dirac equation in (2+1) dimension. This explains why the bilayer graphene in
external fields is a subject of intensive recent study [11].

A number of investigations have been performed for the study of dynamical chiral sym-
metry breaking in QED3 and very different results have been obtained. Using the leading
order (LO) in the 1/N expansion of the Schwinger-Dyson (SD) equation, Appelquist et al. [2]
showed that the theory exhibits a critical behavior as the number N of fermion flavors ap-
proaches N, = 32/7?%; that is, a fermion mass is dynamically generated only for N < N.. On
the contrary, Pennington and collaborators [3|, adopting a more general non-perturbative
approach to the SD equations, found that the dynamically generated fermion mass decreases
exponentially with N, vanishing only as N — oco. This conclusion was supported also by Pis-
arski [4] by the use of the other methods. On the other hand, an alternative non-perturbative

study by Atkinson et al. [5] suggested that chiral symmetry is unbroken at sufficiently large
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N. The theory has also been simulated on the lattice |6, 7|. Remarkably, the conclusions of
Ref. |6] are in the agreement with the existence of a critical N as predicted in the analysis
of Ref. 2] while the second paper [7]| contains the opposite results.

Because the critical value N, is not large, the contribution of the higher orders in the
1/N expansion can be essential and may lead to better understanding of the problem. The

purpose of this work is to consider the 1/N correction [1, 12] to LO result [2].

1. The Lagrangian of massless QED3 with N flavors is

— A . 1
L=U(i0—eA)¥ — ZFjV,

where V¥ is taken to be a four component complex spinor. In massless case, which we are
considering, the model contains infrared divergences, which can be canceled when the model
is analyzed in a 1/N expansion [13]. Since the theory is massless, the mass scale is the
dimensional coupling constant a = Ne?/8 which is kept fixed as N — oo.

Following [2| we study the solution of the SD equation. The inverse fermion propagator

has the form

S7Hp) = —[1+ AW)] [p + Z(p)],

where A(p) is the wave-function renormalizable coefficient and X(p) is a dynamical, parity-
conserving mass taken to be the same for all the fermions.

The SD equation is

20, [ &k 7" Du(p—k)[1+ A(k) (k + S(k))T(p, k)

N (2m)3 [14+ AK)] (k2 + 22(k)) ’ 1)

X(p)

where!
Juv — (1 - S)pup,//pz
p? [1+11(p)]

is the photon propagator and I'V(p, k) is the vertex function.

DW(P) =

2. The LO approximations in the 1/N expansion are

A(p) =0, U(p)=a/|p|, T¥(p,k)=1",

! Following [12] we introduce a nonlocal gauge-fixing term. The detailed analysis of this possibility has been
given in Ref. [14].



where we neglect the fermion mass in the calculation of II(p). The gap equation is

_Sa2+8, [ & B
B(p) = — T/(2w)3k2[(p—k)2+a|p—’f!]’

where we ignore the term ©2(k) in the denominator of r.h.s.

Following [2], we set
S(k) = (k)" . (3)

One can see, that for large a the r.h.s. of (2) together with condition (3) (and the contribu-
tions of higher orders) can be calculated by the standard rules for massless diagrams of the

perturbation theory (see, for example, [15]). Thus, we have for large a

24 ¢
1= 5L (4)
with 8 = (—a)(a +1/2) and L = 72N, or
ar = (—1+[1-16(2+¢)/L]"*)/4. (5)

We reproduce the solution given in Ref. [2]. That analysis yields a critical number of
fermions N, = 16(2+¢) /72 ~ 1.62(2+¢) (i.e. L. = 16(2+¢)), such that for N > N, 3(p) =0
and

3(0) ~ exp|—2m/(N/N, — 1)1/2]

for N < N.. Thus, chiral-symmetry breaks when o becomes complex, that is for N < N..
3. The next-to-leading order (NLO) approximation has been included in [1, 16| using the
differential equation method [17]. The results have a cumbersome form [16], which is similar
to results for complicated massless diagrams obtained using Gegenbauer polynomials [18]. In
[1] we have analyzed simplified form, which contains only the terms ~ (—a) ™ and ~ (a+
1/2)7% (k= 1,2,3) from the series given in [16]. These terms are most important in the

neighborhood of the critical point N.. The Eq. (4) is replaced now by

(24¢) 1
5L + [f(&) + Bp(€)] (BL? (6)

where f(§) = 4(1—¢€)/3 - &%, »(§) = 176/9 — 4n* — (16/3)¢ + 4€>.
Let us get the exact critical value N, from Eq. (6). Supposing o = o, = —1/4 we obtain

1=

the critical values in the following form

New = 5246 % (2467 +47(9) + 0(6)/9) "], 7



1.e.

N, (&) = (3.31,3.35,3.09,2.81), N._(&)=(—0.07,0.38,1.29,1.88)

for £ = (0.0,0.3,0.7,0.9), respectively.

Notice the intriguing fact that follows from (7). The addition of 1/N correction leads to
the occurrence of the second critical point (for 0.05 < ¢ < 0.95) such that for N < N, _
the chiral symmetry does not break. The dynamical mass generation exists in the interval
between the critical points N._ and N.,. For & > 0.95 this interval disappears and the
chiral symmetry breaking is absent. For small values of gauge parameter ¢ (£ < 0.05) new

critical point does not occur.

The solution of the Eq. (6) is

5= - [2+5+@i ((2+§)2+4f(5>+2(2+5)@+ g02(5))”2]

has the simple form in Landau gauge

is=0 = [ e (g ) e o
T

where the last term in r.h.s. of Eq. (8) is very small for L ~ L.. Leaving it out we get the

following equation for 3

2.52

Bu(e = 0) = 14 VT + (14 VB7T0l0) g~ 22 (12 22),

which has coefficients are close to those from the paper [12].

Resume. We reviewed the results of [1], where the O(1/N?) terms have been in-
cluded into SD equation and the strong gauge dependence of the result has been found.
Hence, the addition of 1/N correction does not lead to the essential improvement in the
understanding of dynamical chiral symmetry breaking. However, as it was shown in [1],
in the Landau gauge the inclusion of O(1/N?) terms slightly changes only quantitative
(but not qualitative) properties of the LO results. Thus, in the Landau gauge the analy-

sis in [1] gives further evidence in favor of the solution has been given by Appelquist et al. [2].
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