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Abstract

Renormalization scale µ leads to a conformal anomaly. The trace of the
energy-momentum tensor is proportional to the renormalization group
β-function. The effective action for a gauge theory can be written in terms
of the running gauge coupling when considered as a function of a strong
background field [Dunne, Gies and Schubert, 2006]. At the same time, the
effective action satisfies the renormalization group equation, which leads
to explicit summation of all its leading-log (LL), next-to-leading-log (NLL)
etc. contributions [McKeon, 2011]. We compare these two different
expressions for the effective action to obtain a novel expression for the
running gauge coupling.
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Radiative Corrections to the Scalar Effective Potential

O(N)-symmetric scalar model with a massless potential Vcl = λφ4 ,
radiative corrections [Coleman and Weinberg, 1973]

V =

∞
∑

n=0

n
∑

m=0

λn+1Tn,mL
mφ4 (1)

L = ln(φ2/µ2) and the CW RG condition

d
4V

dφ4

∣

∣

∣

∣

φ=µ

= 24λ (2)

The n-loop contribution to V fix the coefficients Tn,m (m ≤ n). V is
independent of the unphysical renormalization scale parameter µ if

(

µ
∂

∂µ
+ β(λ)

∂

∂λ
+ γ(λ)φ

∂

∂φ

)

V (λ, φ, µ) = 0. (3)
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Example

V = λφ4 + λ2 (T10 + T11L) + λ3
(

T20 + T21L+ T22L
2
)

φ4 · · · (4)



Radiative Corrections to the Scalar Effective Potential

The RG functions β(λ) = µ
dλ

dµ
, γ(λ) =

µ

φ

dφ

dµ
are needed to find the

implicit dependence of V on µ. Upon expanding

β(λ) =
∞
∑

k=2

bkλ
k , (5)

γ(λ) =
∞
∑

k=1

gkλ
k (6)

bk−1 and gk come from k-loop considerations
V =

∑

∞

n=0 λ
n+1Sn(ξ)φ

4 with

Sn(ξ) =
∞
∑

m=0

Tn+m,mξ
m, ξ = λL (7)
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then eq. [3] is satisfied at order λn+2 if

[

(−2 + b2ξ)
d

dξ
+ (b2 + 4g1)

]

S0(ξ) = 0,

and

[

(−2 + b2ξ)
d

dξ
+ (n + 1)b2 + 4g1

]

Sn(ξ)

+
n−1
∑

m=0

[

(2gn−m + bn−m+2ξ)
d

dξ
+ (m + 1)bn+2−m + 4gn+1−m

]

Sm(ξ)



Radiative Corrections to the Scalar Effective Potential

These nested equations can be solved in turn for S0, S1, S2, · · · , with
the boundary conditions Sn(0) = Tn,0; in particular

S0 =
T0,0

w
, (9)

S1 = −
4g2T0,0

b2w
+

4g2T0,0 + b2T1,0

b2w2
−

b3T0,0

b2w2
ln |w | (10)

where

w = 1−
b2

2
ξ. (11)

The sum for Sn(ξ) gives the total NnLL contribution to V ; it contains
portions of the p-loop contribution to V for all p.
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Figure: The effective potential for N=1 (left) and N=4 (right) O(N) λφ4 theory
at different order p in the CW scheme. [1005.1936]



Gauge Fields in a strong background constant field

If the effective Lagrangian L is treated as a function of µ (the
renormalization scale), Fµν (the constant background field strength) and λ
(the gauge coupling), then we have the RG equation:

µ
dL

dµ
=

(

µ
∂

∂µ
+ β(λ)

∂

∂λ
+ γ(λ)Fµν

∂

∂Fµν

)

L(λ,Fµ,ν , µ) = 0. (12)

Since λFµν is not renormalized it follows that β(λ) = −λγ(λ) and

[

µ
∂

∂µ
+ β(λ)

(

∂

∂λ
−

2

λ
Φ

∂

∂Φ

)]

L = 0, (13)

where Φ = FµνF
µν .
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For strong background fields ( λΦ � µ2)

L =

∞
∑

n=0

∞
∑

m=0

Tn,mλ
2ntmΦ (14)

where t = 1
4 ln

(

λ2Φ
µ4

)

. If Sn(λ
2t) =

∑

∞

m=0 Tn+m,m(λ
2t)m (n = 0 is LL,

n = 1 is NLL etc.), then eq. [14] leads to the nested equations
(n = 0, 1, 2 . . .)

−
d

dξ
Sn(ξ) + 2

n
∑

ρ=0

b2ρ+3

[

ξ
d

dξ
+ (n − ρ− 1)

]

Sn−ρ = 0 (15)

where β(λ) =
∑

∞

ρ=0 b2ρ+3λ
2ρ+3 and ξ = λ2t. The boundary condition for

these equations is Sn(ξ = 0) = Tn,0.
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S0 = −T0,0w (16)

S1 =
T0,0b5

b3
ln |w |+ T1,0 (17)

w = −1 + 2b3ξ
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Connection with Conformal Anomaly

〈

Θµ
µ

〉

=
β(λ̄(t))

2λ̄(t)

λ(t)2

λ̄(t)2
. (18)

Using the effective Lagrangian for a constant background field

〈Θµν〉 = −ηµνL+ 2
∂L

∂ηµν
(19)

L = −
1

4

λ2
0

λ̄2(t)
Φ (20)

where the running coupling λ̄(t) satisfies

d λ̄(t)

dt
= β( ¯λ(t)) (λ̄(t = 0) = λ0) (21)
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Eq. (20) satisfies the expression for conformal anomaly provided µ = µ0 is
fixed. (14) and (20) should be consistent. To find the boundary

conditions, an extra condition must be found. L =
∞
∑

n=0

An(λ)t
nΦ where

An =

∞
∑

m=n

Tm,nλ
2m. Eq. (13) is now satisfied at each order in t provided

1

λ2
An+1(λ) =

1

n + 1
β(λ)

d

dλ

(

1

λ2
An(λ)

)

. (22)

If now An(λ) = λ2An(λ) and η =

∫ λ(η)

λ0

dx

β(x)
then
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An+1(λ(η)) =
1

(n + 1)!

dn+1

dηn+1
A0(λ(η)) (23)

so that

L = λ2(η)

∞
∑

n=0

tn

n!

dn

dηn
A0(λ(η))Φ = λ2(η)A0(λ(η + t))Φ (24)

L =
λ2(η)

λ2(η + t)
A0(λ(η + t))Φ . (25)

Tn,0 = −
1

4
δn,0. (26)
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New!

Furthermore

λ̄2(t) =
−λ2

0

4

[

∞
∑

n=0

Sn(λ
2
0t)λ

2n
0

]

−1

. (27)

More explicitly

λ̄2(t) = λ2
0

[

(1− 2b3λ
2
0) + λ2

0

(

b5

b3
ln
∣

∣−1 + 2b3λ
2
0t
∣

∣

)

(28)

+ λ4
0

(

b7

b3

2b3λ
2
0t

−1 + 2b3λ2
0t

−

(

b5

b3

)2 ln
∣

∣−1 + 2b3λ
2
0t
∣

∣+ 2b3λ
2
0t

−1 + 2b3λ2
0t

)

+ . . .

]

−1
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By letting x = λ̄2 and 2b2ρ+3 = βρ(ρ = 0, 1, 2 . . .) so that eq. (21)
becomes

dx

dt
= x2(β0 + β1x + β2x

2 + . . .) (29)

Rescaling t → t/ε, x → εx x = x0 + εx1 + ε2x2 + . . . (xn(t = 0) = xδn,0)
at successive orders in ε,

dx0

dt
= β0x

2
0 (30a)

dx1

dt
= β0x

2
0 + 2β1x0x1 (30b)

dx2

dt
= β0(x

2
1 + 2x0x2) + 3β1x1x

2
0 + β4x

4
0 (30c)
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An alternate approach is to systematically solve eq. (21) is to write (in
analogy with eq. (14))

x(µ0) = x(µ)
∞
∑

n=0

∞
∑

m=0

τn,mx
n(µ) lnm

(

µ2/µ2
0

)

(31a)

≡

∞
∑

n=0

σn(ζ)x
n+1(µ) (σn(0) = δn0) (31b)

where ζ = x(µ) ln
(

µ2/µ2
0

)

. If now β(x) = x2
∑

∞

n=0 βnx
n and

µ2 d

dµ2
x(µ0) = 0 (32a)

µ2 d

dµ2
x(µ) = β (x(µ)) (32b)
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Using the expansion

Sn(ξ) =
n
∑

i=0

i
∑

j=0

Sn
ij

Lj

w i−1
; (33)

we find that

(j + 1)Sn
i ,j+1 + (n − i)Sn

ij +

n−1
∑

ρ=1

χ2ρ+3

[

(j + 1)Sn−ρ
i−1,j+1 − (i − 2)Sn−ρ

i−1,j

(34)

+(j + 1)Sn−ρ
i ,j+1 + (n − ρ− i)Sn−ρ

ij

]

= 0,

where χ2ρ+3 = b2ρ+3/b3 (ρ = 1, 2 . . .).
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The final result for L/Φ

L/Φ =
1

4

[

w − χ5 lnwλ2 + (χ2
5 − χ7)

(

1 + w

w

)

λ4 (35)

−
λ4

w

1

1− λ2 lnw/w

(

λ2 lnw/w − ln
(

1− λ2 lnw/w
))

+
λ6

w

(

χ7χ5 − χ3
5

) (

1− λ2χ5 lnw/w
)

−1
]

where NpLL.
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What about other NpLL corrections?



Thank you
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