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Abstract

Renormalization scale p leads to a conformal anomaly. The trace of the
energy-momentum tensor is proportional to the renormalization group
B-function. The effective action for a gauge theory can be written in terms
of the running gauge coupling when considered as a function of a strong
background field [Dunne, Gies and Schubert, 2006]. At the same time, the
effective action satisfies the renormalization group equation, which leads
to explicit summation of all its leading-log (LL), next-to-leading-log (NLL)
etc. contributions . We compare these two different
expressions for the effective action to obtain a novel expression for the
running gauge coupling.
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Radiative Corrections to the Scalar Effective Potential

O(N)-symmetric scalar model with a massless potential V4 = \¢* |
radiative corrections

V = i z”: )\n+1 Tn,mLm¢4

n=0 m=0
L = In(¢?/u?) and the CW RG condition

d*v

100 = 24)

p=p

The n-loop contribution to V fix the coefficients T, ,, (m < n). Vis
independent of the unphysical renormalization scale parameter p if

0 0 0
(1 + 8035+ 755 ) VX620 =0
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Example

V =X¢* + A2 (T1o + Tual) + X3 (Too + ToaL+ Topl?) ¢* -+ (4)
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ax 1 do

The RG functions 5(\) = e Y(A) = odn are needed to find the
I f
implicit dependence of V on u. Upon expanding
B = > bk, (5)
k=2
) = ) e (6)
k=1

bi_1 and g come from k-loop considerations
V=>", AFLS (€)¢* with

Sn(f) = Z Tn+m,m£m> f = AL (7)
m=0
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then eq. [3] is satisfied at order A"*2 if

d
d¢
and [(_2+b2£)dif +(n+1)by +4g1] Sa(§)

[(—2 b L (bt 4g1)} So(6) = 0.

n—1

d
S [<2gn_m + by i) + (M + Dbz + 4g0e1-n| Snl€

m=0
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These nested equations can be solved in turn for Sg, S1, Sp, ---, with
the boundary conditions S,(0) = T,0; in particular

 Top
S0 - w ) (9)
4g2Too 42 Too+baTio  b3Top
s _ ’ ’ 0 _ 23700, 10
1 sz * b2W2 b2W2 | | ( )
where
b

The sum for S,(&) gives the total N”LL contribution to V/; it contains
portions of the p-loop contribution to V for all p.
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Figure: The effective potential for N=1 (left) and N=4 (right) O(N) \¢* theory
at different order p in the CW scheme.
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If the effective Lagrangian L is treated as a function of u (the
renormalization scale), F,,, (the constant background field strength) and A
(the gauge coupling), then we have the RG equation:

dL 0 0 0
(L L BNL N F—Z— VLA Fyyn) =0. (12
i = (3 + A5+ 91002 ) L R =0, (12)

Since AF,,, is not renormalized it follows that S(\) = —Ay(\) and

[u(% + B <% - %b(%ﬂ L=, (13)

where ® = F, FI.
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For strong background fields ( A® > 1?)

L= i i TomA2"t"d (14)

n=0 m=0

where t = L1 ( < ) If Sp(A2t) = 300 Toamm(A2t)™ (n=0is LL,
n=1Iis NLL etc.), then eq. [14] leads to the nested equations

(n=0,1,2...)

)+22b2,,+3[dg (n—p—1)S,_,=0  (15)

where B(\) = >_72, bop+32%PT3 and € = A\2t. The boundary condition for
these equations is 5,(( =0) = T,
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50 = —T070W
Toob
51 = % In |W| + Tl,O

w = —1+ 2bs¢
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Connection with Conformal Anomaly

(or) = PR AP

2X(t) A(t)?

Using the effective Lagrangian for a constant background field

oL
M) = —pL +2
() D
1 )3
4 22(t)

where the running coupling \(t) satisfies
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Eq. (20) satisfies the expression for conformal anomaly provided p = g is
fixed. (14) and (20) should be consistent. To find the boundary

conditions, an extra condition must be found. L = ZA,,(/\)t”CD where
n=0

A, = Z Tm,,,/\zm. Eq. (13) is now satisfied at each order in t provided

m=n

L) = 2 m)di; <%An()\)>. (22)
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1 dn+1 o

)i WAO(/\(U))

Anr1(A(n)) = e+ 1)l

so that

n

L=X n)Zt"_

A2 (n)

L=~
A(n+t)

Ao(A(n + t))®.

1
7_n,O = - Zén,O'

Am)® = () Ao(A(n + 1))@
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New!
Furthermore .
_ 2| 1
N2(t) = TO [Z Sn(A2t)A2 ] . (27)
n=0
More explicitly
- b
22(t) = A3 [(1 — 2b3)3) + A3 <b—5 In|—1+ 2b3A§t\> (28)
3

(b 233t (bs\?In |14 2b3)3¢t| + 2b3A3t N -1
O\ b —1 4 2b3A\2t b3 —1+2b3A\3t
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By letting x = A2 and 2by,43 = B,(p = 0,1,2...) so that eq. (21)
becomes

dx

E :x2(ﬁ0+ﬁlx+ﬁgx2 + ) (29)
Rescaling t — t/e,x — ex x = xg + €x1 + €2x2 + ... (xn(t = 0) = xp0)
at successive orders in ¢,

dx
d_l? = 50X3 (30a)
dX]_ 2
E = BOXO + 2,81XOX1 (30b)
dxo 2 2 4
= Bo(xi + 2x0x2) + 3P1x1x5 + Baxp (30c)

dt
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An alternate approach is to systematically solve eq. (21) is to write (in
analogy with eq. (14))

xX(p0) = x(1) Y > Tamx" (1) In™ (42 /113) (31a)
n=0 m=0
= aalOX™ (1) (04(0) = dno) (31b)
n=0
where ¢ = x(u) In (u2/p3) - If now B(x) = x> 372 Bax" and
2%4”0) 0 (32a)

u2%><(u) — 5 (x(1)) (32b)
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Using the expansion

ACED ) B/A (33)

i=0 j=0
we find that
n—1
G+1)Sa+ (0= DNSP+ Xopss [(j + 1570 — (1= 2)5;
p=1

(34)
+U+ 1S+ (n—p—0)S;"| =0,

where X2p+3 = b2p+3/b3 (p = 1,2 .. )
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The final result for L/®

1 1
L/CD— w — x5 InwA? + (x2 X7)< —;W> 24

_ﬁ;
wl—MNInw/w
A 3 2 -1

+W (x7xs — x2) (1 = X°xsInw/w)

()\2In w/w —1In (1— A2 ln w/w))

where NPLL.
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What about other NPLL corrections?



Thank you

Figure: Your Questions Please
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