# DRA Method 

## Review and status

R.N. Lee

Institute of Nuclear Physics, Novosibirsk

# Calculations for Modern and Future Colliders <br> July 23 - August 2, 2012, Dubna, Russia 

## Outline

(1) Introduction
(2) Review of DRA Method
(3) Numerical issues
4) Multimasters
(5) Summary

## DRA Method: What is it about?



## DRA Method

## Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it was very successful in application for various multiloop integrals

## DRA Method

## Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it was very successful in application for various multiloop integrals

## DRA Method

## Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it was very successful in application for various multiloop integrals
(Lee, Smirnov and Smirnov 2010).

3-loop onshell mass operator type integrals (Lee and Smirnov 2011).

 $\because(0)$ 1:-

## DRA Method

## Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it was very successful in application for various multiloop integrals

3-loop onshell massless vertices
(Lee, Smirnov and Smirnov 2010).
3-loop onshell mass operator type
 integrals (Lee and Smirnov 2011). $\because j$ 4-loop QED-type tadpoles(Lee and Terekhov 2011).


## DRA Method

## Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it was very successful in application for various multiloop integrals

3-loop onshell massless vertices

- (Lee, Smirnov and Smirnov 2010).

3-loop onshell mass operator type integrals (Lee and Smirnov 2011).
 4-loop QED-type tadpoles(Lee and Terekhov 2011).

4-loop massless propagators(Lee,

- Smirnov and Smirnov 2011, 2012).


## DRA Method

## Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it was very successful in application for various multiloop integrals

3-loop onchell macelece verticec
(Lee, S Form of the DRA results
Results are exact in $\mathscr{D}$ and have the form of multiple 3-loop sums with factorized summand and allow for fast

- integra high-precision (e.g. $10^{3}$ digits) calculation of 4-loop ${ }^{\varepsilon}$-expansion around any point.
- Terekhov 2011).

4-loop massless propagators(Lee,

- Smirnov and Smirnov 2011, 2012).



## Loop Integral

$L$ loop, $E+1$ legs


E external momenta

Loop integral

$$
\begin{aligned}
J(\mathbf{n}) & =\int \frac{d^{\mathscr{D}} l_{1}}{\pi^{\mathscr{D} / 2}} \ldots \frac{d^{\mathscr{D}} l_{L}}{\pi^{\mathscr{D} / 2}} j(\mathbf{n}) \\
& =\int \frac{d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{L}}{\pi^{\frac{L \mathscr{D}}{2}} D_{1}^{n_{1}} \ldots D_{N}^{n_{N}}}
\end{aligned}
$$

$D_{1}, \ldots, D_{M}$ - denominators of the diagram,
$D_{M+1}, \ldots, D_{N}$ conveniently chosen numerators.

## Loop Integral

$L$ loop, $E+1$ legs


E external momenta

## Loop integral

$$
\begin{aligned}
J(\mathbf{n}) & =\int \frac{d^{\mathscr{D}} l_{1}}{\pi^{\mathscr{D} / 2}} \ldots \frac{d^{\mathscr{D}} l_{L}}{\pi^{\mathscr{D} / 2}} j(\mathbf{n}) \\
& =\int \frac{d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{L}}{\pi^{\frac{\mathscr{D}}{2}} D_{1}^{n_{1}} \ldots D_{N}^{n_{N}}}
\end{aligned}
$$

$D_{1}, \ldots, D_{M}$ - denominators of the diagram,
$D_{M+1}, \ldots, D_{N}$ conveniently chosen numerators.

## Prerequisites

All $D_{k}$ linearly depend on $s_{i j}=l_{i} \cdot q_{j}$, any $s_{i j}$ can be expressed via $D_{k} \Longrightarrow N=\# s_{i j}=L(L+1) / 2+L E$

Notation

$$
\begin{aligned}
q_{1, . . L} & =l_{1, . . L} \\
q_{L+1, . . L+E} & =p_{1, . . E}
\end{aligned}
$$

## IBP reduction

## IBP identities (Tkachov 1981, Chetyrkin and Tkachov 1981)

$$
\int d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{L} \frac{\partial}{\partial l_{i}} \cdot q_{j} j(\mathbf{n})=0
$$

Explicitely making a differentiation, we obtain identities betwen the integrals with shifted indices.

## Reduction

Using IBP Identities, it is possible to reduce all integrals to a finite set of them, called masters. For a given subset of $\left\{D_{1}, \ldots, D_{M}\right\}$ there can be

- No masters $\Longrightarrow$ The corresponding topology is reducible
- One master $\Longrightarrow$ The corresponding topology is said to have simple master
- Several masters $\Longrightarrow$ The corresponding topology is said to have multimaster - a column of masters.


## Operator representation

## Operators $A_{1}, \ldots, A_{N}, B_{1}, \ldots, B_{N}$

In order to write identities between integrals with different indices, it is convenient to introduce the operators:

$$
\begin{aligned}
& \left(A_{\alpha} f\right)\left(n_{1}, \ldots, n_{N}\right)=n_{\alpha} f\left(n_{1}, \ldots, n_{\alpha}+1, \ldots, n_{N}\right) \\
& \left(B_{\alpha} f\right)\left(n_{1}, \ldots, n_{N}\right)=f\left(n_{1}, \ldots, n_{\alpha}-1, \ldots, n_{N}\right)
\end{aligned}
$$

Commutator $\left[A_{\alpha}, B_{\beta}\right]=\delta_{\alpha \beta}$

## Operator representation

## Operators $A_{1}, \ldots, A_{N}, B_{1}, \ldots, B_{N}$

In order to write identities between integrals with different indices, it is convenient to introduce the operators:

$$
\begin{aligned}
& \left(A_{\alpha} f\right)\left(n_{1}, \ldots, n_{N}\right)=n_{\alpha} f\left(n_{1}, \ldots, n_{\alpha}+1, \ldots, n_{N}\right) \\
& \left(B_{\alpha} f\right)\left(n_{1}, \ldots, n_{N}\right)=f\left(n_{1}, \ldots, n_{\alpha}-1, \ldots, n_{N}\right)
\end{aligned}
$$

Commutator

$$
\left[A_{\alpha}, B_{\beta}\right]=\delta_{\alpha \beta}
$$

## Compact form of identities

$$
n_{1} J\left(n_{1}+1, n_{2}\right)=J\left(n_{1}, n_{2}-1\right)+J\left(n_{1}, n_{2}\right) \Longrightarrow A_{1} J=B_{2} J+J
$$

## Dimensional recurrence relation

## Dimensional recurrence relation (Tarasov 1996)

Original Tarasov's formula is derived from the parametric representation. For no numerators it has a nicely-looking form

$$
J^{(\mathscr{D}-2)}(\mathbf{n})=\mu^{L} \sum_{\text {trees }} A_{i_{1}} \ldots A_{i_{L}} J^{(\mathscr{D})}(\mathbf{n}),
$$

$i_{1}, \ldots, i_{L}$ enumerate tree chords; $\mu=|g|= \pm 1$.

## Dimensional recurrence relation

## Dimensional recurrence relation (Tarasov 1996)

Original Tarasov's formula is derived from the parametric representation. For no numerators it has a nicely-looking form

$$
J^{(\mathscr{D}-2)}(\mathbf{n})=\mu^{L} \sum_{\text {trees }} A_{i_{1}} \ldots A_{i_{L}} J^{(\mathscr{D})}(\mathbf{n}),
$$

$i_{1}, \ldots, i_{L}$ enumerate tree chords; $\mu=|g|= \pm 1$.

## Baikov's approach to reduction (Baikov 1997)

Change of variables $d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{L} \longrightarrow d s_{11} d s_{12} \ldots d s_{L, L+E}$.
Jacobian is expressed via Gram determinant

$$
V\left(l_{1}, \ldots l_{L}, p_{1}, \ldots, p_{E}\right)=\operatorname{det}\left\{q_{i} \cdot q_{j}\right\}=P\left(D_{1}, \ldots D_{N}\right)
$$

$P\left(D_{1}, \ldots D_{N}\right)$ is polynomial of $L+E$-th order.

## Dimensional recurrence relation

## Dimensional recurrence relation (Tarasov 1996)

Original Tarasov's formula is derived from the parametric representation. For no numerators it has a nicely-looking form

$$
J^{(\mathscr{D}-2)}(\mathbf{n})=\mu^{L} \sum_{\text {trees }} A_{i_{1}} \ldots A_{i_{L}} J^{(\mathscr{D})}(\mathbf{n})
$$

$i_{1}, \ldots, i_{L}$ enumerate tree chords; $\mu=|g|= \pm 1$.

## Baikov's approach to reduction (Baikov 1997)

$$
\begin{aligned}
\int \frac{d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{L}}{\pi^{L \mathscr{D} / 2} D_{1}^{n_{1}} \ldots D_{N}^{n_{N}}} & =\frac{\mu^{L} \pi^{-L E / 2-L(L-1) / 4}}{\Gamma[(\mathscr{D}-E-L+1) / 2, \ldots,(\mathscr{D}-E) / 2]} \\
& \times \int\left(\prod_{i=1}^{L} \prod_{j=i}^{L+E} d s_{i j}\right) \frac{\left[P\left(D_{1}, \ldots D_{N}\right)\right]^{(\mathscr{D}-E-L-1) / 2}}{\left[V\left(p_{1}, \ldots, p_{E}\right)\right]^{(\mathscr{D}-E-1) / 2} D_{1}^{n_{1}} \ldots D_{N}^{n_{N}}}
\end{aligned}
$$

## Dimensional recurrence relation

## DRR from Baikov's formula

## Lowering\&Raising DRR from Baikov's formula (Lee 2010b)

$$
J^{(\mathscr{D}+2)}(\mathbf{n})=\frac{(2 \mu)^{L}\left[V\left(p_{1}, \ldots, p_{E}\right)\right]^{-1}}{\pi^{L \mathscr{D} / 2}(\mathscr{D}-E-L+1)_{L}} \int d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{L} P\left(D_{1}, \ldots, D_{N}\right) j(\mathbf{n})
$$

(LDRR)

$$
J^{(\mathscr{D}-2)}(\mathbf{n})=\frac{(-\mu)^{L}}{\pi^{L \mathscr{D} / 2}} \int d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{L}\left|\begin{array}{ccc}
\partial_{s_{11}} & \cdots & \frac{1}{2} \partial_{s_{1 L}} \\
\vdots & \ddots & \vdots \\
\frac{1}{2} \partial_{s_{1 L}} & \cdots & \partial_{s_{L L}}
\end{array}\right| j(\mathbf{n}) . \quad \text { (RDRR) }
$$

## Dimensional recurrence relation

## DRR from Baikov's formula

## Lowering\&Raising DRR from Baikov's formula (Lee 2010b)

$$
\begin{aligned}
J^{(\mathscr{D}+2)}(\mathbf{n})= & \frac{(2 \mu)^{L}\left[V\left(p_{1}, \ldots, p_{E}\right)\right]^{-1}}{(\mathscr{D}-E-L+1)_{L}} P\left(B_{1}, \ldots, B_{N}\right) J^{(\mathscr{D})}(\mathbf{n}) . \\
J^{(\mathscr{D}-2)}(\mathbf{n})=\mu^{L} \operatorname{det}\left[\left.\sum_{k} \frac{\partial D_{k}}{\partial s_{i j}} A_{k}\right|_{i, j=1, \ldots L}\right] J^{(\mathscr{D})}(\mathbf{n}) . & \text { (RDRR) }
\end{aligned}
$$

## Automatization

These formulae have no reference to the graph and therefore can be easily implemented.

## Dimensional recurrence relation

Example:Obtaining DRRs is very easy

## Integral

## 2 loop vertex

$$
J(\mathbf{n})=\int \frac{d^{\mathscr{D}} l_{1} d^{\mathscr{D}} l_{2} D_{7}^{n_{7}}}{\pi^{\mathscr{D}} D_{1}^{n_{1}} \ldots D_{6}^{n_{6}}}
$$

$$
D_{1}=l_{1}^{2}, D_{2}=l_{2}^{2}, D_{3}=\left(p_{1}-l_{1}\right)^{2}, D_{4}=\left(p_{2}-l_{2}\right)_{1}^{2}
$$

$$
D_{5}=\left(p_{1}-l_{1}+l_{2}\right)^{2}, D_{6}=\left(p_{2}-l_{2}+l_{1}\right)^{2}, D_{7}=\left(l_{1}-l_{2}\right)^{2}
$$

## Dimensional recurrence relation

## Example:Obtaining DRRs is very easy

## Integral

## 2 loop vertex



## $D_{k}$ are linear functions of $s_{i j}$

$$
\begin{gathered}
D_{1}=s_{11}, D_{2}=s_{22}, D_{3}=s_{11}-2 s_{13}+p_{1}^{2} \\
D_{4}=s_{22}-2 s_{24}+p_{2}^{2}, D_{5}=s_{11}+s_{22}-2 s_{12}-2 s_{13}+2 s_{23}+p_{1}^{2} \\
D_{6}=D_{5}=s_{11}+s_{22}-2 s_{12}-2 s_{24}+2 s_{14}+p_{2}^{2}, D_{7}=s_{11}+s_{22}-2 s_{12}
\end{gathered}
$$

## Dimensional recurrence relation

Example:Obtaining DRRs is very easy

## Integral

## 2 loop vertex

$$
J(\mathbf{n})=\int \frac{d^{\mathscr{D}} l_{1} d^{\mathscr{D}} l_{2} D_{7}^{n_{7}}}{\pi^{\mathscr{D}} D_{1}^{n_{1}} \ldots D_{6}^{n_{6}}}
$$

$$
D_{1}=l_{1}^{2}, D_{2}=l_{2}^{2}, D_{3}=\left(p_{1}-l_{1}\right)^{2}, D_{4}=\left(p_{2}-l_{2}\right)_{1}^{2}
$$

$$
D_{5}=\left(p_{1}-l_{1}+l_{2}\right)^{2}, D_{6}=\left(p_{2}-l_{2}+l_{1}\right)^{2}, D_{7}=\left(l_{1}-l_{2}\right)^{2}
$$

## Expressing in terms of Ds

$$
\begin{array}{cc}
\partial_{s_{11}} & \frac{1}{2} \partial_{s_{12}} \\
\frac{1}{2} \partial_{s_{12}} & \partial_{s_{22}}
\end{array}=\partial_{s_{11}} \partial_{s_{22}}-\frac{1}{4} \partial_{s_{12}}^{2}
$$

## Dimensional recurrence relation

## Example:Obtaining DRRs is very easy

## Integral

## 2 loop vertex

$$
J(\mathbf{n})=\int \frac{d^{\mathscr{D}} l_{1} d^{\mathscr{D}} l_{2} D_{7}^{n_{7}}}{\pi^{\mathscr{D}} D_{1}^{n_{1}} \ldots D_{6}^{n_{6}}}
$$

$$
D_{1}=l_{1}^{2}, D_{2}=l_{2}^{2}, D_{3}=\left(p_{1}-l_{1}\right)^{2}, D_{4}=\left(p_{2}-l_{2}\right)_{1}^{2},
$$

$$
D_{5}=\left(p_{1}-l_{1}+l_{2}\right)^{2}, D_{6}=\left(p_{2}-l_{2}+l_{1}\right)^{2}, D_{7}=\left(l_{1}-l_{2}\right)^{2}
$$

## Expressing in terms of Ds

$$
\left.\begin{array}{cc}
\partial_{s_{11}} & \frac{1}{2} \partial_{s_{12}} \\
\frac{1}{2} \partial_{s_{12}} & \partial_{s_{22}}
\end{array} \right\rvert\,=\partial_{s_{11}} \partial_{s_{22}}-\frac{1}{4} \partial_{s_{12}}^{2} \Longleftarrow \text { Pass from } s_{i j} \text { to } D_{k}
$$

## Dimensional recurrence relation

## Example:Obtaining DRRs is very easy

## Integral

## 2 loop vertex



## Expressing in terms of Ds

$$
\left.\begin{array}{cc}
\partial_{s_{11}} & \frac{1}{2} \partial_{s_{12}} \\
\frac{1}{2} \partial_{s_{12}} & \partial_{s_{22}}
\end{array} \right\rvert\,=\partial_{s_{11}} \partial_{s_{22}}-\frac{1}{4} \partial_{s_{12}}^{2} \Longleftarrow \text { Pass from } s_{i j} \text { to } D_{k}
$$

$$
=\partial_{D_{1}} \partial_{D_{2}}+\partial_{D_{2}} \partial_{D_{3}}+\partial_{D_{1}} \partial_{D_{4}}+\partial_{D_{3}} \partial_{D_{4}}+\partial_{D_{1}} \partial_{D_{5}}+\partial_{D_{2}} \partial_{D_{5}}+\partial_{D_{3}} \partial_{D_{5}}+\partial_{D_{4}} \partial_{D_{5}}
$$

$$
+\partial_{D_{1}} \partial_{D_{6}}+\partial_{D_{2}} \partial_{D_{6}}+\partial_{D_{3}} \partial_{D_{6}}+\partial_{D_{4}} \partial_{D_{6}}+\partial_{D_{1}} \partial_{D_{7}}+\partial_{D_{2}} \partial_{D_{7}}+\partial_{D_{3}} \partial_{D_{7}}+\partial_{D_{4}} \partial_{D_{7}}
$$

## Dimensional recurrence relation

## Example:Obtaining DRRs is very easy

## Integral

## 2 loop vertex



## Expressing in terms of As

Replace $\partial_{D_{i}} \rightarrow-A_{i}$, add $\mu^{L}= \pm 1$ factor

$$
\begin{aligned}
& =\partial_{D_{1}} \partial_{D_{2}}+\partial_{D_{2}} \partial_{D_{3}}+\partial_{D_{1}} \partial_{D_{4}}+\partial_{D_{3}} \partial_{D_{4}}+\partial_{D_{1}} \partial_{D_{5}}+\partial_{D_{2}} \partial_{D_{5}}+\partial_{D_{3}} \partial_{D_{5}}+\partial_{D_{4}} \partial_{D_{5}} \\
& +\partial_{D_{1}} \partial_{D_{6}}+\partial_{D_{2}} \partial_{D_{6}}+\partial_{D_{3}} \partial_{D_{6}}+\partial_{D_{4}} \partial_{D_{6}}+\partial_{D_{1}} \partial_{D_{7}}+\partial_{D_{2}} \partial_{D_{7}}+\partial_{D_{3}} \partial_{D_{7}}+\partial_{D_{4}} \partial_{D_{7}}
\end{aligned}
$$

## Dimensional recurrence relation

## Example:Obtaining DRRs is very easy

## Integral

$$
\begin{gathered}
J(\mathbf{n})=\int \frac{d^{\mathscr{D}} l_{1} d^{\mathscr{D}} l_{2} D_{7}^{n_{7}}}{\pi^{\mathscr{D}} D_{1}^{n_{1}} \ldots D_{6}^{n_{6}}} \\
D_{1}=l_{1}^{2}, D_{2}=l_{2}^{2}, D_{3}=\left(p_{1}-l_{1}\right)^{2}, D_{4}=\left(p_{2}-l_{2}\right)_{1}^{2}, \\
D_{5}=\left(p_{1}-l_{1}+l_{2}\right)^{2}, D_{6}=\left(p_{2}-l_{2}+l_{1}\right)^{2}, D_{7}=\left(l_{1}-l_{2}\right)^{2}
\end{gathered}
$$

## 2 loop vertex



## Expressing in terms of As

Replace $\partial_{D_{i}} \rightarrow-A_{i}$, add $\mu^{L}= \pm 1$ factor and voila:

$$
\begin{gathered}
J^{(\mathscr{D}-2)}(\mathbf{n})=\left(A_{1} A_{2}+A_{2} A_{3}+A_{1} A_{4}+A_{3} A_{4}+A_{1} A_{5}+A_{2} A_{5}+A_{3} A_{5}+A_{4} A_{5}\right. \\
\left.+A_{1} A_{6}+A_{2} A_{6}+A_{3} A_{6}+A_{4} A_{6}+A_{1} A_{7}+A_{2} A_{7}+A_{3} A_{7}+A_{4} A_{7}\right) J^{(\mathscr{D})}(\mathbf{n})
\end{gathered}
$$

## Dimensional recurrence relation

## Example:Obtaining DRRs is very easy

## Integral

## 2 loop vertex

$$
J(\mathbf{n})=\int \frac{d^{\mathscr{D}} l_{1} d^{\mathscr{D}} l_{2} D_{7}^{n_{7}}}{\pi^{\mathscr{D}} D_{1}^{n_{1}} \ldots D_{6}^{n_{6}}}
$$

$$
D_{1}=l_{1}^{2}, D_{2}=l_{2}^{2}, D_{3}=\left(p_{1}-l_{1}\right)^{2}, D_{4}=\left(p_{2}-l_{2}\right)_{1}^{2},
$$

$$
D_{5}=\left(p_{1}-l_{1}+l_{2}\right)^{2}, D_{6}=\left(p_{2}-l_{2}+l_{1}\right)^{2}, D_{7}=\left(l_{1}-l_{2}\right)^{2}
$$



## Expressing in terms of As

Replace $\partial_{D_{i}} \rightarrow-A_{i}$, add $\mu^{L}= \pm 1$ factor and voila:

$$
\begin{gathered}
J^{(\mathscr{D}-2)}(\mathbf{n})=\left(A_{1} A_{2}+A_{2} A_{3}+A_{1} A_{4}+A_{3} A_{4}+A_{1} A_{5}+A_{2} A_{5}+A_{3} A_{5}+A_{4} A_{5}\right. \\
\left.+A_{1} A_{6}+A_{2} A_{6}+A_{3} A_{6}+A_{4} A_{6}+A_{1} A_{7}+A_{2} A_{7}+A_{3} A_{7}+A_{4} A_{7}\right) J^{(\mathscr{D})}(\mathbf{n})
\end{gathered}
$$

If we take master on the l.h.s. and reduce r.h.s., we obtain an equation for the masters.

## Solution of DRR

## Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

$J$ can be either simple, or multi- master. $R(v)$ contains

## Notation

 simpler integrals, which are assumed to be known.$$
v=\mathscr{D} / 2
$$

## Solution of DRR

Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

## Notation

$J$ can be either simple, or multi- master. $R(v)$ contains

$$
v=\mathscr{D} / 2
$$ simpler integrals, which are assumed to be known.

## Solution of DRR

$$
J(v)=R(v-1)+C(v-1) J(v-1)
$$

## Solution of DRR

## Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

## Notation

$J$ can be either simple, or multi- master. $R(v)$ contains

$$
v=\mathscr{D} / 2
$$ simpler integrals, which are assumed to be known.

## Solution of DRR

$$
J(v)=R(v-1)+C(v-1) R(v-2)+C(v-1) C(v-2) J(v-2)
$$

## Solution of DRR

## Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

## Notation

$J$ can be either simple, or multi- master. $R(v)$ contains

$$
v=\mathscr{D} / 2
$$ simpler integrals, which are assumed to be known.

## Solution of DRR

$$
\begin{aligned}
& \quad J(v)=R(v-1)+C(v-1) R(v-2)+C(v-1) C(v-2) R(v-3) \\
& + \\
& C(v-1) C(v-2) C(v-3) J(v-3)
\end{aligned}
$$

## Solution of DRR

## Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

## Notation

$J$ can be either simple, or multi- master. $R(v)$ contains

$$
v=\mathscr{D} / 2
$$ simpler integrals, which are assumed to be known.

## Solution of DRR

$$
\begin{aligned}
& J(v)=R(v-1)+C(v-1) R(v-2)+C(v-1) C(v-2) R(v-3) \\
+ & C(v-1) C(v-2) C(v-3) R(v-4) \\
+ & C(v-1) C(v-2) C(v-3) C(v-4) J(v-4)
\end{aligned}
$$

## Solution of DRR

## Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

## Notation

$J$ can be either simple, or multi- master. $R(v)$ contains

$$
v=\mathscr{D} / 2
$$ simpler integrals, which are assumed to be known.

## Solution of DRR

$$
\begin{aligned}
& J(v)=R(v-1)+C(v-1) R(v-2)+C(v-1) C(v-2) R(v-3) \\
+ & C(v-1) C(v-2) C(v-3) R(v-4) \\
+ & C(v-1) C(v-2) C(v-3) C(v-4) R(v-5) \\
+ & C(v-1) C(v-2) C(v-3) C(v-4) C(v-5) J(v-5)
\end{aligned}
$$

## Solution of DRR

## Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

## Notation

$J$ can be either simple, or multi- master. $R(v)$ contains

$$
v=\mathscr{D} / 2
$$ simpler integrals, which are assumed to be known.

## Solution of DRR

$$
J^{\mathrm{ih}}(v)=\sum_{k=1}^{\infty} \prod_{l=1}^{k-1} C(v-l) R(v-k) \text { or } J^{\mathrm{ih}}(v)=-\sum_{k=0}^{\infty} \prod_{l=0}^{k} C^{-1}(v+l) R(v+k)
$$

## Solution of DRR

## Inhomogeneous part

## General form of DRR for master

$$
J(v+1)=C(v) J(v)+R(v),
$$

## Notation

$J$ can be either simple, or multi- master. $R(v)$ contains

$$
v=\mathscr{D} / 2
$$ simpler integrals, which are assumed to be known.

## Solution of DRR

$$
J^{\mathrm{ih}}(v)=\sum_{k=1}^{\infty} \prod_{l=1}^{k-1} C(v-l) R(v-k) \text { or } J^{\mathrm{ih}}(v)=-\sum_{k=0}^{\infty} \prod_{l=0}^{k} C^{-1}(v+l) R(v+k)
$$

We should add a general solution $J^{0}$ of the homogeneous equation

$$
J(v)=J^{\mathrm{ih}}(v)+J^{0}(v)
$$

## Solution of DRR

Homogeneous part

## Homogeneous equation

## Summing factor

$$
J^{0}(v+1)=C(v) J^{0}(v)
$$

Summing factor: some solution of

$$
S(v)=S(v+1) C(v)
$$

## Solution of DRR

## Homogeneous part

## Homogeneous equation

$$
J^{0}(v+1)=C(v) J^{0}(v)
$$

## Simple master

$C(v)$ is a rational function which we represent as

$$
C(v)=c \frac{\prod_{i=1}^{A}\left(v-\alpha_{i}\right)}{\prod_{j=1}^{B}\left(v-\beta_{j}\right)}
$$

## Summing factor

Summing factor: some solution of

$$
S(v)=S(v+1) C(v)
$$

## Simple master

E.g., we can take

$$
S(v)=c^{-v} \frac{\prod_{j=1}^{B} \Gamma\left(v-\beta_{j}\right)}{\prod_{i=1}^{A} \Gamma\left(v-\alpha_{i}\right)}
$$

## Solution of DRR

## Homogeneous part

## Homogeneous equation

$$
J^{0}(v+1)=C(v) J^{0}(v)
$$

## Simple master

$C(v)$ is a rational function which we represent as

$$
C(v)=c \frac{\prod_{i=1}^{A}\left(v-\alpha_{i}\right)}{\prod_{j=1}^{B}\left(v-\beta_{j}\right)}
$$

## Summing factor

Summing factor: some solution of

$$
S(v)=S(v+1) C(v)
$$

## Simple master

E.g., we can take

$$
S(v)=c^{-v} \frac{\prod_{j=1}^{B} \Gamma\left(v-\beta_{j}\right)}{\prod_{i=1}^{A} \Gamma\left(v-\alpha_{i}\right)}
$$

## General solution vs specific solution

$$
J^{0}(v)=S^{-1}(v) \omega(z)
$$

$\omega(z)=\omega(\exp [2 i \pi v])$ is an arbitrary periodic function of $v$. Obviously, we have to use some information not contained in DRR to fix $\omega(z)$.

## Mittag-Leffler's\&Liouville's theorems

## Informal formulation of Mittag-Leffler's\&Liouville's theorems

If we know about a function $f(z)$ on the complex plane $z$
(1) that it has only poles, no branching sungularities
(2) the position of the poles and singular terms of expansion of $f(z)$ in each (including the possible pole at $z=\infty$ )
(3) One zeroth order term of function expansion in any point then we know $f(z)$.

Complex vs Real analysis
" $f$ is analytic function falling off at infinity" $\Longrightarrow \begin{cases}f=e^{-x^{2}}, \frac{1}{1+x^{2}}, \ldots & \text { (real) }\end{cases}$

## Key idea of DRA method

## Complex $\mathscr{D}$ to fix $\omega(z)$

General solution reads

$$
J(v)=J^{\mathrm{ih}}(v)+S^{-1}(v) \omega(z)
$$

Let us express $\omega(z)$ as

$$
\omega(z)=S(v)\left[J(v)-J^{\mathrm{ih}}(v)\right]
$$

## Key idea of DRA method

## Complex $\mathscr{D}$ to fix $\omega(z)$

General solution reads

$$
J(v)=J^{\mathrm{ih}}(v)+S^{-1}(v) \omega(z)
$$

Let us express $\omega(z)$ as

$$
\omega(z)=S(v)\left[J(v)-J^{\mathrm{ih}}(v)\right]
$$

Suppose that we know all singularities of $S(v) J(v)$ on some basic stripe $\left\{v, \operatorname{Re} v \in\left(v_{0}, v_{0}+1\right]\right\}$ and its behaviour at $\operatorname{Im} v \rightarrow \pm \infty$. Then we can use Mittag-Leffler's\&Liouville's theorems to fix $\omega(z)$.

## Key idea of DRA method

## Complex $\mathscr{D}$ to fix $\omega(z)$

General solution reads

$$
J(v)=J^{\mathrm{ih}}(v)+S^{-1}(v) \omega(z)
$$

Let us express $\omega(z)$ as

$$
\omega(z)=S(v)\left[J(v)-J^{\text {ih }}(v)\right]
$$

Suppose that we know all singularities of $S(v) J(v)$ on some basic stripe $\left\{v, \operatorname{Re} v \in\left(v_{0}, v_{0}+1\right]\right\}$ and its behaviour at $\operatorname{Im} v \rightarrow \pm \infty$. Then we can use Mittag-Leffler's\&Liouville's theorems to fix $\omega(z)$.

## Important observation

$S(v)$ allows for the mutiplication by periodic function. We can use this freedom to get rid of some poles in $S(v) J(v)$ and/or improve its behavior at $\operatorname{Im} v \rightarrow \pm \infty$. The same concerns the choice of the basic stripe.

## Analytical properties from parametric representation

## Parametric representation

If $I$ is the number of internal lines of the integral, parametric representation reads

$$
J(v)=\Gamma(I-L v) \int d x_{1} \ldots d x_{I} \delta\left(1-\Sigma x_{i}\right) \frac{[Q(x)]^{v L-I}}{[P(x)]^{v(L+1)-I}}
$$

$P(x)>0$ and $Q(x)>0$ are determined in terms of trees and 2-trees of the graph.

## Analytical properties from parametric representation

## Parametric representation

If $I$ is the number of internal lines of the integral, parametric representation reads

$$
J(v)=\Gamma(I-L v) \int d x_{1} \ldots d x_{I} \delta\left(1-\sum x_{i}\right) \frac{[Q(x)]^{v L-I}}{[P(x)]^{v(L+1)-I}}
$$

$P(x)>0$ and $Q(x)>0$ are determined in terms of trees and 2-trees of the graph.

## Analytical properties

- The integral is a meromorphic function (Bernshtein and Gelfand 1969)
- When $\operatorname{Im} v \rightarrow \pm \infty$ the integral can be estimated as

$$
J(v) \lesssim \text { const } \times|\Gamma(I-L v)| \sim \text { const } \times e^{-\pi L|\operatorname{Im} \mathscr{D}| / 4}
$$

## Fixing $\omega$

## In real life

- Use FIESTA (Smirnov et al. 2009) to determine the position and order of singularities of $J(v)$ on the basic stripe. (Very rarely it is possible to manually analyze parametric representation).
- Try to multiply $S(v)$ by some periodic factors of $\sin \left(\pi\left(v-v_{0}\right)\right)$ to make $S(v) J(v)$ regular on the basic stripe.
- Don't go too far in that because $\sin \left(\pi\left(v-v_{0}\right)\right)$ makes $v \rightarrow \pm i \infty$ behaviour of $S(v) J(v)$ worse. If $S(v) J(v)$ vanishes at some points, instead, divide by $\sin \left(\pi\left(v-v_{0}\right)\right)$ to improve behaviour at infinity.
- If it was not possible to cancel all singularities of $J(v)$ on the basic stripe, use Mellin-Barnes (or other techniques) to fix the singular coefficients of $S(v) J(v)$.
- Finally, use Mittag-Leffler's\&Liouville's theorems to fix $\omega$.


## Numerical issues

## Form of the DRA results

The DRA results are expressed in terms of the multiple sums

$$
\sum_{\infty>k_{1} \geqslant \ldots \geqslant k_{n}} f_{1}\left(k_{1}\right) \ldots f_{n}\left(k_{n}\right)
$$

The summand has a factorized form.

## Form of the MB results

The MB results are expressed in terms of the multiple sums

$$
\sum_{k_{1}} \ldots \sum_{k_{n}} f\left(k_{1} \ldots k_{n}\right)
$$

The summand is not factorized.

## Numerical issues

## Form of the DRA results

The DRA results are expressed in terms of the multiple sums

$$
\sum_{\infty>k_{1} \geqslant \ldots \geqslant k_{n}} f_{1}\left(k_{1}\right) \ldots f_{n}\left(k_{n}\right)
$$

The summand has a factorized form.
Complexity scales linearly with $n$.
for $k=0 . . k_{\max }$ do
for $i=0 . . n$ do
$S_{i}=S_{i}+S_{s-1} f_{i}(k)$
end
end
return $S_{n}$

## Form of the MB results

The MB results are expressed in terms of the multiple sums

$$
\sum_{k_{1}} \ldots \sum_{k_{n}} f\left(k_{1} \ldots k_{n}\right)
$$

The summand is not factorized.
Complexity scales exponentially.
for $k_{1}=0 . . k_{\max }$ do $\ldots / / \mathrm{n}$-fold for $k_{n}=0 . . n$ do

$$
S=S+f\left(k_{1}, \ldots\right)
$$

end
end
return $S$

## Numerical issues

## Form of the DRA results

The DRA results are expressed in terms of the multiple sums

$$
\sum_{\infty>k_{1} \geqslant \ldots \geqslant k_{n}} f_{1}\left(k_{1}\right) \ldots f_{n}\left(k_{n}\right)
$$

The summand has a factorized form.
Complexity scales linearly with $n$.
for $k=0 . . k_{\max }$ do
for $i=0 . . n$ do

$$
S_{i}=S_{i}+S_{s-1} f_{i}(k)
$$

end
end
return $S_{n}$

## Convergence acceleration

- Mostly, the summands in DRA results fall off exponentially. Evaluation time scales as $\#_{\text {digits }}$.
- Sometimes, the sums in DRA results fall off as a power. Convergence acceleration: Iterative transformation (Broadhurst 1996)

$$
S_{k} \rightarrow w_{k} S_{k}+\left(1-w_{k}\right) S_{k+1}
$$

where $w_{k}$ is some properly chosen weight. Evaluation time scales as $\left(\#_{\text {digits }}\right)^{2}$.

## Some results

$$
\begin{aligned}
\frac{(1-\varepsilon)^{2}}{\Gamma^{4}(-1+\varepsilon)} & =\frac{(1-3 \varepsilon)(2-3 \varepsilon)(1-2 \varepsilon)}{\left(1-4+\frac{44 \varepsilon}{3}-\frac{224 \zeta_{3} \varepsilon^{4}}{3}+\left(-\frac{64 a_{1}^{4}}{3}+\frac{64}{3} \pi^{2} a_{1}^{2}-512 a_{4}+\frac{272 \pi^{4}}{45}\right) \varepsilon^{5}+\left(\frac{128 a_{1}^{5}}{5}-\frac{128}{3} \pi^{2} a_{1}^{3}\right.\right.} \\
& \left.-\frac{544 \pi^{4} a_{1}}{15}-3072 a_{5}+2480 \zeta_{5}\right) \varepsilon^{6}+\left(-\frac{128 a_{1}^{6}}{5}+64 \pi^{2} a_{1}^{4}+\frac{544}{5} \pi^{4} a_{1}^{2}-18432 a_{6}+\frac{9760 \zeta_{3}^{2}}{3}-7680 s_{6}+\frac{64 \pi^{6}}{5}\right) \varepsilon^{7} \\
& +\left(-\frac{148480 s_{7 a}}{7}+\frac{174080 s_{7 b}}{7}-44640 a_{1}^{2} \zeta_{5}-\frac{185600}{7} a_{1} \zeta_{3}^{2}+\frac{148480 a_{1} s_{6}}{7}+\frac{768 a_{1}^{7}}{35}-\frac{384}{5} \pi^{2} a_{1}^{5}-\frac{1088}{5} \pi^{4} a_{1}^{3}\right. \\
& \left.\left.-\frac{7648 \pi^{6} a_{1}}{135}-110592 a_{7}-\frac{1440 \pi^{4} \zeta_{3}}{7}-\frac{260720 \pi^{2} \zeta_{5}}{21}+\frac{1545736 \zeta_{7}}{7}\right) \varepsilon^{8}+O\left(\varepsilon^{9}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{(1-\varepsilon)^{3}}{\Gamma^{4}(-1+\varepsilon)} & \left.=\frac{(1-4 \varepsilon)(3-4 \varepsilon)(1-3 \varepsilon)(2-3 \varepsilon)(1-2 \varepsilon)}{(1-1} \begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& \left.-\frac{8704 \pi^{4}}{45}\right) \varepsilon^{6}+\left(-\frac{8192 a_{1}^{5}}{5}+\frac{8192}{3} \pi^{2} a_{1}^{3}+\frac{34816 \pi^{4} a_{1}}{15}+196608 a_{5}-174592 \zeta_{5}\right) \varepsilon^{7}+\left(\frac{16384 a_{1}^{6}}{5}-8192 \pi^{2} a_{1}^{4}\right. \\
& \left.-\frac{69632}{5} \pi^{4} a_{1}^{2}+2359296 a_{6}-\frac{1266688 \zeta_{3}^{2}}{3}+1081344 s_{6}-\frac{13312 \pi^{6}}{9}\right) \varepsilon^{8}+\left(\frac{3984 \zeta_{3} \varepsilon^{5}}{3}+\left(\frac{2048 a_{1}^{4}}{3}-\frac{2048}{3} \pi^{2} a_{1}^{2}+16384 a_{4}\right.\right. \\
& +12570624 a_{1}^{2} \zeta_{5}+\frac{49807360}{7} a_{1} \zeta_{3}^{2}-\frac{39845888 a_{1} s_{6}}{7}-\frac{196608 a_{1}^{7}}{35}+\frac{98304}{5} \pi^{2} a_{1}^{5}+\frac{278528}{5} \pi^{4} a_{1}^{3}+\frac{1599488 \pi^{6} a_{1}}{135} \\
& \left.\left.+28311552 a_{7}+\frac{411648 \pi^{4} \zeta_{3}}{7}+\frac{76306432 \pi^{2} \zeta_{5}}{21}-\frac{433559040 \zeta_{7}}{7}\right) \varepsilon^{9}+O\left(\varepsilon^{10}\right)\right)
\end{aligned}
$$

## Some results

$$
\begin{aligned}
\frac{2}{\Gamma^{4}(-1+\varepsilon)} & =\frac{2}{3}+\frac{4 \varepsilon}{3}+\frac{2 \varepsilon^{2}}{3}+\left(\frac{16 \zeta_{3}}{3}-\frac{44}{3}\right) \varepsilon^{3}+\left(\frac{200 \zeta_{3}}{3}-\frac{4 \pi^{4}}{15}-116\right) \varepsilon^{4}+\left(\frac{64 a_{1}^{4}}{3}-\frac{64}{3} \pi^{2} a_{1}^{2}+512 a_{4}+\frac{1192 \zeta_{3}}{3}+96 \zeta_{5}\right. \\
& \left.-\frac{326 \pi^{4}}{45}-\frac{1928}{3}\right) \varepsilon^{5}+\left(-\frac{512 a_{1}^{5}}{15}+\frac{448 a_{1}^{4}}{3}+\frac{512}{9} \pi^{2} a_{1}^{3}-\frac{448}{3} \pi^{2} a_{1}^{2}+\frac{2416 \pi^{4} a_{1}}{45}+3584 a_{4}+4096 a_{5}+\frac{64 \zeta_{3}^{2}}{3}\right. \\
& \left.+\frac{5864 \zeta_{3}}{3}-2784 \zeta_{5}-\frac{8 \pi^{6}}{21}-\frac{2126 \pi^{4}}{45}-\frac{9328}{3}\right) \varepsilon^{6}+\left(\frac{2048 a_{1}^{6}}{45}-\frac{3584 a_{1}^{5}}{15}-\frac{1024}{9} \pi^{2} a_{1}^{4}+\frac{2368 a_{1}^{4}}{3}+\frac{3584}{9} \pi^{2} a_{1}^{3}\right. \\
& -\frac{9664}{45} \pi^{4} a_{1}^{2}-\frac{2368}{3} \pi^{2} a_{1}^{2}+\frac{16912 \pi^{4} a_{1}}{45}+18944 a_{4}+28672 a_{5}+32768 a_{6}-\frac{14872 \zeta_{3}^{2}}{3}-\frac{32 \pi^{4} \zeta_{3}}{15}+8760 \zeta_{3} \\
& \left.-20736 \zeta_{5}+1328 \zeta_{7}+12288 s_{6}-\frac{25408 \pi^{6}}{945}-\frac{2182 \pi^{4}}{9}-14032\right) \varepsilon^{7}+O\left(\varepsilon^{8}\right) \\
& \frac{(-1+\cdots)}{\Gamma^{4}(-1+\varepsilon)}=\frac{1}{4}+\frac{\varepsilon}{2}+\left(\frac{13 \zeta_{3}}{2}-8\right) \varepsilon^{3}+\left(4 \zeta_{3}-\frac{5 \pi^{4}}{8}-\frac{241}{4}\right) \varepsilon^{4}+\left(-36 \zeta_{3}+\frac{693 \zeta_{5}}{2}-\frac{\pi^{4}}{5}-\frac{669}{2}\right) \varepsilon^{5} \\
& +\left(\frac{241 \zeta_{3}^{2}}{2}-289 \zeta_{3}+72 \zeta_{5}-\frac{44 \pi^{6}}{21}+\frac{21 \pi^{4}}{5}-1636\right) \varepsilon^{6}+\left(16 \zeta_{3}^{2}-\frac{493 \pi^{4} \zeta_{3}}{20}-\frac{3061 \zeta_{3}}{2}\right. \\
& \left.-2484 \zeta_{5}+\frac{45921 \zeta_{7}}{4}-\frac{2 \pi^{6}}{7}+\frac{589 \pi^{4}}{20}-7472\right) \varepsilon^{7}+O\left(\varepsilon^{8}\right)
\end{aligned}
$$

## Some results

$$
\frac{(1-\varepsilon)^{3}}{\Gamma^{4}(-1+\varepsilon)}=\frac{\left.\left(5 \zeta_{5} \varepsilon^{3}+\left(-7 \zeta_{3}^{2}-\frac{11 \pi^{6}}{378}\right) \varepsilon^{4}+\left(\frac{\pi^{4} \zeta_{3}}{30}+212 \zeta_{7}\right) \varepsilon^{5}+O\left(\varepsilon^{6}\right)\right), ~\right) ~}{1-2 \varepsilon}
$$

$$
\begin{aligned}
\frac{2}{\Gamma^{4}(-1+\varepsilon)} & =\frac{3}{2}+\frac{7 \varepsilon}{2}+\frac{9 \varepsilon^{2}}{2}+\left(-3 \zeta_{3}-\frac{39}{2}\right) \varepsilon^{3}+\left(109 \zeta_{3}-\frac{\pi^{4}}{20}-208\right) \varepsilon^{4}+\left(32 a_{1}^{4}-32 \pi^{2} a_{1}^{2}+768 a_{4}+855 \zeta_{3}\right. \\
& \left.+189 \zeta_{5}-\frac{547 \pi^{4}}{60}-1254\right) \varepsilon^{5}+\left(-\frac{192 a_{1}^{5}}{5}+240 a_{1}^{4}+64 \pi^{2} a_{1}^{3}-240 \pi^{2} a_{1}^{2}+\frac{272 \pi^{4} a_{1}}{5}+5760 a_{4}\right. \\
& \left.+4608 a_{5}-498 \zeta_{3}^{2}+4851 \zeta_{3}-3531 \zeta_{5}-\frac{17 \pi^{6}}{21}-\frac{271 \pi^{4}}{4}-6336\right) \varepsilon^{6}+\left(3456 s_{7 \mathrm{a}}+3456 s_{7 \mathrm{~b}}\right. \\
& +252 a_{1}^{4} \zeta_{3}-252 \pi^{2} a_{1}^{2} \zeta_{3}+4320 a_{1} \zeta_{3}^{2}+6048 a_{4} \zeta_{3}-3456 a_{1} s_{6}+\frac{192 a_{1}^{6}}{5}-288 a_{1}^{5}-96 \pi^{2} a_{1}^{4} \\
& +1344 a_{1}^{4}+480 \pi^{2} a_{1}^{3}-\frac{816}{5} \pi^{4} a_{1}^{2}-1344 \pi^{2} a_{1}^{2}+\frac{14 \pi^{6} a_{1}}{5}+408 \pi^{4} a_{1}+32256 a_{4}+34560 a_{5} \\
& +27648 a_{6}-5378 \zeta_{3}^{2}-\frac{841 \pi^{4} \zeta_{3}}{10}+23968 \zeta_{3}-1692 \pi^{2} \zeta_{5}-28845 \zeta_{5}+28953 \zeta_{7}+11520 s_{6} \\
& \left.-\frac{2101 \pi^{6}}{105}-\frac{7567 \pi^{4}}{20}-29384\right) \varepsilon^{7}+O\left(\varepsilon^{8}\right)
\end{aligned}
$$

## Some results

$$
\begin{aligned}
\frac{1}{\Gamma^{4}(-1+\varepsilon)} & =-\frac{1}{6}-\frac{5 \varepsilon}{6}+\left(-\zeta_{3}-\frac{11}{3}\right) \varepsilon^{2}+\left(\frac{2 \zeta_{3}}{3}-\frac{\pi^{4}}{60}-\frac{44}{3}\right) \varepsilon^{3}+\left(\frac{31 \zeta_{3}}{3}+53 \zeta_{5}-\frac{\pi^{4}}{6}-\frac{166}{3}\right) \varepsilon^{4}+\left(\frac{16 a_{1}^{4}}{3}-\frac{16}{3} \pi^{2} a_{1}^{2}\right. \\
& \left.+128 a_{4}-128 \zeta_{3}^{2}+\frac{38 \zeta_{3}}{3}+154 \zeta_{5}-\frac{44 \pi^{6}}{189}-\frac{85 \pi^{4}}{36}-\frac{602}{3}\right) \varepsilon^{5}+\left(1920 s_{7 \mathrm{a}}+1920 s_{7 \mathrm{~b}}+140 a_{1}^{4} \zeta_{3}-140 \pi^{2} a_{1}^{2} \zeta_{3}\right. \\
& +2400 a_{1} \zeta_{3}^{2}+3360 a_{4} \zeta_{3}-1920 a_{1} s_{6}-\frac{32 a_{1}^{5}}{3}+\frac{16 a_{1}^{4}}{3}+\frac{160}{9} \pi^{2} a_{1}^{3}-\frac{16}{3} \pi^{2} a_{1}^{2}+\frac{14 \pi^{6} a_{1}}{9}+\frac{160 \pi^{4} a_{1}}{9} \\
& +128 a_{4}+1280 a_{5}-\frac{736 \zeta_{3}^{2}}{3}-\frac{1429 \pi^{4} \zeta_{3}}{30}-\frac{784 \zeta_{3}}{3}-940 \pi^{2} \zeta_{5}-353 \zeta_{5}+\frac{27591 \zeta_{7}}{2}-\frac{124 \pi^{6}}{189} \\
& \left.-\frac{481 \pi^{4}}{90}-\frac{2122}{3}\right) \varepsilon^{6}+O\left(\varepsilon^{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\Gamma^{4}(-1+\varepsilon)} & =-\frac{1}{6}-\frac{5 \varepsilon}{6}+\left(-\frac{\zeta_{3}}{2}-\frac{11}{3}\right) \varepsilon^{2}+\left(\frac{13 \zeta_{3}}{6}-\frac{\pi^{4}}{120}-\frac{44}{3}\right) \varepsilon^{3}+\left(\frac{29 \zeta_{3}}{6}+\frac{43 \zeta_{5}}{2}-\frac{5 \pi^{4}}{24}-\frac{166}{3}\right) \varepsilon^{4}+\left(-\frac{105 \zeta_{3}^{2}}{2}-\frac{197 \zeta_{3}}{6}\right. \\
& \left.+\frac{231 \zeta_{5}}{2}-\frac{17 \pi^{6}}{189}-\frac{41 \pi^{4}}{120}-\frac{602}{3}\right) \varepsilon^{5}+\left(1024 s_{7 \mathrm{a}}+1024 s_{7 \mathrm{~b}}+\frac{224}{3} a_{1}^{4} \zeta_{3}-\frac{224}{3} \pi^{2} a_{1}^{2} \zeta_{3}+1280 a_{1} \zeta_{3}^{2}+1792 a_{4} \zeta_{3}\right. \\
& -1024 a_{1} s_{6}-\frac{64 a_{1}^{4}}{3}+\frac{64}{3} \pi^{2} a_{1}^{2}+\frac{112 \pi^{6} a_{1}}{135}-512 a_{4}+\frac{241 \zeta_{3}^{2}}{6}-\frac{4699 \pi^{4} \zeta_{3}}{180}-\frac{1363 \zeta_{3}}{3}-\frac{1504 \pi^{2} \zeta_{5}}{3}+\frac{307 \zeta_{5}}{2}+\frac{28499 \zeta_{7}}{4} \\
& \left.-\frac{44 \pi^{6}}{63}+\frac{2347 \pi^{4}}{360}-\frac{2122}{3}\right) \varepsilon^{6}+O\left(\varepsilon^{7}\right)
\end{aligned}
$$

## Some results

$$
\begin{aligned}
\frac{\therefore}{\Gamma^{4}(-1+\varepsilon)} & =\left(\frac{16 a_{1}^{5}}{5}-\frac{16}{3} \pi^{2} a_{1}^{3}-\frac{53 \pi^{4} a_{1}}{15}-384 a_{5}+\frac{873 \zeta_{5}}{2}\right) \varepsilon^{4}+\left(-\frac{32 a_{1}^{6}}{3}-\frac{112 a_{1}^{5}}{5}+\frac{80}{3} \pi^{2} a_{1}^{4}+\frac{112}{3} \pi^{2} a_{1}^{3}\right. \\
& \left.+\frac{124}{3} \pi^{4} a_{1}^{2}+\frac{371 \pi^{4} a_{1}}{15}+2688 a_{5}-7680 a_{6}+\frac{2859 \zeta_{3}^{2}}{2}-\frac{6111 \zeta_{5}}{2}-4032 s_{6}+\frac{7457 \pi^{6}}{1890}\right) \varepsilon^{5}+\left(-\frac{160320 s_{7 \mathrm{a}}}{7}\right. \\
& +\frac{242880 s_{7 \mathrm{~b}}}{7}+158 a_{1}^{4} \zeta_{3}-158 \pi^{2} a_{1}^{2} \zeta_{3}-55800 a_{1}^{2} \zeta_{5}-\frac{200400}{7} a_{1} \zeta_{3}^{2}+3792 a_{4} \zeta_{3}+\frac{160320 a_{1} s_{6}}{7}+\frac{2432 a_{1}^{7}}{105} \\
& +\frac{224 a_{1}^{6}}{3}-\frac{1216}{15} \pi^{2} a_{1}^{5}+\frac{688 a_{1}^{5}}{5}-\frac{560}{3} \pi^{2} a_{1}^{4}-\frac{9856}{45} \pi^{4} a_{1}^{3}-\frac{688}{3} \pi^{2} a_{1}^{3}-\frac{868}{3} \pi^{4} a_{1}^{2}-\frac{11561 \pi^{6} a_{1}}{315}-\frac{2279 \pi^{4} a_{1}}{15} \\
& -16512 a_{5}+53760 a_{6}-116736 a_{7}-\frac{20013 \zeta_{3}^{2}}{2}-\frac{13451 \pi^{4} \zeta_{3}}{42}-\frac{121010 \pi^{2} \zeta_{5}}{7}+\frac{37539 \zeta_{5}}{2}+\frac{3977181 \zeta_{7}}{14} \\
& \left.+28224 s_{6}-\frac{7457 \pi^{6}}{270}\right) \varepsilon^{6}+O\left(\varepsilon^{7}\right)
\end{aligned}
$$

## Cheating?

Not a fair play of course: DRA method gives exact in $\mathscr{D}$ results, so obtaining new $\varepsilon$-terms is easy. Exact results for tadpoles above are taken from (Lee and Terekhov 2011).

## Example

Twisted 3-loop tadpole

## tadpole



## Example

Twisted 3-loop tadpole

## twisted tadpole Integral



$$
\begin{gathered}
J(\mathbf{n})=\int \frac{d^{\mathscr{D}} l_{1} \ldots d^{\mathscr{D}} l_{3}}{\pi^{\frac{3 \mathscr{D}}{2}} D_{1}^{n_{1}} \ldots D_{6}^{n_{6}}}, \\
D_{1 \ldots 3}=l_{1 \ldots 3}^{2}+1, D_{4}=\left(l_{3}-l_{2}\right)^{2}, \\
D_{5}=\left(l_{1}-l_{3}\right)^{2}, D_{6}=\left(l_{2}+l_{1}\right)^{2}
\end{gathered}
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole



## Masters

 6. $\Longleftarrow$ for $\mathscr{D} \leqslant 2$ IR divs, for $\mathscr{D} \geqslant 4 \mathrm{UV}$ divs $J_{4}=J_{222111}^{(\mathscr{D}+2)}=\int$ New master, finite on $\mathfrak{R} \mathscr{D} \in[3,5)$

## Example

Twisted 3-loop tadpole

## twisted tadpole

## Masters


 A. $\Longleftarrow$ for $\mathscr{D} \leqslant 2$ IR divs, for $\mathscr{D} \geqslant 4$ UV divs $J_{4}=J_{222111}^{(\mathscr{D}+2)}=\mathscr{D} \Longleftarrow$ New master, finite on $\mathfrak{R} \mathscr{D} \in[3,5)$

## DRR

$$
J^{(\mathscr{D}+2)}(\mathbf{n})=\frac{(2 \mu)^{L}\left[V\left(p_{1}, \ldots, p_{E}\right)\right]^{-1}}{(\mathscr{D}-E-L+1)_{L}} P\left(B_{1}, \ldots, B_{N}\right) J^{(\mathscr{D})}(\mathbf{n}) .
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole

## Masters

 6. $\Longleftarrow$ for $\mathscr{D} \leqslant 2$ IR divs, for $\mathscr{D} \geqslant 4 \mathrm{UV}$ divs $J_{4}=J_{222111}^{(\mathscr{D}+2)}=\mathscr{D} \Longleftarrow$ New master, finite on $\mathfrak{R} \mathscr{D} \in[3,5)$

## DRR

$$
J^{(\mathscr{D}+2)}(\mathbf{n})=\frac{4}{(\mathscr{D}-2)(\mathscr{D}-1)} P\left(B_{1}, \ldots, B_{6}\right) J^{(\mathscr{D})}(\mathbf{n}) .
$$

$$
P\left(B_{1}, \ldots, B_{6}\right)=\operatorname{det}\left[s_{i j}\right]
$$

## Example

## Twisted 3-loop tadpole

## twisted tadpole

## Masters

 C. $\Longleftarrow$ for $\mathscr{D} \leqslant 2$ IR divs, for $\mathscr{D} \geqslant 4 \mathrm{UV}$ divs $J_{4}=J_{222111}^{(\mathscr{D}+2)}=\mathscr{D} \Longleftarrow$ New master, finite on $\mathfrak{R} \mathscr{D} \in[3,5)$

## DRR

$$
\begin{aligned}
J^{(\mathscr{D}+2)}(\mathbf{n}) & =\frac{4}{(\mathscr{D}-2)(\mathscr{D}-1)} P\left(B_{1}, \ldots, B_{6}\right) J^{(\mathscr{D})}(\mathbf{n}) . \\
P\left(B_{1}, \ldots, B_{6}\right) & =\operatorname{det}\left[s_{i j}\right]=4-4 B_{1}+B_{1}^{2}-4 B_{2}+3 B_{1} B_{2}-\frac{1}{2} B_{1}^{2} B_{2}+\ldots
\end{aligned}
$$

## Example

## Twisted 3-loop tadpole

## twisted tadpole



## Masters

 A. $\Longleftarrow$ for $\mathscr{D} \leqslant 2$ IR divs, for $\mathscr{D} \geqslant 4$ UV divs $J_{4}=J_{222111}^{(\mathscr{D}+2)}=\int$ New master, finite on $\mathfrak{R} \mathscr{D} \in[3,5)$

## DRR

$$
J_{222111}^{(\mathscr{D}+2)}=\frac{4 J_{222111}^{(\mathscr{D})}-4 J_{122111}^{(\mathscr{D})}+J_{022111}^{(\mathscr{D})}-4 J_{212111}^{(\mathscr{D})}+3 J_{112111}^{(\mathscr{D})}-\frac{1}{2} J_{012111}^{(\mathscr{D})}+\ldots}{(\mathscr{D}-2)(\mathscr{D}-1) / 4}
$$

$$
P\left(B_{1}, \ldots, B_{6}\right)=\operatorname{det}\left[s_{i j}\right]=4-4 B_{1}+B_{1}^{2}-4 B_{2}+3 B_{1} B_{2}-\frac{1}{2} B_{1}^{2} B_{2}+\ldots
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole

## Masters


 6. $\Longleftarrow$ for $\mathscr{D} \leqslant 2$ IR divs, for $\mathscr{D} \geqslant 4 \mathrm{UV}$ divs $J_{4}=J_{222111}^{(\mathscr{D}+2)}=\mathscr{D} \Longleftarrow$ New master, finite on $\mathfrak{R} \mathscr{D} \in[3,5)$

## DRR

$$
\begin{aligned}
& J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+\frac{3(v-1)(3 v-5)(3 v-4)\left(184 v^{3}-1224 v^{2}+2708 v-1989\right)}{4(v-2) v(2 v-5)(2 v-3)(2 v-1)(4 v-11)(4 v-9)} J_{3}(v) \\
& \quad+\frac{6(v-1)(3 v-5)(3 v-4)(7 v-13)}{(v-2) v(2 v-5)(2 v-3)(2 v-1)(4 v-11)} J_{2}(v)-\frac{(v-1)^{2}\left(80 v^{5}-724 v^{4}+2602 v^{3}-4544 v^{2}+3759 v-1131\right)}{2(v-2) v(2 v-5)(2 v-3)^{2}(2 v-1)(4 v-11)} J_{1}(v)
\end{aligned}
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole



## Masters

 A. $\Longleftarrow$ for $\mathscr{D} \leqslant 2$ IR divs, for $\mathscr{D} \geqslant 4$ UV divs $J_{4}=J_{222111}^{(\mathscr{D}+2)}=\mathscr{D} \Longleftarrow$ New master, finite on $\mathfrak{R} \mathscr{D} \in[3,5)$

## DRR

$$
J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v)
$$

## Example

Twisted 3-loop tadpole


## Summing factor



$$
S(v)=S(v+1) \frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)}
$$

## DRR

$$
J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v)
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole



## Summing factor

$$
S(v)=S(v+1) \frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)}
$$

## DRR

$$
\begin{aligned}
J_{4}(v+1)= & \frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v) \\
& S(v+1) J_{4}(v+1)=S(v) J_{4}(v)+S(v+1) R(v)
\end{aligned}
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole



## Summing factor

$$
S(v)=S(v+1) \frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)}
$$

## DRR

$$
\begin{aligned}
& J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v) \\
& S(v) J_{4}(v)=\omega(z)-\sum_{k=0}^{\infty} S(v+1+k) R(v+k)
\end{aligned}
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole



## Summing factor

## DRR

$$
\begin{aligned}
& J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v) \\
& S(v) J_{4}(v)=\omega(z)-\sum_{k=0}^{\infty} S(v+1+k) R(v+k)
\end{aligned}
$$

## Example

Twisted 3-loop tadpole

## twisted tadpole



## Summing factor

## DRR

$$
J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v)
$$

$S(v) J_{4}(v)=\omega(z)-\sum_{k=0}^{\infty} S(v+1+k) R(v+k)$


## Example

## Twisted 3-loop tadpole

## twisted tadpole



## Summing factor

$$
\begin{aligned}
& S(v)=S(v+1) \frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} \\
& S(v)=\left\{\frac{4^{v} \Gamma(v-1) \Gamma(v-7 / 4)}{\Gamma(v-2)^{2} \Gamma(v) \Gamma(v-1 / 2) \Gamma(v-11 / 4)}\right\}^{-1} \sin ^{2} \pi(v-2)
\end{aligned}
$$

## DRR

$$
J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v)
$$

$$
S(v) J_{4}(v)=\omega(z)-\sum_{k=0}^{\infty} S(v+1+k) R(v+k)
$$



## Example

## Twisted 3-loop tadpole

## twisted tadpole

## Summing factor



$$
\begin{aligned}
S(v) & =S(v+1) \frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} \\
S(v) & =\left\{\frac{4^{v} \Gamma(v-1) \Gamma(v-7 / 4)}{\Gamma(v-2)^{2} \Gamma(v) \Gamma(v-1 / 2) \Gamma(v-11 / 4)}\right\}^{-1} \sin ^{2} \pi(v-2) \\
|S(v) J(v)| & \stackrel{v \rightarrow i \infty}{\sim}|S(v) \Gamma(3 v)| \rightarrow 0
\end{aligned}
$$

## DRR

$$
J_{4}(v+1)=\frac{4(v-1)(v-7 / 4)}{(v-2)^{2} v(v-1 / 2)(v-11 / 4)} J_{4}(v)+R(v)
$$

$$
S(v) J_{4}(v)=\omega(z)-\sum_{k=0}^{\infty} S(v+1+k) R(v+k)
$$



## Example

Twisted 3-loop tadpole

## twisted tadpole



## Summing factor

$$
\begin{aligned}
& S(v)=S(v+1) \frac{4(v-1)(v-7 / 4)}{(v-2)^{v} v(v-1 / 2)(v-11 / 4)} \\
& S(v)=\left\{\frac{4^{v} \Gamma(v-1) \Gamma(v-7 / 4)}{\Gamma(v-2)^{\Gamma} \Gamma(v) \Gamma(v-1 / 2) \Gamma(v-11 / 4)}\right\}^{-1} \sin ^{2} \pi(v-2)
\end{aligned}
$$

## DRR

Conclusion: $\omega(z)$ has nosingularities and falls off at $z \rightarrow 0, \infty \Longrightarrow \omega=0$
$S(v) J_{4}(v)=\omega(z)-\sum_{k=0}^{\infty} S(v+1+k) R(v+k)$

## Example

In 12 sec . we obtain with $10^{3}$-digits precision
$J_{4}(2-\varepsilon)=0.11370563888010938116553575708364686384899973128 \ldots$ $+0.4325720853315840790082719148377619761106501243 \ldots \varepsilon$ $+1.234780884637645769680928205178898681790397505 \ldots \varepsilon^{2}$ $+2.64178560642366133079922615872495919558223873 \ldots \varepsilon^{3}$ $+4.97722179963484562814624858135304407080163679 \ldots \varepsilon^{4}$ $+8.2769473303454444800233461011189107927706402 \ldots \varepsilon^{5}+\ldots$

## Example

Twisted 3-loop tadpole

## Using PSLQ we can convert it to nice analytic form

$$
\begin{aligned}
J_{4}(2-\varepsilon) & =\frac{3}{2}-2 \ln 2 \\
& +\left(\frac{21 \zeta_{3}}{8}-\frac{15}{2}+\frac{\pi^{2}}{2}+4 \ln ^{2} 2-3 \ln 2\right) \varepsilon \\
& +\left(\frac{21 a_{1} \zeta_{3}}{2}+a_{1}^{4}-\frac{16 a_{1}^{3}}{3}-\pi^{2} a_{1}^{2}+6 a_{1}^{2}-\frac{5 \pi^{2} a_{1}}{2}-11 a_{1}+24 a_{4}-\frac{45 \zeta_{3}}{8}-\frac{151 \pi^{4}}{480}+\frac{9 \pi^{2}}{8}+\frac{69}{2}\right) \varepsilon^{2} \\
& +\left(-21 a_{1}^{2} \zeta_{3}+\frac{135 a_{1} \zeta_{3}}{2}-\frac{4 a_{1}^{5}}{5}+\frac{29 a_{1}^{4}}{3}+\frac{4}{3} \pi^{2} a_{1}^{3}-8 a_{1}^{3}+\frac{2}{3} \pi^{2} a_{1}^{2}+22 a_{1}^{2}+\frac{151 \pi^{4} a_{1}}{120}-\frac{15 \pi^{2} a_{1}}{4}-15 a_{1}+104 a_{4}\right. \\
& \left.+96 a_{5}-\frac{63 \pi^{2} \zeta_{3}}{32}+\frac{111 \zeta_{3}}{8}-\frac{651 \zeta_{5}}{16}-\frac{367 \pi^{4}}{1440}+\frac{7 \pi^{2}}{8}-\frac{291}{2}\right) \varepsilon^{3} \\
& +\ldots \varepsilon^{4} \\
& +\ldots \varepsilon^{5}+\ldots
\end{aligned}
$$

## Solution of DRR for Multimasters

Specific solution of inhomogeneous equation

## General form of DRR(Multimasters)

$$
\mathbf{J}(v+1)=\mathbb{C}(v) \mathbf{J}(v)+\mathbf{R}(v),
$$

Now $\mathbf{J}$ and $\mathbf{R}$ are columns, $\mathbb{C}$ is a square matrix with elements being rational functions.

## Solution of DRR for Multimasters

## Specific solution of inhomogeneous equation

## General form of DRR(Multimasters)

$$
\mathbf{J}(v+1)=\mathbb{C}(v) \mathbf{J}(v)+\mathbf{R}(v),
$$

Now $\mathbf{J}$ and $\mathbf{R}$ are columns, $\mathbb{C}$ is a square matrix with elements being rational functions.

Specific solution of inhomogeneous equation: no problem

$$
\begin{gathered}
\mathbf{J}^{\mathrm{ih}}(v)=\sum_{k=1}^{\infty} \prod_{l=1}^{k-1} \mathbb{C}(v-l) \mathbf{R}(v-k) \\
\mathbf{J}^{\mathrm{ih}}(v)=-\sum_{k=0}^{\infty} \prod_{l=0}^{k} \mathbb{C}^{-1}(v+l) \mathbf{R}(v+k)
\end{gathered}
$$

## Solution of DRR for Multimasters

General solution of the homogeneous equation

## Homogeneous equation

Now a twisted system of equations

$$
\mathbf{J}^{0}(v+1)=\mathbb{C}(v) \mathbf{J}^{0}(v)
$$

## Solution of DRR for Multimasters

General solution of the homogeneous equation

## Homogeneous equation

Now a twisted system of equations

$$
\mathbf{J}^{0}(v+1)=\mathbb{C}(v) \mathbf{J}^{0}(v)
$$

## No regular way to find the solution

Similar to the differential equations, one first-order difference equation can be solved in a closed form, but the system can not.

## Solution of DRR for Multimasters

## General solution of the homogeneous equation

## Homogeneous equation

Now a twisted system of equations

$$
\mathbf{J}^{0}(v+1)=\mathbb{C}(v) \mathbf{J}^{0}(v)
$$

## No regular way to find the solution

Similar to the differential equations, one first-order difference equation can be solved in a closed form, but the system can not.

## Hope

Maybe we can reduce the system to triangular form by passing to

$$
\tilde{\mathbf{J}}(v)=\mathbb{T}(v) \mathbf{J}(v),
$$

where $\mathbb{T}(v)$ is some smartly chosen rational matrix? Whether/how can we check this?

## Solution of DRR for Multimasters

General solution of the homogeneous equation

## Hope

Maybe we can reduce the system to triangular form by passing to

$$
\tilde{\mathbf{J}}(v)=\mathbb{T}(v) \mathbf{J}(v),
$$

## Whether/how can we check this?

## Solution of DRR for Multimasters

General solution of the homogeneous equation

## Hope

Maybe we can reduce the system to triangular form by passing to

$$
\tilde{\mathbf{J}}(v)=\mathbb{T}(v) \mathbf{J}(v),
$$

## Whether/how can we check this?

## There is a tool!

Petkovšek's algorithm Hyper (Petkovšek et al. 1996) checks whether a given n -th order difference equation $(\mathrm{n}>1)$ has a hypergeometric solution, i.e., a solution $f(v)$ such that $\frac{f(v+1)}{f(v)}$ is a rational function.

## Solution of DRR for Multimasters

General solution of the homogeneous equation

## Hope

Maybe we can reduce the system to triangular form by passing to

$$
\tilde{\mathbf{J}}(v)=\mathbb{T}(v) \mathbf{J}(v)
$$

## Whether/how can we check this?

## There is a tool!

Petkovšek's algorithm Hyper (Petkovšek et al. 1996) checks whether a given n -th order difference equation $(\mathrm{n}>1)$ has a hypergeometric solution, i.e., a solution $f(v)$ such that $\frac{f(v+1)}{f(v)}$ is a rational function.

## Disappointment

Hyper tells us that the equations for multimaster are really twisted $\Longrightarrow$ No general way to obtain the solution.

## Solution of DRR for Multimasters

## Guessing the solution

If we would not know the origin of the homogeneous equation, we would fail. Fortunately, we can use some additional methods to guess the solution (Lee and Smirnov, to be published). The result has the form of hypergeometric sums.
Is there a way to check the guess?

- Numerically
- Using Zeiberger‘s algorithm Zeil (Petkovšek et al. 1996)


## Solution of DRR for Multimasters

Construction of the summing factor

## Sums in the denominators

If we know a fundamental matrix $\mathbb{J}^{0}(v)$ of the homogeneous solutions, the summing factor is

$$
\mathbb{S}(v)=\left[\mathbb{J}^{0}(v)\right]^{-1}
$$

Sums in the denominators complicate analysis of the singularities.

## Solution of DRR for Multimasters

## Construction of the summing factor

## Sums in the denominators

If we know a fundamental matrix $\mathbb{J}^{0}(v)$ of the homogeneous solutions, the summing factor is

$$
\mathbb{S}(v)=\left[\mathbb{J}^{0}(v)\right]^{-1}
$$

Sums in the denominators complicate analysis of the singularities.

## Observation

$$
\left[\mathbb{J}^{0}(v)\right]^{-1}=\left[\mathbb{J}^{0}(v)\right]^{A} /\left|\mathbb{J}^{0}(v)\right|
$$

$\left|\mathbb{J}^{0}(v)\right|$ satisfies

$$
\left|\mathbb{J}^{0}(v+1)\right|=|\mathbb{C}(v)|\left|\mathbb{J}^{0}(v)\right|
$$

Solution of this equation is the product of $\Gamma$-functions (as for the case of simple master). Arbitrary periodic factor is not a problem.

## Fixing $\omega$ for multimasters

## In real life

- Find summing factor $\mathbb{S}(v)$, using some additional techniques.
- Use FIESTA to determine the singularities of $\mathbf{J}(v)$ on the basic stripe.
- Try to multiply $\mathbb{S}(v)$ from the left by some periodic matrices, constructed of $\sin \left(\pi\left(v-v_{0}\right)\right)$, to make $\mathbb{S}(v) \mathbf{J}(v)$ regular on b.s.
- Don't go too far in that because $\sin \left(\pi\left(v-v_{0}\right)\right)$ makes $v \rightarrow \pm i \infty$ behaviour of $\mathbb{S}(v) \mathbf{J}(v)$ worse. If $\mathbb{S}(v) \mathbf{J}(v)$ vanishes at some points, divide by $\sin \left(\pi\left(v-v_{0}\right)\right)$ to improve behaviour at infinity. Find also "hidden" zeros - the points where $|\mathbb{S}(v)|=0$, but $\mathbb{S}(v) \neq 0$.
- If it was not possible to cancel all singularities of $J(v)$ on the basic stripe, use Mellin-Barnes (or other techniques) to fix the singular coefficients of $\mathbb{S}(v) \mathbf{J}(v)$.
- Finally, use Mittag-Leffler's\&Liouville's theorems to fix $\omega(z)$.


## Tools

- Finding DRR for masters: manually or automatically, using formulae presented
- IBP reduction of the right-hand side: FIRE and many private versions
- Determining the position and order of singularities: FIESTA
- Finding missing constants: Mellin-Barnes technique
- Finding summing factor for multimasters: Mellin-Barnes technique
- Checking summing factor for multimasters Zeil
- DRA application\&High-precision numerics: DRAMA is being developed
- Expressing results in terms of conventional transcendental constants: PSLQ


## Summary

- DRA method is being very successful in the calculation of multiloop integrals. Since the previous workshop CALC09 it was successfully applied to a number of problems:
- Calculation of master integrals for 3-loop onshell massless vertices.
- Calculation of master integrals for 3-loop onshell mass operator type integrals.
- Calculation of master integrals for 4-loop QED-type tadpoles.
- Calculation of master integrals for 4-loop massless propagators.
- The application of the DRA method to multimasters is being currently developed: DRAMA in its early stage already successfully applied to the masters for 3-loop static quark potential (work in progress with V. Smirnov).
- Future: The application of the DRA method to the problems with several scales.


## References I

Baikov，P．：1997，Explicit solutions of the multiloop integral recurrence relations and its application．，NIM in Phys．Res．A $389,347$.
Bernshtein，I．and Gelfand，S．：1969，Meromorphy of the function $p^{\lambda}$ ，Funkcional．Anal．i Priložen．3，84．（Russian）．
Broadhurst，D．J．：1996，On the enumeration of irreducible $k$－fold euler sums and their roles in knot theory and field theory．
Chetyrkin，K．G．and Tkachov，F．V．：1981，Integration by parts：The algorithm to calculate beta functions in 4 loops，Nucl．Phys． B192，159－204．
Lee，R．：2010a，Space－time dimensionality d as complex variable：Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to $d$ ，Nuclear Physics B 830， 474.
URL：http：／／www．sciencedirect．com／science／article／B6TVC－4Y34PW6－2／2／bd2b4965b69dc349aa8f5f9040fc5d30
Lee，R．N．：2010b，Calculating multiloop integrals using dimensional recurrence relation and D－analyticity，Nucl．Phys．Proc．Suppl． 205－206，135－140．
Lee，R．N．，Smirnov，A．V．and Smirnov，V．A．：2011，On epsilon expansions of four－loop non－planar massless propagator diagrams，Eur．Phys．J． C71， 1708.
Lee，R．N．，Smirnov，A．V．and Smirnov，V．A．：2012，Master integrals for four－loop massless propagators up to transcendentality weight twelve， Nucl．Phys．B856，95－110．
Lee，R．，Smirnov，A．and Smirnov，V．：2010，Analytic results for massless three－loop form factors，Journal of High Energy Physics 2010（4）， $1-12$ ．
URL：http：／／dx．doi．org／10．1007／JHEP04（2010）020
Lee，R．and Smirnov，V．：2011，Analytic epsilon expansions of master integrals corresponding to massless three－loop form factors and three－loop g－2 up to four－loop transcendentality weight，JHEP 1102， 102.
Lee，R．and Smirnov，V．：2012．To be published．
Lee，R．and Terekhov，I．：2011，Application of the DRA method to the calculation of the four－loop QED－type tadpoles，JHEP $1101,068$.
Petkovšek，M．，Wilf，H．and Zeilberger，D．：1996，A Equals B，Ak Peters Series，A K Peters．
URL：http：／／www．math．upenn．edu／wilf／progs．html
Smirnov，A．V．，Smirnov，V．A．and Tentyukov，M．：2009，Fiesta 2：parallelizeable multiloop numerical calculations．
Tarasov，O．V．：1996，Connection between feynman integrals having different values of the space－time dimension，Phys．Rev．D 54， 6479.
Tkachov，F．V．：1981，A theorem on analytical calculability of 4－loop renormalization group functions，Physics Letters B 100（1），65－68．
URL：http：／／www．sciencedirect．com／science／article／B6TVN－46YSNNV－109／1／886c25adc81acfld171b80d7ble7eb7f 三 ミ 三 ゆ ৷

