Analytic results for cusped Wilson loops

Dubna, July 2012

Johannes M. Henn

Institute for Advanced Study, Princeton

in collaboration with

Amit Sever (IAS/Perimeter)

arXiv:1202.4455 [hep-th] ai

arXiv:1203.1019 [hep-th]

Tobias Huber

(Siegen)

arXiv: 1207.2161 [hep-th]

Outline of talk

• Introduction: cusped anomalous dimension $\ensuremath{\,\Gamma_{\rm cusp}}$ and physical motivation

- Part I: Exact result at small angles
- Part 2: Relation to Regge limit of massive scattering amplitudes full three-loop result
- Part 3: new scaling limit, Schrödinger problem solution to all orders

$$\mathcal{L} = \frac{1}{4} \operatorname{Tr} \int F_{\mu\nu} F^{\mu\nu} , \qquad F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} + ig[A^{\mu}, A^{\nu}]$$
$$A^{\mu} = \sum_{a=1}^{N^2 - 1} A^{\mu}_a t^a_{ij} \quad \text{gauge group SU(N)}$$

Wilson loops:

required for gauge invariance of non-local objects $\overline{\Psi}(x_2)$ $\mathcal{O} = \Psi(x_1)W_C[x_1, x_2]\overline{\Psi}(x_2)$ $W_C[x_1, x_2]$ $W_C[x_1, x_2] = Pe^{\int_C dx_\mu A^\mu}$ $\Psi(x_1)$ P: path ordering

contain local operators

$$\int \sim 1 + \sigma^{\mu\nu} F_{\mu\nu} + \dots$$

gauge dynamics - Wilson loops of arbitrary shapes

Cusp anomalous dimension

Wilson loop with cusp

$\Gamma_{\rm cusp}$ governs ultraviolet (UV) divergences at cusp

 $\langle W \rangle \sim e^{-|\ln \frac{\mu_{UV}}{\mu_{IR}}| \Gamma_{\rm cusp}}$

Polyakov; Brandt, Neri, Sato Korchemsky & Radyushkin '87

similar to anomalous dimensions of composite operators

$$\Gamma_{\rm cusp}(\phi,\lambda,N) \qquad \lambda = g_{YM}^2 N$$

• IR divergences of massive amplitudes

$$\mathcal{A} \sim e^{-|\log \mu_{IR}| \Gamma_{\rm cusp}}$$

Korchemsky, Radyushkin;

resummation of soft divergences

• similarly for massive form factors (e.g lsgur-Wise)

A lot of important work on Γ_{cusp} in Dubna!

E2-85-779

E2-86-293

G.P.Korchemsky,* A.V.Radyushkin

INFRARED ASYMPTOTICS

OF PERTURBATIVE QCD

Renormalization Properties of the Wilson Loops in Higher Orders of Perturbation Theory

Submitted to "AO"

G.P.Korchemsky, A.V.Radyushkin

INFRARED ASYMPTOTICS OF PERTURBATIVE QCD. VERTEX FUNCTIONS

Submitted to "AO"

* Rostov State University, USSR

1985

1986

Limits and relations of $\Gamma_{cusp}(\phi)$

 vanishes at zero angle I (straight line)

$$\Gamma_{\rm cusp}(\phi=0,\lambda)=0$$

related to quark-antiquark potential

$$\delta = \pi - \phi \qquad \delta = \pi - \phi \qquad \delta \ll 1$$

 anomalous dimensions of large spin operators

$$\lim_{\varphi \to \infty} \Gamma_{\rm cusp}(i\varphi,\lambda) \sim \varphi \gamma_{\rm cusp}(\lambda)$$

known due to Beisert, Eden, Staudacher eq integrability!

$$\mathcal{O}_J \sim \operatorname{Tr}(Z\mathcal{D}^J Z), \quad d = 2 + J + \gamma(J,\lambda)$$

 $\lim_{J \to \infty} \gamma(J,\lambda) \sim \log J \ \gamma_{\operatorname{cusp}}(\lambda)$

Korchemsky

Wilson loops in supersymmetric theories

- loop couples to scalars $Tr(Pe^{\int ds A^{\mu}\dot{x}_{\mu}+ds n_{i}\Phi^{i}})$ six scalars Φ^{i} Maldacena; Rey
- path-dependent coupling

$$\cos(\phi) = \frac{p \cdot q}{\sqrt{p^2 q^2}} \qquad p^{\mu} \quad n_i \qquad q^{\mu} \quad n'_i$$

$$\cos(\theta) = n \cdot n', \quad n^2 = n'^2 = 1$$

e.g. $n = (1, 0, 0, 0, 0, 0), \quad n' = (\cos(\theta), \sin(\theta), 0, 0, 0, 0)$

 $\Gamma_{\rm cusp}(\phi, \theta, \lambda, N)$

- θ dependence polynomial in $\xi = \frac{\cos \theta \cos \phi}{\sin \phi}$
- supersymmetry $\Gamma_{\rm cusp}(\phi=\pm\theta)=0$ Zarembo

QCD and supersymmetric Yang-Mills theories

• $\Gamma_{\rm cusp}$ known to two loops in QCD

Korchemsky, Radyushkin '87; Kidonakis 2009

• Γ_{cusp} in N=4 SYM to two loops

Makeenko, Olesen, Semenoff 2006; Drukker, Forini 2011

perturbative calculations very similar QCD result only slightly more complicated to SYM

- certain structures more apparent in SYM
- insights can help to organize calculation even if there is no supersymmetry

Part I: exact result at small angles

First deviation from supersymmetric case can be computed exactly: $\Gamma_{cusp} = (\phi^2 - \theta^2)H(\phi, \lambda, N) + \dots$

Correa, JMH, Maldacena, Sever

H obtained by relating it to Wilson loops on S^2 Pestun et al.

$$H(\phi,\lambda) = \frac{2\phi}{1 - \frac{\phi^2}{\pi^2}} B(\tilde{\lambda}), \qquad \tilde{\lambda} = \lambda (1 - \frac{\phi^2}{\pi^2})$$
$$B = \frac{1}{4\pi^2} \sqrt{\lambda} \frac{I_2(\sqrt{\lambda})}{I_1(\sqrt{\lambda})} + o(1/N^2)$$

 I_a :modified Bessel function

non-planar part also known

Comments:

• perturbatively, H is a polynomial in ϕ,π

$$H = \phi \left[\left(\frac{\lambda}{8\pi^2} \right) (\pi^2 - \phi^2) + \frac{1}{3} \left(\frac{\lambda}{8\pi^2} \right)^2 (\pi^2 - \phi^2)^2 + \dots \right]$$

• **strong coupling** $H = \frac{\sqrt{\lambda}}{2} \frac{\phi}{\sqrt{1 - \frac{\phi^2}{\pi^2}}}$ agrees with formula extracted from Drukker, Forini

Exact result interpolating between weak and strong coupling!

for small angle $\Gamma_{\text{cusp}} = \phi^2 B(\lambda) + o(\phi^4)$, $\theta = 0$ Co

Correa, JMH, Maldacena, Sever

`Bremsstrahlung function'' $B(\lambda)$, $\lambda = g_{YM}^2 N$

(exact N dependence also known)

Part 2: Regge limit of 4-pt amplitudes full 3-loop result

- massive scattering amplitudes in N=4 SYM
- gauge theory
- Higgs mechanism $\Phi \longrightarrow \langle \Phi \rangle + \varphi$ $U(N+M) \longrightarrow U(N) \times U(M)$ $\longrightarrow U(N) \times U(1)^M$

Alday, JMH, Plefka, Schuster

• dual conformal symmetry (planar) $y_i^A \rightarrow \frac{y_i^A}{y_i^2}$ $y_i^A = (x_i^\mu, m_i)$ isometries of AdS_5 space Poincare coordinates $p_i^\mu = x_i^\mu - x_{i+1}^\mu$ $p_i^2 = -(m_i - m_{i+1})^2$

- dual conformal symmetry $s = (p_1 + p_2)^2$ $t = (p_2 + p_3)^2$ $M_4(s, t; m_1, m_2, m_3, m_4) = M(u, v)$ Alday, JMH, Plefka, Schuster $u = \frac{m_1 m_3}{s + (m_1 - m_3)^2}, \quad v = \frac{m_2 m_4}{t + (m_2 - m_4)^2}$
- relates two different physical pictures

JMH, Naculich, Spradlin, Schnitzer

(a):
$$u = \frac{m^2}{s}, v = \frac{m^2}{t}$$

• $u \ll 1$: Regge limit

$$M(u,v) \sim e^{\log u \, \Gamma_{\mathrm{cusp}}(\lambda,\phi)}$$

Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka; Bourjaily, DiRe, Shaikh, Volovich; Eden, Heslop, Sokatchev, Korchemsky

generalize to massive case

Alday, JMH, Plefka, Schuster

J. M. Henn, IAS JMH, Naculich, Spradlin, Schnitzer

What functions are needed for Γ_{cusp} ?

- useful variable: $x = e^{i\phi}$
- logarithms, polylogarithms

$$\log(x) = \int_1^x \frac{dy}{y}$$
$$\operatorname{Li}_n(x) = \int_0^x \frac{dy}{y} \operatorname{Li}_{n-1}(y), \quad \operatorname{Li}_1(x) = -\log(1-x)$$

• harmonic polylogarithms (HPLs)

Gehrmann, Remiddi

 $H_1(x) = -\log(1-x), \qquad H_0(x) = \log(x), \qquad H_{-1}(x) = \log(1+x).$ $H_{a_1,a_2,\dots,a_n}(x) = \int_0^x f_{a_1}(y) H_{a_2,\dots,a_n}(y) dy$

kernels
$$f_1(y) = \frac{1}{1-y}$$
, $f_0(y) = \frac{1}{y}$, $f_{-1}(y) = \frac{1}{1+y}$

• (for intermediate steps: Goncharov polylogarithms)

$$G(a_1, \dots a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t), \qquad G(a_1; z) = \int_0^z \frac{dt}{t - a_1}$$
J. M. Henn, IAS

structure of perturbative results

• full 3-loop result (schematically):

Correa, JMH, Maldacena, Sever

$$\xi = \frac{\cos\theta - \cos\phi}{\sin\phi}$$

• uniform degree of integrals

cf. QCD/N=4 SYM transcendentality principle (KLOV)

- linear in ξ exactly known
- highest term $\lambda^L \xi^L$ from new limit

Part 3: New scaling limit

Correa, IMH, Maldacena, Sever

 $\phi = 0: V = \frac{1}{\cosh^2 \frac{y_1}{2}}$

New scaling limit • highest term $\lambda^L \xi^L$ from new limit $\theta \to i\theta$, $\theta \to \infty$

limit selects ladders

Bethe-Salpeter equation

$$\partial_{\tau}\partial_{\sigma}F(\sigma,\tau) = F(\sigma,\tau)P(\sigma,\tau)$$

ansatz
$$F = \sum_{n} e^{-\Omega_n y_2} \Psi_n(y_1)$$
 $\begin{aligned} y_1 &= \tau - \sigma \\ y_2 &= (\tau + \sigma)/2 \end{aligned}$

• Γ_{cusp} from ground-state energy of Schrödinger problem

$$\begin{bmatrix} -\partial_{y_1}^2 - \frac{\hat{\lambda}}{8\pi^2} \frac{1}{(\cosh y_1 + \cos \phi)} + \frac{\Omega^2(\phi)}{4} \end{bmatrix} \Psi(y_1, \phi) = 0 \qquad \qquad \hat{\lambda} \sim \lambda \xi \\ \Gamma_{\text{cusp}} = -\Omega_0 \begin{bmatrix} -\partial_{y_1}^2 - \frac{\hat{\lambda}}{8\pi^2} \frac{1}{(\cosh y_1 + \cos \phi)} + \frac{\Omega^2(\phi)}{4} \end{bmatrix} \Psi(y_1, \phi) = 0 \qquad \qquad \hat{\lambda} \sim \lambda \xi$$

- exactly solvable for zero angle (Pöschl-Teller)
- iterative solution in coupling, or angle
- numerical solution

leading order (LO) solution at any loop order

Correa, JMH, Maldacena, Sever

JMH, Huber

$$\left[-\partial_{y_1}^2 - \frac{\hat{\lambda}}{8\pi^2} \frac{1}{(\cosh y_1 + \cos \phi)} + \frac{\Omega^2(\phi)}{4}\right] \Psi(y_1, \phi) = 0 \qquad \qquad \hat{\lambda} \sim \lambda \,\xi$$

change of variables

 $\Psi(y_1) = \eta(y_1)e^{-\Omega_0 y_1/2}$ $w = e^{-y_1}$, and $x = e^{i\phi}$

$$\partial_w w \partial_w \eta = -\Omega_0(x) \partial_w \eta + \hat{\kappa} \left[\frac{1}{w + x^{-1}} - \frac{1}{w + x} \right] \eta, \qquad \hat{\kappa} = \frac{\hat{\lambda} x}{4\pi^2 (1 - x^2)}$$

• Ω_0 from boundary condition $\partial_{y_1} \Psi(y_1)|_{y_1=0} = 0$

• iterative solution

$$\Omega_0 = \hat{\kappa} \Omega_0^{(1)} + \hat{\kappa}^2 \Omega_0^{(2)} + \dots \qquad \eta = 1 + \hat{\kappa} \eta^{(1)} + \dots$$

all-loop solution in terms of HPLs

- solution for $\,\eta(w,x)\,$ in terms of iterated integrals
- special case of Goncharov polylogarithms $G(a_i; z)$ here $a_i \in \{0, -x, -1/x\}, \quad z = w$
- compute differential

$$d\eta^{(L)} = f_1 d \log x + f_2 d \log(1+x) + f_3 d \log(1-x) + f_4 d \log(w+x) + f_5 d \log(w+1/x),$$

and hence, at $w = 1$

$$d\Omega^{(L)} = g_1 d \log x + g_2 d \log(1+x) + g_3 d \log(1-x)$$

- $\Omega^{(L)}$ is given by HPLs of weight (2L-1)
- can be found algorithmically in principle at any loop order

explicit results, and surprises

Surprise #1:

only indices 0,1 are needed if argument x² is chosen! (at least to 5 loops)

• for example, to three loops (argument x² is implicit)

• at four loops

$$\Omega_{0}^{(4)}(x) = 48 \zeta_{3} \zeta_{4} + 24 \zeta_{2} \zeta_{5} + 36 \zeta_{7} + 8 \zeta_{3}^{2} H_{0} + 51 \zeta_{6} H_{0} + 48 \zeta_{2} \zeta_{3} H_{2} + 72 \zeta_{5} H_{2}
+ 96 \zeta_{4} H_{3} + 88 \zeta_{3} H_{4} + 80 \zeta_{2} H_{5} + 32 \zeta_{2} \zeta_{3} H_{0,0} + 20 \zeta_{5} H_{0,0} + 72 \zeta_{4} H_{2,0}
+ 96 \zeta_{3} H_{2,2} + 48 \zeta_{2} H_{2,3} + 32 \zeta_{3} H_{3,0} + 128 \zeta_{3} H_{3,1} + 64 \zeta_{2} H_{3,2} + 80 \zeta_{2} H_{4,0}
+ 48 \zeta_{2} H_{4,1} + 92 H_{6,0} + 114 \zeta_{4} H_{0,0,0} + 24 \zeta_{3} H_{2,0,0} + 48 \zeta_{2} H_{2,2,0} + 48 H_{2,4,0}
+ 64 \zeta_{2} H_{3,0,0} + 64 \zeta_{2} H_{3,1,0} + 64 H_{3,3,0} + 80 H_{4,2,0} + 80 H_{5,0,0} + 80 H_{5,1,0}
+ 24 \zeta_{3} H_{0,0,0,0} + 48 \zeta_{2} H_{2,0,0,0} + 48 H_{2,2,2,0} + 24 H_{2,3,0,0} + 48 H_{2,3,1,0} + 64 H_{3,1,2,0}
+ 32 H_{3,2,0,0} + 64 H_{3,2,1,0} + 64 H_{4,0,0,0} + 24 H_{4,1,0,0} + 48 H_{4,1,1,0} + 92 \zeta_{2} H_{0,0,0,0,0}
+ 24 H_{2,2,0,0,0} + 48 H_{3,0,0,0,0} + 32 H_{3,1,0,0,0} + 36 H_{2,0,0,0,0,0} + 92 H_{0,0,0,0,0,0,0} .$$
(3.37)

Surprise #2:

in small x limit, only single zeta values appear, at least to six loops

• e.g. at six loops:

$$\begin{split} \Omega_{0}^{(6)}(x) \stackrel{x \to 0}{=} \frac{339008}{51975} \log^{11} x + \frac{339008}{2835} \zeta_{2} \log^{9} x + \frac{4288}{63} \zeta_{3} \log^{8} x \\ &+ \frac{12800}{7} \zeta_{4} \log^{7} x + \left(\frac{34304}{45} \zeta_{2} \zeta_{3} + \frac{10688}{45} \zeta_{5}\right) \log^{6} x \\ &+ \left(\frac{2944}{15} \zeta_{3}^{2} + \frac{110944}{15} \zeta_{6}\right) \log^{5} x + (5792 \zeta_{3} \zeta_{4} + 1376 \zeta_{2} \zeta_{5} + 528 \zeta_{7}) \log^{4} x \\ &+ \left(\frac{2944}{3} \zeta_{2} \zeta_{3}^{2} + \frac{2432}{3} \zeta_{3} \zeta_{5} + \frac{80048}{9} \zeta_{8}\right) \log^{3} x \\ &+ (128 \zeta_{3}^{3} + 3792 \zeta_{4} \zeta_{5} + 7584 \zeta_{3} \zeta_{6} + 1152 \zeta_{2} \zeta_{7} + 664 \zeta_{9}) \log^{2} x \\ &+ (1824 \zeta_{3}^{2} \zeta_{4} + 1152 \zeta_{2} \zeta_{3} \zeta_{5} + 336 \zeta_{5}^{2} + 672 \zeta_{3} \zeta_{7} + \frac{8292}{5} \zeta_{10}) \log x \\ &+ \frac{256}{3} \zeta_{2} \zeta_{3}^{3} + 160 \zeta_{3}^{2} \zeta_{5} + 612 \zeta_{5} \zeta_{6} + 432 \zeta_{4} \zeta_{7} + \frac{2480}{3} \zeta_{3} \zeta_{8} \\ &+ \frac{680}{3} \zeta_{2} \zeta_{9} + 372 \zeta_{11} + \mathcal{O}(x) \,. \end{split}$$

- no multiple zetas! E.g. $\zeta_{5,3}$ could have appeared at weight 8
- BES equation has same property can one prove it here from field theory? J. M. Henn, IAS

scaling limit beyond the LO

• only three integral classes at LO + NLO:

modified Bethe-Salpeter equation

• leads to Schroedinger equation with inhomogeneous term!

perturbative solution at NLO

• integral class (b)
$$\begin{bmatrix} -\partial_{y_1}^2 - \frac{\hat{\lambda}}{8\pi^2} \frac{1}{(\cosh y_1 + \cos \phi)} + \frac{\Omega^2(\phi)}{4} \end{bmatrix} \Psi(y_1, \phi) = \\ = c \frac{\lambda \hat{\lambda}}{(\cosh y_1 + \cos \phi)} \Phi^{(1)} \left(\frac{e^{y_1}/2}{\cosh y_1 + \cos \phi}, \frac{e^{-y_1}/2}{\cosh y_1 + \cos \phi} \right).$$

• ``seed" of iteration is simple function:

$$\Phi^{(n)}(x,y) = \frac{1}{\sqrt{(1-x-y)^2 - 4xy}} \,\tilde{\Phi}^{(n)}(x,y)$$

$$\tilde{\Phi}^{(L)}(x,y) = \sum_{f=0}^{L} \frac{(-1)^f (2L-f)!}{L!f!(L-f)!} \log^f(z_1 z_2) \left[\operatorname{Li}_{2L-f}(z_1) - \operatorname{Li}_{2L-f}(z_2) \right]$$

Isaev; Davydychev, Usyukina

 $x = z_1 z_2$, $y = (1 - z_1)(1 - z_2)$

• can show: gives rise to same function class as at LO!

JMH, Huber

• can be solved at any loop order in terms of HPLs!

perturbative solution at NLO

- integral class (c)
- H-exchange kernel involves same function!

$$f(x_1, x_2, x_3, x_4) = (\partial_1 + \partial_4)^2 h(x_1, x_2; x_3, x_4),$$

$$h(x_1, x_2; x_3, x_4) = \int \frac{d^4 x_5 d^4 x_6}{(i\pi^2)^2} \frac{1}{x_{15}^2 x_{25}^2 x_{36}^2 x_{46}^2 x_{56}^2}$$

IMH, Huber

diff. eq. : Beisert et al.; Sokatchev et al;

$$\begin{split} \tilde{f} &= x_{24}^2 (x_{12}^2 + x_{23}^2 - x_{31}^2) \, \Phi^{(1)} \left(\frac{x_{12}^2}{x_{13}^2}, \frac{x_{23}^2}{x_{13}^2} \right) + x_{13}^2 (x_{12}^2 + x_{14}^2 - x_{24}^2) \, \Phi^{(1)} \left(\frac{x_{12}^2}{x_{24}^2}, \frac{x_{14}^2}{x_{24}^2} \right) \\ &+ x_{24}^2 (x_{14}^2 + x_{34}^2 - x_{13}^2) \, \Phi^{(1)} \left(\frac{x_{34}^2}{x_{13}^2}, \frac{x_{14}^2}{x_{13}^2} \right) + x_{13}^2 (x_{23}^2 + x_{34}^2 - x_{24}^2) \, \Phi^{(1)} \left(\frac{x_{34}^2}{x_{24}^2}, \frac{x_{23}^2}{x_{24}^2} \right) \\ &+ (x_{13}^2 x_{24}^2 - x_{14}^2 x_{23}^2 - x_{12}^2 x_{34}^2) \, \Phi^{(1)} \left(\frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2} \right) \,, \end{split}$$

$$\tilde{f} &= (x_{12}^2 x_{13}^2 x_{24}^2 x_{34}^2) f$$

$$(4.21)$$

- needs to be integrated over line parameters
- will the result be given in terms of HPLs? Algorithm for all loops?

scaling limit at strong coupling to NLO

• expand string theory result of Drukker, Forini in limit

$$\Gamma = -\frac{\sqrt{\hat{\lambda}}}{2\pi \cos \frac{\phi}{2}} \left[1 - \frac{1}{2} \frac{\lambda}{\hat{\lambda}} \log \frac{\hat{\lambda}}{\lambda} + \mathcal{O}\left(\frac{\lambda}{\hat{\lambda}}\right) \right] \,.$$

• agreement with field theory at LO (ladders)

Correa, JMH, Maldacena, Sever

• at NLO:

$$\Gamma^{(a)+(c)} = -\Omega_0 = -\frac{\sqrt{\hat{\lambda}}}{2\pi\cos\frac{\phi}{2}} \left[1 - \frac{1}{2}\frac{\lambda}{\hat{\lambda}}\log\frac{\hat{\lambda}}{\lambda} + \mathcal{O}\left(\frac{\lambda}{\hat{\lambda}}\right) \right]$$

JMH, Huber Bykov, Zarembo for $\phi \to \pi$

agrees if integral class (b) is subleading at strong coupling

(a) (b) (c)
 • NB: in principle there could be an order of limits ambiguity between scaling and strong coupling limit

 I. M. Henn, IAS

Summary and discussion

 $\Gamma_{\rm cusp}(\phi, \theta, \lambda, N)$ is interesting physical quantity

• exact result for small angles agrees with string theory result

 relation to Regge limit of massive amplitudes planar integrand for cusped Wilson loop known!

 full three-loop result

• new scaling limit; Schrödinger problem

systematic solution to all loop orders

surprises in structure of results: only certain HPLs, zeta values

Outlook

• prove more exact properties: HPLs, zeta values,...

proofs are often constructive,

- i.e. also solve the computational problem

• TBA equations from integrability

Correa, Maldacena, Sever; Drukker

simplify them in exactly known cases?

- e.g. scaling limit; small angle limit (Bremsstrahlung)

 Γ_{cusp} is special case of massive amplitude - does integrability apply there too?

non-planar corrections

appear first at four-loops earlier in other Wilson loops with more external lines

• apply new ideas to QCD - three loops?