Analytic results for cusped Wilson loops

Dubna, July 2012

Johannes M. Henn

Institute for Advanced Study, Princeton

in collaboration with

Diego Correa
(La Plata)
 (IAS)
arXiv:I202.4455 [hep-th]

Amit Sever (IAS/Perimeter)

Tobias Huber (Siegen)

arXiv: 1207.216 [hep-th]

Outline of talk

- Introduction: cusped anomalous dimension $\Gamma_{\text {cusp }}$ and physical motivation
- Part I: Exact result at small angles
- Part 2: Relation to Regge limit of massive scattering amplitudes full three-loop result
- Part 3: new scaling limit, Schrödinger problem solution to all orders
$\mathcal{L}=\frac{1}{4} \operatorname{Tr} \int F_{\mu \nu} F^{\mu \nu}, \quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}+i g\left[A^{\mu}, A^{\nu}\right]$

$$
A^{\mu}=\sum_{a=1}^{N^{2}-1} A_{a}^{\mu} t_{i j}^{a} \quad \text { gauge group } \operatorname{SU}(\mathbf{N})
$$

Wilson loops:

required for gauge invariance of non-local objects

$$
\sim 1+\sigma^{\mu \nu} F_{\mu \nu}+\ldots
$$

gauge dynamics -Wilson loops of arbitrary shapes

Cusp anomalous dimension

Wilson loop with cusp

$$
\cos (\phi)=\frac{p \cdot q}{\sqrt{p^{2} q^{2}}}
$$

$\Gamma_{\text {cusp }}$ governs ultraviolet (UV) divergences at cusp

Polyakov; Brandt, Neri, Sato
Korchemsky \& Radyushkin '87

$$
\langle W\rangle \sim e^{-\left|\ln \frac{\mu_{U V}}{\mu_{I R}}\right| \Gamma_{\mathrm{cusp}}}
$$

similar to anomalous dimensions of composite operators
$\Gamma_{\text {cusp }}(\phi, \lambda, N) \quad \lambda=g_{Y M}^{2} N$

Physical relevance of $\Gamma_{\text {cusp }}$

- IR divergences of massive amplitudes

$$
\mathcal{A} \sim e^{-\left|\log \mu_{I R}\right| \Gamma_{\text {cusp }}}
$$

resummation of soft divergences

- similarly for massive form factors (e.g Isgur-Wise)

A lot of important work on $\Gamma_{\text {cusp }}$ in Dubna!

E2-85-779
G.P.Korchemsky, A.V.Radyushkin

INFRARED ASYMPTOTICS
of PERTURBATIVE QCD
Renormalization Properties
of the Wilson Loops in Higher Orders
of Perturbation Theory

E2-86-293
G.P.Korchemsky, A.V.Radyushkin

INFRARED ASYMPTOTICS OF PERTURBATIVE QU:D. VERTEX FUNCTIONS

Submitted to " $Я \Phi^{\prime \prime}$

Submitted to " $Я \phi^{\prime \prime}$

[^0]
Limits and relations of $\Gamma_{\text {cusp }}(\phi)$

- vanishes at zero angle

$$
\Gamma_{\text {cusp }}(\phi=0, \lambda)=0
$$

(straight line)

- related to quark-antiquark potential

- anomalous dimensions of large spin operators

```
\mp@subsup{\operatorname{lim}}{\varphi->\infty}{}\mp@subsup{\Gamma}{\mathrm{ cusp }}{}(i\varphi,\lambda)\underset{~}{~}\underset{\mathrm{ known due oo Beserst,}}{\varphi}\mp@subsup{\gamma}{\mathrm{ cusp}}{}(\lambda)
```

known due to Beisert
Eden, Staudacher eq integrability!

$$
\begin{aligned}
& \mathcal{O}_{J} \sim \operatorname{Tr}\left(Z \mathcal{D}^{J} Z\right), \quad d=2+J+\gamma(J, \lambda) \\
& \lim _{J \rightarrow \infty} \gamma(J, \lambda) \sim \log J \gamma_{\text {cusp }}(\lambda)
\end{aligned}
$$

Wilson loops in supersymmetric theories

- loop couples to scalars $\operatorname{Tr}\left(P e^{\int d s A^{\mu} \dot{x}_{\mu}+d s n_{i} \Phi^{i}}\right)$ six scalars Φ^{i}
- path-dependent coupling

$$
\begin{aligned}
& \cos (\phi)=\frac{p \cdot q}{\sqrt{p^{2} q^{2}}} \quad \underbrace{p^{\mu}} n_{i} \underbrace{n_{i}}_{\phi} \\
& \cos (\theta)=n \cdot n^{\prime}, \quad n^{2}=n^{\prime 2}=1 \\
& \text { e.g. } n=(1,0,0,0,0,0), \quad n^{\prime}=(\cos (\theta), \sin (\theta), 0,0,0,0) \\
& \Gamma_{\text {cusp }}(\phi, \theta, \lambda, N)
\end{aligned}
$$

- θ dependence polynomial in $\xi=\frac{\cos \theta-\cos \phi}{\sin \phi}$
- supersymmetry $\Gamma_{\text {cusp }}(\phi= \pm \theta)=0$

QCD and supersymmetric Yang-Mills theories

- $\Gamma_{\text {cusp }}$ known to two loops in QCD
- $\Gamma_{\text {cusp }}$ in $N=4$ SYM to two loops
perturbative calculations very similar
QCD result only slightly more complicated to SYM
- certain structures more apparent in SYM
- insights can help to organize calculation even if there is no supersymmetry

AdS/CFT correspondence

N=4 SYM
 SU(N) gauge theory scalars+fermions conformal

dual string theory description on AdS_5

Part I: exact result at small angles

First deviation from supersymmetric case can be computed exactly:

$$
\Gamma_{\text {cusp }}=\left(\phi^{2}-\theta^{2}\right) H(\phi, \lambda, N)+\ldots
$$

H obtained by relating it to Wilson loops on $\mathrm{S}^{\wedge} 2$

$$
\begin{aligned}
& H(\phi, \lambda)=\frac{2 \phi}{1-\frac{\phi^{2}}{\pi^{2}}} B(\tilde{\lambda}), \quad \tilde{\lambda}=\lambda\left(1-\frac{\phi^{2}}{\pi^{2}}\right) \\
& B=\frac{1}{4 \pi^{2}} \sqrt{\lambda} \frac{I_{2}(\sqrt{\lambda})}{I_{1}(\sqrt{\lambda})}+o\left(1 / N^{2}\right)
\end{aligned}
$$

Comments:

- perturbatively, H is a polynomial in ϕ, π

$$
H=\phi\left[\left(\frac{\lambda}{8 \pi^{2}}\right)\left(\pi^{2}-\phi^{2}\right)+\frac{1}{3}\left(\frac{\lambda}{8 \pi^{2}}\right)^{2}\left(\pi^{2}-\phi^{2}\right)^{2}+\ldots\right]
$$

- strong coupling

$$
H=\frac{\sqrt{\lambda}}{2} \frac{\phi}{\sqrt{1-\frac{\phi^{2}}{\pi^{2}}}}
$$

Exact result interpolating between weak and strong coupling!

for small angle $\quad \Gamma_{\text {cusp }}=\phi^{2} B(\lambda)+o\left(\phi^{4}\right), \quad \theta=0 \quad$ Correa, MH, Maldacena, Sever
"'Bremsstrahlung function" $B(\lambda), \quad \lambda=g_{Y M}^{2} N$

(exact N dependence also known)

Part 2:
 Regge limit of 4-pt amplitudes full 3-loop result

Relation to Regge limit of massive amplitudes in $\mathrm{N}=4 \mathrm{SYM}$

- massive scattering amplitudes in $\mathrm{N}=4$ SYM
gauge theory
Higgs mechanism
$\Phi \longrightarrow\langle\Phi\rangle+\varphi$
$U(N+M) \longrightarrow U(N) \times U(M)$

$$
\longrightarrow U(N) \times U(1)^{M}
$$

string theory

Alday, JMH, Plefka, Schuster

- dual conformal symmetry (planar)

$$
\begin{array}{ll}
y_{i}^{A} \rightarrow \frac{y_{i}^{A}}{y_{i}^{2}} & y_{i}^{A}=\left(x_{i}^{\mu}, m_{i}\right) \quad \begin{array}{c}
\text { isometries of } \mathrm{AdS} 5 \text { space } \\
\text { Poincare coordinates }
\end{array} \\
p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu} & p_{i}^{2}=-\left(m_{i}-m_{i+1}\right)^{2}
\end{array}
$$

- dual conformal symmetry
 $s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{2}+p_{3}\right)^{2}$
 $$
\begin{aligned} & M_{4}\left(s, t ; m_{1}, m_{2}, m_{3}, m_{4}\right)=M(u, v) \\ & u=\frac{m_{1} m_{3}}{s+\left(m_{1}-m_{3}\right)^{2}}, \quad v=\frac{m_{2} m_{4}}{t+\left(m_{2}-m_{4}\right)^{2}} \end{aligned}
$$

- relates two different physical pictures

JMH, Naculich, Spradlin, Schnitzer

$$
(a): \quad u=\frac{m^{2}}{s}, v=\frac{m^{2}}{t}
$$

- $u \ll 1$: Regge limit

(b) : $u=\frac{m^{2}}{s}, v=\frac{M^{2}}{t}$
soft IR divergences,
"Bhabha-scattering"

$$
M(u, v) \sim e^{\log u \Gamma_{\mathrm{cusp}}(\lambda, \phi)}
$$

- examples at integrand level

three loops:
 one loop:

two loops:

4-pt integrand 3-5 loops: Bern, Rozowsky, Yan + Dixon, Carrasco, Johansson

- planar integrand of 4-pt amplitude known

Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot,Trnka; Bourjaily, DiRe, Shaikh,Volovich; Eden, Heslop, Sokatchev, Korchemsky

generalize to massive case

J. M. Henn, IAS JMH, Naculich, Spradlin, Schnitzer

What functions are needed for $\Gamma_{\text {cusp }}$?

- useful variable: $x=e^{i \phi}$
- logarithms, polylogarithms

$$
\begin{aligned}
& \log (x)=\int_{1}^{x} \frac{d y}{y} \\
& \operatorname{Li}_{n}(x)=\int_{0}^{x} \frac{d y}{y} \operatorname{Li}_{n-1}(y), \quad \operatorname{Li}_{1}(x)=-\log (1-x)
\end{aligned}
$$

- harmonic polylogarithms (HPLs)

$$
\begin{aligned}
& H_{1}(x)=-\log (1-x), \quad H_{0}(x)=\log (x), \quad H_{-1}(x)=\log (1+x) . \\
& H_{a_{1}, a_{2}, \ldots a_{n}}(x)=\int_{0}^{x} f_{a_{1}}(y) H_{a_{2}, \ldots, a_{n}}(y) d y
\end{aligned}
$$

$$
\text { kernels } f_{1}(y)=\frac{1}{1-y}, \quad f_{0}(y)=\frac{1}{y}, \quad f_{-1}(y)=\frac{1}{1+y}
$$

- (for intermediate steps: Goncharov polylogarithms)

$$
G\left(a_{1}, \ldots a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right), . \quad G\left(a_{1} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} .
$$

structure of perturbative results

- full 3-loop result (schematically):

$$
\Gamma_{\text {cusp }}=\lambda \xi \phi
$$

$$
\xi=\frac{\cos \theta-\cos \phi}{\sin \phi}
$$

$$
\begin{aligned}
& +\lambda^{2}\left[\xi \phi\left(\pi^{2}-\phi^{2}\right)+\xi^{2}\left(\operatorname{Li}_{3}\left(e^{2 i \phi}\right)+\ldots\right)\right] \\
& +\lambda^{3}\left[\xi \phi\left(\pi^{2}-\phi^{2}\right)^{2}+\xi^{2}\left(\operatorname{Li}_{5}\left(e^{2 i \phi}\right)+\ldots\right)+\xi^{3}\left(\operatorname{HPL}\left(e^{2 i \phi}\right)+\ldots\right)\right]
\end{aligned}
$$

- useful variable $x=e^{i \phi}$
$\Gamma_{\text {cusp }}^{(1)}=-\frac{1}{2} \xi[2 \log x]$

$$
\begin{aligned}
\Gamma_{\text {cusp }}^{(2)}= & -\frac{1}{2} \xi\left[-\frac{2}{3} \log x\left(\log ^{2} x+\pi^{2}\right)\right] \\
& -\frac{1}{2} \xi^{2}\left[\frac{2}{3} \log ^{3} x+2 \log x\left(\zeta_{2}+\operatorname{Li}_{2}\left(x^{2}\right)\right)-2 \operatorname{Li}_{3}\left(x^{2}\right)+2 \zeta_{3}\right]
\end{aligned}
$$

- uniform degree of integrals
- linear in ξ - exactly known
- highest term $\lambda^{L} \xi^{L}$ from new limit

Part 3:
 New scaling limit

New scaling limit

- highest term $\lambda^{2} \xi^{L}$ from new limit $\theta \rightarrow i \theta, \quad \theta \rightarrow \infty$

Bethe-Salpeter equation

$$
\partial_{\tau} \partial_{\sigma} F(\sigma, \tau)=F(\sigma, \tau) P(\sigma, \tau)
$$

ansatz $\quad F=\sum_{n} e^{-\Omega_{n} y_{2}} \Psi_{n}\left(y_{1}\right)$

$$
\begin{aligned}
& y_{1}=\tau-\sigma \\
& y_{2}=(\tau+\sigma) / 2
\end{aligned}
$$

- $\Gamma_{\text {cusp }}$ from ground-state energy of Schrödinger problem

$$
\left[-\partial_{y_{1}}^{2}-\frac{\hat{\lambda}}{8 \pi^{2}} \frac{1}{\left(\cosh y_{1}+\cos \phi\right)}+\frac{\Omega^{2}(\phi)}{4}\right] \Psi\left(y_{1}, \phi\right)=0 \quad \begin{gathered}
\hat{\lambda} \sim \lambda \xi \\
\\
\Gamma_{\text {cusp }}=-\Omega_{0}
\end{gathered}
$$

- exactly solvable for zero angle (Pöschl-Teller)
- iterative solution in coupling, or angle
- numerical solution

leading order (LO)

 solution at any loop order$$
\left[-\partial_{y_{1}}^{2}-\frac{\hat{\lambda}}{8 \pi^{2}} \frac{1}{\left(\cosh y_{1}+\cos \phi\right)}+\frac{\Omega^{2}(\phi)}{4}\right] \Psi\left(y_{1}, \phi\right)=0
$$

$$
\hat{\lambda} \sim \lambda \xi
$$

- change of variables

$$
\begin{array}{ll}
\Psi\left(y_{1}\right)=\eta\left(y_{1}\right) e^{-\Omega_{0} y_{1} / 2} & w=e^{-y_{1}}, \text { and } x=e^{i \phi} \\
\partial_{w} w \partial_{w} \eta=-\Omega_{0}(x) \partial_{w} \eta+\hat{\kappa}\left[\frac{1}{w+x^{-1}}-\frac{1}{w+x}\right] \eta, \quad \hat{\kappa}=\frac{\hat{\lambda} x}{4 \pi^{2}\left(1-x^{2}\right)}
\end{array}
$$

- Ω_{0} from boundary condition $\left.\partial_{y_{1}} \Psi\left(y_{1}\right)\right|_{y_{1}=0}=0$
- iterative solution

$$
\Omega_{0}=\hat{\kappa} \Omega_{0}^{(1)}+\hat{\kappa}^{2} \Omega_{0}^{(2)}+\ldots \quad \eta=1+\hat{\kappa} \eta^{(1)}+\ldots
$$

all-loop solution in terms of HPLs

- solution for $\eta(w, x)$ in terms of iterated integrals
- special case of Goncharov polylogarithms $G\left(a_{i} ; z\right)$ here $a_{i} \in\{0,-x,-1 / x\}, \quad z=w$
- compute differential

$$
\begin{aligned}
d \eta^{(L)}= & f_{1} d \log x+f_{2} d \log (1+x)+f_{3} d \log (1-x) \\
& +f_{4} d \log (w+x)+f_{5} d \log (w+1 / x)
\end{aligned}
$$

and hence, at $w=1$

$$
d \Omega^{(L)}=g_{1} d \log x+g_{2} d \log (1+x)+g_{3} d \log (1-x)
$$

- $\Omega^{(L)}$ is given by HPLs of weight (2L-I)
- can be found algorithmically in principle at any loop order

explicit results, and surprises

Surprise \#I:

only indices $0, I$ are needed if argument $x^{\wedge} 2$ is chosen! (at least to 5 loops)

- for example, to three loops (argument $x^{\wedge} 2$ is implicit)

$$
\begin{align*}
\Omega_{0}^{(1)}(x)= & -H_{0} \tag{3.34}\\
\Omega_{0}^{(2)}(x)= & 4 \zeta_{3}+2 \zeta_{2} H_{0}+2 H_{2,0}+H_{0,0,0} \tag{3.35}\\
\Omega_{0}^{(3)}(x)= & -8 \zeta_{2} \zeta_{3}-12 \zeta_{5}-12 \zeta_{4} H_{0}-16 \zeta_{3} H_{2}-8 \zeta_{2} H_{3}-4 \zeta_{3} H_{0,0}-8 \zeta_{2} H_{2,0} \\
& -8 H_{4,0}-8 \zeta_{2} H_{0,0,0}-8 H_{2,2,0}-4 H_{3,0,0}-8 H_{3,1,0}-4 H_{2,0,0,0}-6 H_{0,0,0,0,0} \tag{3.36}
\end{align*}
$$

- at four loops

$$
\begin{align*}
\Omega_{0}^{(4)}(x)= & 48 \zeta_{3} \zeta_{4}+24 \zeta_{2} \zeta_{5}+36 \zeta_{7}+8 \zeta_{3}^{2} H_{0}+51 \zeta_{6} H_{0}+48 \zeta_{2} \zeta_{3} H_{2}+72 \zeta_{5} H_{2} \\
& +96 \zeta_{4} H_{3}+88 \zeta_{3} H_{4}+80 \zeta_{2} H_{5}+32 \zeta_{2} \zeta_{3} H_{0,0}+20 \zeta_{5} H_{0,0}+72 \zeta_{4} H_{2,0} \\
& +96 \zeta_{3} H_{2,2}+48 \zeta_{2} H_{2,3}+32 \zeta_{3} H_{3,0}+128 \zeta_{3} H_{3,1}+64 \zeta_{2} H_{3,2}+80 \zeta_{2} H_{4,0} \\
& +48 \zeta_{2} H_{4,1}+92 H_{6,0}+114 \zeta_{4} H_{0,0,0}+24 \zeta_{3} H_{2,0,0}+48 \zeta_{2} H_{2,2,0}+48 H_{2,4,0} \\
& +64 \zeta_{2} H_{3,0,0}+64 \zeta_{2} H_{3,1,0}+64 H_{3,3,0}+80 H_{4,2,0}+80 H_{5,0,0}+80 H_{5,1,0} \\
& +24 \zeta_{3} H_{0,0,0,0}+48 \zeta_{2} H_{2,0,0,0}+48 H_{2,2,2,0}+24 H_{2,3,0,0}+48 H_{2,3,1,0}+64 H_{3,1,2,0} \\
& +32 H_{3,2,0,0}+64 H_{3,2,1,0}+64 H_{4,0,0,0}+24 H_{4,1,0,0}+48 H_{4,1,1,0}+92 \zeta_{2} H_{0,0,0,0,0} \\
& +24 H_{2,2,0,0,0}+48 H_{3,0,0,0,0}+32 H_{3,1,0,0,0}+36 H_{2,0,0,0,0,0}+92 H_{0,0,0,0,0,0,0} \tag{3.37}
\end{align*}
$$

explicit results, and surprises

Surprise \#2:
in small \times limit, only single zeta values appear, at least to six loops

- e.g. at six loops:

$$
\begin{align*}
\Omega_{0}^{(6)}(x) \stackrel{x \rightarrow 0}{=} & \frac{339008}{51975} \log ^{11} x+\frac{339008}{2835} \zeta_{2} \log ^{9} x+\frac{4288}{63} \zeta_{3} \log ^{8} x \\
& +\frac{12800}{7} \zeta_{4} \log ^{7} x+\left(\frac{34304}{45} \zeta_{2} \zeta_{3}+\frac{10688}{45} \zeta_{5}\right) \log ^{6} x \\
& +\left(\frac{2944}{15} \zeta_{3}^{2}+\frac{110944}{15} \zeta_{6}\right) \log ^{5} x+\left(5792 \zeta_{3} \zeta_{4}+1376 \zeta_{2} \zeta_{5}+528 \zeta_{7}\right) \log ^{4} x \\
& +\left(\frac{2944}{3} \zeta_{2} \zeta_{3}^{2}+\frac{2432}{3} \zeta_{3} \zeta_{5}+\frac{80048}{9} \zeta_{8}\right) \log ^{3} x \\
& +\left(128 \zeta_{3}^{3}+3792 \zeta_{4} \zeta_{5}+7584 \zeta_{3} \zeta_{6}+1152 \zeta_{2} \zeta_{7}+664 \zeta_{9}\right) \log ^{2} x \\
& +\left(1824 \zeta_{3}^{2} \zeta_{4}+1152 \zeta_{2} \zeta_{3} \zeta_{5}+336 \zeta_{5}^{2}+672 \zeta_{3} \zeta_{7}+\frac{8292}{5} \zeta_{10}\right) \log x \\
& +\frac{256}{3} \zeta_{2} \zeta_{3}^{3}+160 \zeta_{3}^{2} \zeta_{5}+612 \zeta_{5} \zeta_{6}+432 \zeta_{4} \zeta_{7}+\frac{2480}{3} \zeta_{3} \zeta_{8} \\
& +\frac{680}{3} \zeta_{2} \zeta_{9}+372 \zeta_{11}+\mathcal{O}(x) \tag{3.44}
\end{align*}
$$

- no multiple zetas! E.g. $\zeta_{5,3}$ could have appeared at weight 8
- BES equation has same property - can one prove it here from field theory?

scaling limit beyond the LO

- only three integral classes at LO + NLO:

- modified Bethe-Salpeter equation

- leads to Schroedinger equation with inhomogeneous term!

perturbative solution at NLO

- integral class (b)

$$
\begin{aligned}
& {\left[-\partial_{y_{1}}^{2}-\frac{\hat{\lambda}}{8 \pi^{2}} \frac{1}{\left(\cosh y_{1}+\cos \phi\right)}+\frac{\Omega^{2}(\phi)}{4}\right] \Psi\left(y_{1}, \phi\right)=} \\
& \quad=c \frac{\lambda \hat{\lambda}}{\left(\cosh y_{1}+\cos \phi\right)} \Phi^{(1)}\left(\frac{e^{y_{1}} / 2}{\cosh y_{1}+\cos \phi}, \frac{e^{-y_{1}} / 2}{\cosh y_{1}+\cos \phi}\right)
\end{aligned}
$$

- "seed" of iteration is simple function:

$$
\begin{aligned}
& \Phi^{(n)}(x, y)=\frac{1}{\sqrt{(1-x-y)^{2}-4 x y}} \tilde{\Phi}^{(n)}(x, y) \\
& \tilde{\Phi}^{(L)}(x, y)=\sum_{f=0}^{L} \frac{(-1)^{f}(2 L-f)!}{L!f!(L-f)!} \log ^{f}\left(z_{1} z_{2}\right)\left[\mathrm{Li}_{2 L-f}\left(z_{1}\right)-\operatorname{Li}_{2 L-f}\left(z_{2}\right)\right] \\
& x=z_{1} z_{2}, \quad y=\left(1-z_{1}\right)\left(1-z_{2}\right)
\end{aligned}
$$

- can show: gives rise to same function class as at LO!
- can be solved at any loop order in terms of HPLs!

perturbative solution at NLO

- integral class (c)
- H-exchange kernel involves same function!

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\partial_{1}+\partial_{4}\right)^{2} h\left(x_{1}, x_{2} ; x_{3}, x_{4}\right) \\
& h\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=\int \frac{d^{4} x_{5} d^{4} x_{6}}{\left(i \pi^{2}\right)^{2}} \frac{1}{x_{15}^{2} x_{25}^{2} x_{36}^{2} x_{46}^{2} x_{56}^{2}}
\end{aligned}
$$

diff. eq. : Beisert et al.; Sokatchev et al;

$$
\begin{align*}
\tilde{f}= & x_{24}^{2}\left(x_{12}^{2}+x_{23}^{2}-x_{31}^{2}\right) \Phi^{(1)}\left(\frac{x_{12}^{2}}{x_{13}^{2}}, \frac{x_{23}^{2}}{x_{13}^{2}}\right)+x_{13}^{2}\left(x_{12}^{2}+x_{14}^{2}-x_{24}^{2}\right) \Phi^{(1)}\left(\frac{x_{12}^{2}}{x_{24}^{2}}, \frac{x_{14}^{2}}{x_{24}^{2}}\right) \\
& +x_{24}^{2}\left(x_{14}^{2}+x_{34}^{2}-x_{13}^{2}\right) \Phi^{(1)}\left(\frac{x_{34}^{2}}{x_{13}^{2}}, \frac{x_{14}^{2}}{x_{13}^{2}}\right)+x_{13}^{2}\left(x_{23}^{2}+x_{34}^{2}-x_{24}^{2}\right) \Phi^{(1)}\left(\frac{x_{34}^{2}}{x_{24}^{2}}, \frac{x_{23}^{2}}{x_{24}^{2}}\right) \\
& +\left(x_{13}^{2} x_{24}^{2}-x_{14}^{2} x_{23}^{2}-x_{12}^{2} x_{34}^{2}\right) \Phi^{(1)}\left(\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}\right), \tag{4.21}\\
\tilde{f}= & \left(x_{12}^{2} x_{13}^{2} x_{24}^{2} x_{34}^{2}\right) f
\end{align*}
$$

- needs to be integrated over line parameters
- will the result be given in terms of HPLs? Algorithm for all loops?

scaling limit at strong coupling to NLO

- expand string theory result of Drukker, Forini in limit

$$
\Gamma=-\frac{\sqrt{\hat{\lambda}}}{2 \pi \cos \frac{\phi}{2}}\left[1-\frac{1}{2} \frac{\lambda}{\hat{\lambda}} \log \frac{\hat{\lambda}}{\lambda}+\mathcal{O}\left(\frac{\lambda}{\hat{\lambda}}\right)\right] .
$$

- agreement with field theory at LO (ladders)
- at NLO:

$$
\Gamma^{(a)+(c)}=-\Omega_{0}=-\frac{\sqrt{\hat{\lambda}}}{2 \pi \cos \frac{\phi}{2}}\left[1-\frac{1}{2} \frac{\lambda}{\hat{\lambda}} \log \frac{\hat{\lambda}}{\lambda}+\mathcal{O}\left(\frac{\lambda}{\hat{\lambda}}\right)\right]
$$

agrees if integral clās (b) is subleäding at strong coupling

(a)

(b)

(c)

- NB: in principle there could be an order of limits ambiguity between scaling and strong coupling limit

Summary and discussion

$\Gamma_{\text {cusp }}(\phi, \theta, \lambda, N)$ is interesting physical quantity

- exact result for small angles
agrees with string theory result
- relation to Regge limit of massive amplitudes
planar integrand for cusped Wilson loop known!
full three-loop result
- new scaling limit; Schrödinger problem
systematic solution to all loop orders
surprises in structure of results:
only certain HPLs, zeta values

Outlook

- prove more exact properties: HPLs, zeta values,... proofs are often constructive,
- i.e. also solve the computational problem
- TBA equations from integrability
simplify them in exactly known cases?
- e.g. scaling limit; small angle limit (Bremsstrahlung)
$\Gamma_{\text {cusp }}$ is special case of massive amplitude - does integrability apply there too?
- non-planar corrections
appear first at four-loops earlier in other Wilson loops with more external lines
- apply new ideas to QCD - three loops?

[^0]: * Rostov State University, USSR

