Lectures on modern methods for scattering amplitudes

Dubna, July 2012

Johannes M. Henn

Institute for Advanced Study, Princeton

Outline of lectures

Lectures I \& 2

- tree-level scattering amplitudes (and loop integrands)
- analytic structure; on-shell methods
- to supersymmetric amplitudes and back
- symmetries
- IR divergences at loop level;
- massive IR regulator for planar amplitudes

Goals:

understand ideas for tree amplitudes and loop integrands
analytic structure+ symmetries
enable to do calculations for instructive examples
guide to the literature for technical details
origin of IR divergences and ways to regularize them

Lecture 3

- velocity dependent cusp anomalous dimension
- relation to massive scattering amplitudes
- systematic calculation at loop level

Motivation

consider tree-level gluon amplitudes

number of external gluons	4	5	6	7	8	9	10
number of diagrams	4	25	220	2485	34300	559405	10525900

- Can we compute amplitudes for an arbitrary number of gluons?
-What are the symmetries of the amplitudes?

Some introductory literature:

- "Calculating scattering amplitudes efficiently", many detailed examples
[Dixon, hep-ph/960 I 359]
- BCFW recursion relations
[Britto, Cachazo, Feng,Witten, hep-th/050I052]
[Peskin,
- "'Simplifying Multi-Jet QCD Computation" arXiv:IIOI.24I4 [hep-ph] very recent, contains many examples for collider physics

Color decomposition

Amplitudes depend on

- on-shell momenta p_{i}^{μ}

$$
\sum_{i=1}^{n} p_{i}^{\mu}=0 \quad p_{i}^{2}=0
$$

- helicities $h_{i}= \pm 1$
- color a_{i}

Color decomposition

$$
A^{\operatorname{tree}}\left(\left\{p_{i}, h_{i}, a_{i}\right\}\right)=\sum_{\sigma} \operatorname{Tr}\left(t^{a} \sigma(1) \ldots t^{a} \sigma(n)\right) A^{\text {tree }}(\sigma(1), \ldots \sigma(n))
$$ non-cyclic permutations partial amplitudes

can use simplified color-ordered Feynman rules
at loop level: also double \& multiple traces
$\mathrm{U}(\mathrm{I})$ decoupling identities

On-shell kinematics and helicity

- on-shell momenta $p_{i}^{\mu} \quad p_{i}^{2}=0$

$$
\begin{gathered}
p^{\alpha \dot{\alpha}}=\sigma_{\mu}^{\alpha \dot{\alpha}} p^{\mu} \\
p_{i}^{\alpha \dot{\alpha}}=\lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}}
\end{gathered}
$$

$$
\langle i j\rangle=\lambda_{i}^{\alpha} \lambda_{j \alpha}
$$

$$
[i j]=\tilde{\lambda}_{i \dot{\alpha}} \tilde{\lambda}_{j}^{\dot{\alpha}}
$$

- polarization vectors

$$
\epsilon_{+, i}^{\alpha \dot{\alpha}}=-\sqrt{2} \frac{\tilde{\lambda}_{i}^{\dot{\alpha}} \mu_{i}^{\alpha}}{\left\langle\lambda_{i} \mu_{i}\right\rangle} \quad \epsilon_{-, i}^{\alpha \dot{\alpha}}=\sqrt{2} \frac{\lambda_{i}^{\alpha} \tilde{\mu}_{i}^{\dot{\alpha}}}{\left[\lambda_{i} \mu_{i}\right]}
$$

Helicity classification

- supersymmetry $\quad A(+,+, \ldots,+)=0, \quad A(-,+, \ldots,+)=0$ (except for $n=3$) maximally helicity-violating (MHV) $\quad A(-,+, \ldots,+,-,+, \ldots,+)$ more negative helicities: non-MHV: e.g. next-to-MHV (NHMV), NNMHV, etc...

Some examples

MHV

$$
A\left(-,+, \ldots,+,-_{k},+, \ldots,+\right)=\frac{\langle 1 k\rangle^{4}}{\langle 12\rangle \ldots\langle n 1\rangle} \delta^{(4)}\left(\sum_{i} p_{i}\right)
$$

[Parke,Taylor, I986]
[Berends, Giele, 1988]
non-MHV more complicated (at first sight) e.g. next-to-MHV (NMHV) 7-point

$$
\begin{aligned}
& A\left(1^{-}, 2^{-}, 3^{+}, 4^{-}, 5^{+}, 6^{+}, 7^{+}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\left.\langle 24\rangle^{4}\langle 1| 7+6 \mid 5\right]^{3}}{\left.t_{2}^{[3]} t_{6}^{[3]}\langle 23\rangle\langle 34\rangle\langle 67\rangle\langle 71\rangle\langle 2| 3+4 \mid 5\right]\langle 6|(7+1)(2+3)|4\rangle} \\
& +\frac{\left.\langle 12\rangle^{3}\langle 4| 5+6 \mid 3\right]^{4}}{\left.\left.t_{4}^{[3]} t_{7}^{[3]}\langle 45\rangle\langle 56\rangle\langle 71\rangle\langle 6| 4+5 \mid 3\right]\langle 7| 1+2 \mid 3\right]\langle 4|(5+6)(7+1)|2\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{\left.\langle 24\rangle^{4}\langle 4| 5+6 \mid 7\right]^{3}}{\langle 23\rangle\langle 3} 4\right\rangle\langle 45\rangle\langle 56\rangle[71]\langle 4| 3+2 \mid 1\right]\langle 4|(5+6)(7+1)|2\rangle\langle 6|(7+1)(2+3)|4\rangle .
\end{aligned}
$$

Factorization formula

- multi-particle poles: internal propagator goes on-shell $P^{2} \rightarrow 0$

amplitude behaves as

$$
A \stackrel{P^{2} \rightarrow 0}{\sim} \sum_{ \pm} A^{(L)}\left(P^{ \pm}\right) \frac{1}{P^{2}} A^{(R)}\left(-P^{\mp}\right)
$$

sum over helicities
(in general sum over all possible intermediate states)

On-shell recursion relation I/2

- idea: amplitudes as functions in complex plane
- analytically continue to complex momenta
[Britto, Cachazo, Feng + Witten (BCFW), 2004]

$$
A \longrightarrow A(z)
$$

$$
\begin{array}{rll}
\lambda_{1} & \rightarrow & \lambda_{1}+z \lambda_{n} \\
\tilde{\lambda}_{n} & \rightarrow & \tilde{\lambda}_{n}-z \tilde{\lambda}_{1}
\end{array}
$$

Note: momentum conservation: $\lambda_{n} \tilde{\lambda}_{n}+\lambda_{1} \tilde{\lambda}_{1}$ unchanged and on-shell conditions are preserved
called $\left[h_{n} h_{1}\right\rangle$ shift

- $A(z)$ has poles in the complex plane
- position of poles determined by propagators

$$
\frac{1}{\left(p_{1}+\ldots p_{j}\right)^{2}} \longrightarrow \frac{1}{\left(p_{1}+\ldots+p_{n}+z \lambda_{n} \tilde{\lambda}_{1}\right)^{2}}
$$

Note: only consecutive momenta (color-ordering) simple poles

On-shell recursion relation $2 / 2$

Complex analysis:

$$
A_{n}=\oint d z \frac{A_{n}(z)}{z}
$$

- large z behavior $A(z) \xrightarrow{z \rightarrow \infty} 0$ (prove later)

$$
\begin{aligned}
A_{n} & =-\sum_{i} \oint_{z_{i}} \frac{A_{n}(z)}{z} \\
& =-\sum_{i} \operatorname{Res}_{z_{i}=z}\left(\frac{A_{n}(z)}{z}\right)
\end{aligned}
$$

- factorization property

$$
A_{n}=\sum_{i} \sum_{ \pm} A^{(L)}\left(z_{i} ; \pm\right) \frac{1}{P_{i}^{2}} A^{(R)}\left(z_{i} ; \mp\right)
$$

behavior at large z

- from analyzing Feynman diagrams

3-particle vertex: $\sim k^{\mu} \sim z$ at worst internal propagators: $\sim z^{-1}$
=> Feynman diagrams go at worst as $\sim z$ polarization vectors of shifted particles:
$[-+\rangle$ shift: extra z^{-2} from polarization vectors

$$
A(z) \xrightarrow{z \rightarrow \infty} z^{-1}
$$

- more general analysis (also in higher dimensions):
$[++\rangle \quad[--\rangle$ shifts also allowed
[Arkani-Hamed, Kaplan, 2008]
important for supersymmetric generalization

On-shell 3-point kinematics

$$
p_{1}^{2}=0, p_{2}^{2}=0, p_{3}^{2}=0, p_{1}^{\mu} \sim p_{2}^{\mu} \sim p_{3}^{\mu}
$$

- for real momenta implies $p_{i}^{\mu}=0$
- complex momenta: two solutions

MHV

$\tilde{\lambda}_{1}^{\dot{\alpha}} \sim \tilde{\lambda}_{2}^{\dot{\alpha}} \sim \tilde{\lambda}_{3}^{\dot{\alpha}}$
$\left[\tilde{\lambda}_{i}, \tilde{\lambda}_{j}\right]=0,\left\langle\lambda_{i} \lambda_{j}\right\rangle \neq 0$

$$
A_{3}^{\mathrm{MHV}}=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}
$$

Example: MHV n-point formula

- use BCFW to prove Parke-Taylor formula

$$
A_{n}^{\mathrm{MHV}}=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

- only one BCFW diagram!

$A_{n}^{\mathrm{MHV}}(1,2, \ldots, n)=A_{3}^{\overline{\mathrm{MHV}}}(\hat{1}, 2, \hat{P}) \frac{1}{P^{2}} A_{n-1}^{\mathrm{MHV}}(-\hat{P}, 3, \ldots, \hat{n})$
very instructive exercise!

- n-point amplitudes obtained recursively from lower-point ones
- all ingredients are on-shell
- BCFW recursion and on-shell three-point amplitudes determine all amplitudes
- closed-form expressions known for special classes e.g. split-helicity $A(-, \ldots,-,+, \ldots+)$
supersymmetry: extend this to any helicities
- note: different shifts lead to different (but equivalent) representations

BCFW for planar loop integrands
 [Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka , 20I0]

 [related work by Boels, 2010]- idea: loop integrand is more or less a tree (with loops...)
- planar: dual coordinates to define loop variables $x_{i}-x_{i+1}=p_{i}$

$$
A_{n}^{(L)}\left(x_{1}, \ldots x_{n}\right)=\int d^{4} y_{1} \ldots \int d^{4} y_{L} I^{(L)}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{L}\right)
$$

Apply BCFW shift:

- extra term in recursion from loop propagator going on-shell
- forward limit of $\mathrm{N}=4$ SYM trees well defined [Caron-Huot, 20I0]

- same idea for D-dimensional integrand, but hard in practice or: extend to massive case to deal with IR divergences
[Alday, JMH, Plefka, Schuster, 2008]

Symmetries (first part)

conformal symmetry follows from Lagrangian in position space => Fourier transform
[Witten, 2003] single-particle generators:

$$
\begin{array}{ll}
p_{i}^{\alpha \dot{\alpha}}=\lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}} & d_{i}=\lambda_{i}^{\alpha} \frac{\partial}{\partial \lambda_{i}^{\alpha}}+\tilde{\lambda}_{i \dot{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i \dot{\alpha}}}+1 \\
k_{i \alpha \dot{\alpha}}=\frac{\partial}{\partial \lambda_{i}^{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{\alpha}}} & m_{i}^{\alpha \beta}=\lambda_{i}^{\alpha} \frac{\partial}{\partial \lambda_{i \beta}}-\lambda_{i}^{\beta} \frac{\partial}{\partial \lambda_{i \alpha}} \tag{i}
\end{array}
$$

realization on scattering amplitude $\quad p=\sum_{i=1}^{n} p_{i} \quad$ etc.
Exercise I: verify conformal algebra
Note: for collinear
Exercise 2: show symmetry of MHV amplitudes momenta modification of generators
e.g. $\quad k\left[\delta^{(4)}(p) \frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}\right]=0$
required. Important at loop level
[Beisert et al.,2009]

End of lecture I

Thank you!

Scattering amplitudes in $N=4 S Y M$

- contain all gluon amplitudes, and amplitudes of massless QCD
- N=4 SYM: max. supersymmetry, AdS/CFT, expected integrability On-shell particle content in single supermultiplet:
$\Phi(p, \eta)=G^{+}(p)+\eta^{A} \Gamma_{A}(p)+1 / 2 \eta^{A} \eta^{B} S_{A B}+\ldots+1 / 4!\epsilon_{A B C D} \eta^{A} \eta^{B} \eta^{C} \eta^{D} G^{-}(p)$
Grassmann variable η^{A} for bookkeeping, $A=1,2,3,4$
- superamplitudes

$$
\mathcal{A}_{n}=<\Phi_{1} \ldots \Phi_{n}>
$$

- supersymmetry $\quad p=\sum_{i=1}^{n} \lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}}, \quad q=\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A}, \quad \bar{q}=\sum_{i=1}^{n} \tilde{\lambda}_{i}^{\dot{\alpha}} \frac{\partial}{\partial \eta_{i}^{A}}$
implies

$$
\mathcal{A}_{n}=\delta^{(4)}(p) \delta^{(8)}(q) \frac{\mathcal{P}_{n}}{\langle 12\rangle \ldots\langle n 1\rangle}
$$

\mathcal{P}_{n} is a polynomial in the $\left\{\eta_{i}\right\}$, MHV: η^{0}, NMHV: η^{4}, NNMHV: η^{8} etc.

$$
\delta\left(\eta^{1}\right)=\eta^{1}
$$

- MHV case:

$$
\begin{equation*}
\mathcal{P}_{n}^{\mathrm{MHV}}=1, \quad \mathcal{A}_{n}^{\mathrm{MHV}}=\frac{\delta^{(4)}(p) \delta^{(8)}(q)}{\langle 12\rangle \ldots\langle n 1\rangle} \tag{Nair,I988}
\end{equation*}
$$

On-shell susy simplifications

- Sums over intermediate states/helicities become trivial Grassmann integrals

$$
\sum_{\text {states }} A_{L} \frac{1}{P^{2}} A_{R} \quad \Rightarrow \quad \int d^{4} \eta \mathcal{A}_{L} \frac{1}{P^{2}} \mathcal{A}_{R}
$$

- Grassmann integrals carried out using susy delta functions
=> also very important at loop level
- simpler 3-particle building blocks

$$
\begin{aligned}
\mathcal{A}_{3}^{\mathrm{MHV}} & =\frac{\delta^{(8)}\left(\lambda_{1}^{\alpha} \eta_{1}^{A}+\lambda_{2}^{\alpha} \eta_{2}^{A}+\lambda_{3}^{\alpha} \eta_{3}^{A}\right)}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}=\frac{\delta^{(8)}\left(q^{\alpha A}\right)}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \\
\mathcal{A}_{3}^{\overline{\mathrm{MHV}}} & =\frac{\delta^{(4)}\left(\eta_{1}^{A}[23]+\eta_{2}^{A}[31]+\eta_{3}^{A}[12]\right)}{[12][23][31]}
\end{aligned}
$$

Supersymmetric BCFW

- Supersymmetric shift

$$
\begin{array}{ll}
\hat{\tilde{\lambda}}_{n}^{\dot{\alpha}}=\tilde{\lambda}_{n}^{\dot{\alpha}}+z \tilde{\lambda}_{1}^{\dot{\alpha}} & \hat{\lambda}_{1}^{\alpha}=\lambda_{1}^{\alpha}-z \lambda_{n}^{\alpha} \\
\hat{\eta}_{n}^{A}=\eta_{n}^{A}+z \eta_{1}^{A} &
\end{array}
$$

- large z behavior related to bosonic case by susy
=> all BCFW shifts possible
[Arkani-Hamed, Cachazo, Kaplan, 2008]
bosonic:

$$
\begin{aligned}
A & =\sum_{P_{i}} \sum_{h} A_{L}^{h}\left(z_{P_{i}}\right) \frac{1}{P_{i}^{2}} A_{R}^{-h}\left(z_{P_{i}}\right) \\
\mathcal{A} & =\sum_{P_{i}} \int d^{4} \eta_{P_{i}} \mathcal{A}_{L}\left(z_{P_{i}}\right) \frac{1}{P_{i}^{2}} \mathcal{A}_{R}\left(z_{P_{i}}\right)
\end{aligned}
$$

Example: NHMV tree in N=4 SYM

A

- MHV superamplitude $\mathcal{A}_{n}^{\mathrm{MHV}}=\frac{\delta^{(4)}(p) \delta^{(8)}(q)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}$
- inhomogeneous term $\quad B=\frac{\delta^{(4)}(p) \delta^{(8)}(q)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \sum_{i=4}^{n-1} R_{n ; 2 i}$
- ansatz $\quad \mathcal{A}_{n}^{\text {NMHV }}=\frac{\delta^{(4)}(p) \delta^{(8)}(q)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \sum_{2 \leq s<t \leq n-1} R_{n ; s t}$
prove by induction!

Example: NHMV tree in $\mathrm{N}=4 \mathrm{SYM}$

- final result $\mathcal{A}_{n}^{\mathrm{NMHV}}=\frac{\delta^{(4)}(p) \delta^{(8)}(q)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \sum_{2 \leq s<t \leq n-1} R_{n ; s t}$

$$
\begin{aligned}
& R_{n ; i, j}=\frac{<i i-1><j j-1>\delta^{(4)}\left(\Xi_{n ; i j}\right)}{x_{i j}^{2}<n\left|x_{n i} x_{i j}\right| j><n\left|x_{n i} x_{i j}\right| j-1><n\left|x_{n j} x_{j i}\right| i><n\left|x_{n j} x_{j i}\right| i-1>} \\
& \Xi_{n ; i j}=<n\left|x_{n i} x_{i j}\right| \theta_{j n}>+<n\left|x_{n j} x_{j i}\right| \theta_{i n}>
\end{aligned}
$$

- with dual coordinates $\quad \lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}}=x_{i}^{\alpha \dot{\alpha}}-x_{i+1}^{\alpha \dot{\alpha}}, \quad \lambda_{i}^{\alpha} \eta_{i}^{A}=\theta_{i}^{\alpha A}-\theta_{i+1}^{\alpha A}$
- Note: different shifts lead to different representations; interpretation as residue theorems [Arkani-Hamed]
- solution for all tree-level amplitudes in similar way
[Drummond, JMH, 2008]

Symmetries (second part)

(super)conformal symmetry from Lagrangian
[Witten, 2003] why is the result so simple? dual space

$$
x_{i}^{\mu}-x_{i+1}^{\mu}=p_{i}^{\mu}
$$

dual conformal symmetry = conformal symmetry in dual space

- first hints seen in loop integrals for 4pt amplitude
[Drummond, JMH, Sokatchev, V. Smirnov, 2006]
- for generic helicity amplitude;
extension to dual superconformal symmetry
[Drummond, JMH, Korchemsky Sokatchev, 2008]
- natural in string theory
[Alday, Maldacena, 2007]
[Maldacena, Berkovits, 2008; Beisert et al, 2008]

Dual conformal symmetry

[Drummond, JMH, Korchemsky Sokatchev, 2008]

Explicit form of infinitesimal generators

- dual space $\quad x_{i}^{\alpha \dot{\alpha}}-x_{i+1}^{\alpha \dot{\alpha}}=p_{i}^{\alpha \dot{\alpha}}=\lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}}$
- bosonic part of generator

$$
K_{\alpha \dot{\alpha}}=\sum_{i}\left[x_{i \alpha}{ }^{\dot{\beta}} x_{i \dot{\alpha}}{ }^{\beta} \frac{\partial}{\partial x_{i}^{\beta \dot{\beta}}}+x_{i \dot{\alpha}}{ }^{\beta} \lambda_{i \alpha} \frac{\partial}{\partial \lambda_{i}^{\beta}}+x_{i+1 \alpha}{ }^{\dot{\beta}} \tilde{\lambda}_{i \dot{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{\beta}}}\right]
$$

- dual superspace $\theta_{i \alpha}^{A}-\theta_{i+1 \alpha}^{A}=q_{i \alpha}^{A}=\eta_{i}^{A} \lambda_{i \alpha}$
- final expression

$$
K^{\alpha \dot{\alpha}}=\sum_{i}\left[x_{i}^{\alpha \dot{\beta}} x_{i}^{\dot{\alpha} \beta} \frac{\partial}{\partial x_{i}^{\beta \dot{\beta}}}+x_{i}^{\dot{\alpha} \beta} \lambda_{i}^{\alpha} \frac{\partial}{\partial \lambda_{i}^{\beta}}+x_{i+1}^{\alpha \dot{\alpha}} \tilde{\lambda}_{i}^{\dot{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{\beta}}}+x_{i}^{\dot{\alpha} \beta} \theta_{i}^{\alpha B} \frac{\partial}{\partial \theta_{i}^{\beta B}}+\tilde{\lambda}_{i}^{\dot{\alpha}} \theta_{i+1}^{\alpha B} \frac{\partial}{\partial \eta_{i}^{B}}\right]
$$

- some dual conformal covariants $x_{q r}^{2} \xrightarrow{\text { inversion }} \frac{x_{q r}^{2}}{x_{q}^{2} x_{r}^{2}}$ e.g. $x_{q r}^{2} \quad\langle q-1 q\rangle$
$=>$ easy to verify symmetry!

Yangian symmetry

superconformal psu $(2,2 \mid 4)$ symmetry $\quad\left[J_{a}, J_{b}\right\}=f_{a b}{ }^{c} J_{c}, \quad J_{a}=\sum_{i=1}^{n} J_{i a}$ dual (super)conformal symmetry closure of algebra? Yangian of psu(2,2|4) [Drummond, JMH, Plefka, 2009] level-one Yangian generators $\quad Q_{a}=f_{a}{ }^{c b} \sum_{j b} J_{i b} J_{j c}$

- Yangian algebra $\left[J_{a}^{(1)}, J_{b}^{(0)}\right\}=f_{a b}^{c} J_{c}^{(1)} \quad \begin{aligned} & 1 \leq i<j \leq n \\ & \text { and higher levels }\end{aligned}$
- Serre relations

all tree amplitudes have Yangian symmetry generators very simple in (super)twistor space

$$
\begin{aligned}
J_{a}^{(0)} \mathcal{A}^{\text {tree }} & =0 \\
J_{a}^{(1)} \mathcal{A}^{\text {tree }} & =0
\end{aligned}
$$

$$
J^{(0) \bar{A}_{\bar{B}}}=\sum_{i} \mathcal{Z}_{i}^{\bar{A}} \frac{\partial}{\partial \mathcal{Z}_{i}^{\bar{B}}} \quad J^{(1) \bar{A}_{\bar{B}}}=-\sum_{i>j}\left[\mathcal{Z}_{i}^{\bar{A}} \mathcal{Z}_{j}^{\bar{C}} \frac{\partial}{\partial \mathcal{Z}_{i}^{\bar{C}}} \frac{\partial}{\partial \mathcal{Z}_{j}^{\bar{B}}}-(i \leftrightarrow j)\right]
$$

How to extract

[Drummond, JMH, 2008]

component amplitudes

[Dixon, JMH, Plefka, Schuster, 20IO]

- use $\mathrm{N}=4$ SYM result to obtain gluon and fermion amplitudes of massless QCD
- reminder: $\Phi(p, \eta)=G^{+}(p)+\eta^{A} \Gamma_{A}(p)+\ldots+1 / 4!\epsilon_{A B C D} \eta^{A} \eta^{B} \eta^{C} \eta^{D} G^{-}(p)$

$$
\begin{aligned}
& \text { negative helicity gluon state at point } i \Longleftrightarrow \\
& \text { positve helicity gluon state at point } j \Longleftrightarrow \\
& \hline 1 / 4!\epsilon_{A B C D} \eta_{i}^{A} \eta_{i}^{B} \eta_{i}^{C} \eta_{i}^{D}=\left(\eta_{i}\right)^{4} \\
& \eta_{j}^{A}=0
\end{aligned}
$$

- e.g. $\quad \mathcal{A}_{n}=\left(\eta_{i}\right)^{4}\left(\eta_{j}\right)^{4} A_{n}^{\mathrm{MHV}}\left(i^{-}, j^{-}\right)+\ldots$
equivalently

$$
A_{n}^{\mathrm{MHV}}\left(i^{-}, j^{-}\right)=\int d^{4} \eta_{i} \int d^{4} \eta_{j} \mathcal{A}_{n}
$$

- Grassmann delta functions
=> extraction of components is simple linear algebra
- similarly: up to (at least) 3 quark/antiquark pairs

Numerical applications

- fast evaluation of tree amplitudes important in numerical implementation of generalized unitarity; and for real emission
many existing programs: MadGraph, CompHEP,AMEGIC++, COMIX, ALPHA, HELAC, O'MEGA/WHIZARD,
based on Feynman diagrams, Berends-Giele (off-shell) recursions, ...
- analytic tree amplitudes derived from N=4 SYM
[Dixon, JMH, Plefka, Schuster, 20I0] are beingvused at one-loop in Blackhat
[Bern, Diana, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren]
- analytic NMHV formulas faster;

NNMHV at large n Berends-Giele faster
[Badger, Biedermann, Hackl, Plefka, Schuster, Uwer, 2012]

Extra slides

[Badger, Biedermann, Hackl, Plefka, Schuster, Uwer, 20I2] [GGT: Dixon, JMH, Plefka, Schuster, 20I0]
N gluon amplitudes

Figure 1: Average time required per phase space point for the evaluation of pure gluon amplitudes as function of the parton multiplicity.

Extra slides

[Badger, Biedermann, Hackl, Plefka, Schuster, Uwer, 20I2] [GGT: Dixon, JMH, Plefka, Schuster, 20I0]

(N -2) gluon 2 quark amplitudes

Figure 2: Evaluation time per phase space point for amplitudes with a quark-anti-quark pair and $N-2$ gluons.
(N -6) gluon 6 quark amplitudes

Figure 4: Evaluation time per phase space point for amplitudes with three quark-antiquark pairs (different flavors) and $N-6$ gluons.

Extra slides

[Badger, Biedermann, Hackl, Plefka, Schuster, Uwer, 20I 2] [GGT: Dixon, JMH, Plefka, Schuster, 20I0]

Numerical precision of quark amplitudes

Figure 9: Average accuracy for amplitudes involving quarks. Phase-space generation by sequential splitting.

A first look at loop integrals and divergences

- ultraviolet (UV) divergences:
regularization (e.g. dimensional regularization);
renormalization of parameters of Lagrangian
- well understood, renormalization group (RG), discussed in all textbooks
are there other types of divergences?

Infrared divergences

- on-shell amplitudes can have soft/collinear divergences
- example: massive form factor $p^{2}=q^{2}=-m^{2}$ sample integral:
$I=\int \frac{d^{D} k}{k^{2}\left[(k+p)^{2}+m^{2}\right]\left[(k+q)^{2}+m^{2}\right]}=\int \frac{d^{D} k}{k^{2}\left[k^{2}+2 k \cdot p\right]\left[k^{2}+2 k \cdot q\right]}$
dimensional regulator: $\quad D=4-2 \epsilon$

logarithmic divergence for small $\mathbf{k} \int_{0}^{\Lambda} d r r^{-1-2 \epsilon}=-\frac{1}{2 \epsilon} \Lambda^{-2 \epsilon} \quad \epsilon<0$
'"soft region""
- for massless quarks: $p^{2}=q^{2}=0 \quad$ extra divergence from collinear regions $k^{\mu} \sim p^{\mu}$ or $k^{\mu} \sim q^{\mu}$

$$
I \sim \Gamma \frac{1}{\epsilon^{2}}+\ldots
$$

An IR/UV connection

$$
I=\int \frac{d^{D} k}{k^{2}\left[(k+p)^{2}+m^{2}\right]\left[(k+q)^{2}+m^{2}\right]}=\int \frac{d^{D} k}{k^{2}\left[k^{2}+2 k \cdot p\right]\left[k^{2}+2 k \cdot q\right]}
$$

- compute UV divergence:

$$
I \sim \frac{1}{\epsilon} \phi \cot \phi \quad \cos \phi=p \cdot q / \sqrt{p^{2} q^{2}}
$$

- consider eikonal limit $k^{\mu} \rightarrow 0$; formally we have $I \rightarrow \int \frac{d^{D} k}{k^{2}[2 k \cdot p][2 k \cdot q]}$ integral is formally zero, UV and IR divergence cancellation
above formula is momentum space version of Wilson loop integral!

$$
\langle W\rangle \sim \frac{1}{\epsilon_{\mathrm{UV}}} \Gamma_{\mathrm{cusp}}(\phi)
$$

IR divergences of massive scattering governed by cusp anomalous dimension [Korchemksy, Radyushkin, 1986; 1992]

Comments on loop integrals \& IR divergences

 or: what is a good basis for loop integral basis?- at two loops: integrals with irreducible numerators; good choice?
- issue clearest in $\mathrm{N}=4$ super Yang-Mills: UV finite theory Key lesson: use numerators that soften IR divergences example:
[Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot,Trnka , 20I0]

vanishes in
collinear regions! $\quad x_{b}=z x_{3}+(1-z) x_{4}$ integration points: x_{a}, x_{b} numerator: $\sim \operatorname{tr}\left(x_{12} \tilde{x}_{2 b} x_{b 3} \tilde{x}_{34} x_{46} \tilde{x}_{61}\right)$

$$
x_{i j}=x_{i}-x_{j}
$$

useful variables: momentum twistors
Integral is finite!
[Hodges, 20I0]

[Drummond, JMH , 20I0]: useful for analytic evaluation of 6-point MHV amplitude J.M. Henn, IAS

Simple representation of loop integrands

[Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot,Trnka , 20I0]

6.1 All 2-loop MHV Amplitudes

The two-loop amplitude for 4- and 5-particles is given by, respectively,

and

while the 6-particle amplitude is

(46)
soft limits manifest:
[Drummond, JMH, 20I0]

integrals satisfy 2nd-order differential equations!
[Drummond, JMH,Trnka, 20IO]

Non-trivial two-loop examples

- seven-point penta-box integral

computed analytically using differential equations in terms of 2d harmonic polylogarithms [Drummond, JMH, Trnka, 2010]
- six-point double pentagon integrals
[Dixon, Drummond, JMH, 20II] also known analytically ; most difficult piece of 2-loop MHV and NMHV amplitudes in $\mathrm{N}=4$ super Yang-Mills

Integrals finite, AND (relatively) easy to evaluate!
most difficult integral in conventional representation:

not needed!

End of lecture 2

Thank you!

