Helmholtz International Workshop -- CALC 2009, July 10--20, Dubna

Monte Carlo Methods in High Energy Physics IV

Peter Uwer

Helmholtz Alliance

Tools and Precision Calculations for Physics Discoveries at Colliders

Full decomposition of the integration volume [0,1]^d into n sub-intervalls for each variable would mean:

$$n^d \times 8Byte = \frac{10^8 \times 8}{1024^3}GByte = 74GByte$$

one double per cell

n=10,d=10

\rightarrow this is not done for obvious reasons

(would correspond to multi-dimensional array: $w[n][n][n] \dots [n]$)

Due to factorization assumption:

$$p(x_1, x_2, \ldots, x_d) \rightarrow p_1(x_1)p_2(x_2) \ldots p_n(x_n)$$

variables are binned independent from each other: w[n][d] $n \times d \times 8Byte = 800Byte$ n=10,d=10

Memory consumption vegas

Contents

1	Introduction		
	1.1	Monte Carlo methods	
		1.1.1 Simulation of LHC physics	
		1.1.2 The Ising modell	
		1.1.3 Buffon's needle	
	1.2	Probability and statistics	
		1.2.1 Basic facts	
		1.2.2 Specific probability distribution functions	
		1.2.3 The central limit theorem	
2	Gen	eration of random numbers	
2	2.1	Generation of uniform distributions	
	2.1	2.1.1 How to calculate random numbers	
		2.1.2 Testing random numbers	
	2.2	Generation of non-uniform distributions	
		2.2.1 General algorithms	
		2.2.2 Specific distrubtions	
2	Мо	nto Carlo integration	
3	2 1	Introduction	
	3.1	Variance Reduction	
	3.2	Δ concrete evample: Vegas by Deter Lenage	
	3.1	A note on convergence of Monte Carlo methods — and how to com-	
	5.4	nare results	
		Processing and the second se	
4	Pha	se integration	
	4.1	Flat phase space with RAMBO	
	4.2	Sequential splitting à la Byckling and Kajantie	
	4.3	Multi-channel methods	
	4.4	From phase-space integration to a full Monte Carlo	

Cross sections

Top-quark pair production with an additional jet at the Tevatron

 \rightarrow total cross sections including cuts and observables

→ total cross sections are difficult to measure not necessarily the best to test theory

Peter Uwer

The problem

Distributions

Monte Carlo Methods in High Energy Physics IV

CALC2009 - July 10 - 20, Dubna

The problem

We want to calculate

$$\sigma_{cut} = \frac{1}{2s} \int \prod_{i=1}^{n} \frac{d^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \delta(k_1 - k_2 - \sum_{i=1}^{n} p_i) |\mathcal{T}_{fi}|^2 \mathbf{\theta}_{cut}(p_1, \dots, p_n)$$

number of independent variables 3n-4

without cuts simple for n=2,3

For *n*=3 with cuts i.e. Durham-Jetalgorithm, already non-trivial

$$\Theta_{\text{Durham}}(p_1,\ldots,p_n) = \prod_{i < j} \Theta\left(\frac{\max(E_i^2, E_j^2)}{s}(1 - \cos\theta_{ij}) - y_{cut}\right)$$

In addition we also want to calculate distributions

$$\frac{d\sigma}{dO} = \frac{1}{2s} \int \prod_{i=1}^{n} \frac{d^{3}\mathbf{p}_{i}}{(2\pi)^{3} 2E_{i}} \delta(k_{1}-k_{2}-\sum_{i=1}^{n}p_{i}) |\mathcal{T}_{fi}|^{2} \Theta_{cut}(p_{1},\ldots,p_{n})$$
$$\delta(O-O(p_{1},\ldots,p_{n}))$$

Hopeless to solve this integral analytically apart from rather simple cases

 \rightarrow use Monte Carlo integration

 \rightarrow we need to identify the integration variables

additional argument for MC:

can easily deal with non-continous or otherwise strange integrands

Peter Uwer

Hadron colliders

If hadronic collisions are studied we have in addition two integrations over the momentum fractions of the incoming partons:

$$\sigma_{cut}^{Had.} = \int dy_1 \int dy_2 F(y_1, \mu_f) F(y_2, \mu_f) \frac{1}{2s_{had}y_1y_2} \int \prod_{i=1}^n \frac{d^3 \mathbf{p}_i}{(2\pi)^3 2E_i} \delta(y_1k_1 - y_2k_2 - \sum_{i=1}^n p_i) |\mathcal{T}_{fi}(y_1k_1, y_2k_2, p_1 \dots)|^2 \Theta_{cut}(p_1, \dots, p_n)$$

→ just two additional integration variables, MC integration does not care! 2-particle final state:

 ϕ, θ

Azimuthal and polar angle of one particle, everything else is fixed by momentum conservation

In most cases the matrix elements do not depend on ϕ , \rightarrow integrate out, only one integration variable

 \rightarrow integration boundaries straight forward

3-particle final state

 ϕ, θ, x_1, x_2 Two angles to describe the orientation of the event plane, $x_i = \frac{2E_i}{\sqrt{s}}$ energies of two outgoing particles

 \rightarrow integration boundaries not so straight forward anymore

Integration boundaries

 \rightarrow for the massive case complicated boundaries

4 parton final space:

 $\phi, \theta, t_{12}, t_{13}, t_{14}, t_{23}, t_{34}$ \rightarrow need phase space boundaries, $t_{ij} = 2p_i \cdot p_j$ and jacobian

 \rightarrow rather involved phase space boundaries,

 \rightarrow search for general approach based on MC methods

Phase space integration

If we want to use a simple Monte Carlo integrator we need:

$$[0,1]^{3n-4} \rightarrow (p_1,p_2,\ldots,p_n)$$

satisfying "on-shell"-condition and momentum conservation

$$p_i^2 = m_i^2, \quad k_1 + k_2 = \sum_i p_i$$

In addition we need the jacobian/weight of the transformation:

$$\prod_{i} d^{3} \mathbf{p}_{i} = \frac{\partial(p_{1}, \dots, p_{n})}{\partial(x_{1}, \dots, x_{3n-4})} dx_{1} \dots dx_{3n-4}$$

Democratic approach to phase space

RAMBO = RA(NDOM) M(OMENTA) B(EAUTIFULLY) O(RGANIZED)

[Ellis (SD), Kleiss, Stirling]

Scetch of the derivation:
Only mass-shell condition, no momentum conservation
Consider:
$$R_n = \int \prod_{i=1}^n d^4 q_i \delta(q_i^2) f(q_i^0) \Theta(q_i^0)$$
 with $f(x) = \exp(-x)$
Replace q_i by (use delta-functions!):
 $p_i^0 = x(\gamma q_i^0 + \mathbf{b} q_i), \quad p_i = x(\mathbf{q}_i + \mathbf{b} q_i^0 + a(\mathbf{b} \mathbf{q}_i)\mathbf{b})$
 $\mathbf{b} = -Q/M, \quad x = \sqrt{s}/M, \quad \gamma = Q^0/M = \sqrt{1 + b^2},$
 $a = 1/(1+\gamma), \quad Q^\mu = \sum_{i=1}^n q_i^\mu, M = \sqrt{Q^2}$

 \rightarrow Integration over **b** and x can done

Democratic approach to phase space

The remaining integral in p gives the ordinary phase space measure:

$$R = c \times \int \delta(P - \sum_{i} p_{i}) \prod_{i} d^{4} p_{i} \delta(p_{i}^{2}) \Theta(p_{i}^{0})$$

constant determined from integral over \mathbf{b}, x

Algorithm:

1. Generate the q_i

2. Calculate the
$$p_i$$
 from the q_i
 q_i^0 is distributed according to $x \exp(-x)$
 $q_i^0 = -\ln(u_1u_2), c_i = 2u_3 - 1, \phi = 2\pi u_4$
can also use this to map $[0, 1]^{4n} \rightarrow (p_1, \dots, p_n)$

works with minor modification also for massive momenta

RAMBO

💿 uwer on pepnote01: /home/uwer/src/fortran/rambo 📰 📾 📾 😣 🕤 🗙	
uwer@ pepnote01 :rambo>more rambo-mod.f C Modified version of Rambo, instead of creating the C random numbers in Rambo, they are passed through an C additional Variable RN(4,100).	[Kleiss, Ellis, Stirling]
SUBROUTINE phpoint(N,ET,XM,RN,P,WT)	
С С С RAMBO	
C RA(NDOM) M(OMENTA) B(EAUTIFULLY) O(RGANIZED)	
C A DEMOCRATIC MULTI-PARTICLE PHASE SPACE GENERATOR C AUTHORS: S.D. ELLIS, R. KLEISS, W.J. STIRLING C THIS IS VERSION 1.0 - WRITTEN BY R. KLEISS	
C N = NUMBER OF PARTICLES (>1, IN THIS VERSION <101) C ET = TOTAL CENTRE-OF-MASS ENERGY C XM = PARTICLE MASSES (DIM=100) C P = PARTICLE MOMENTA (DIM=(4,100)) C WT = WEIGHT OF THE EVENT C	from CERNLIB (?)
<pre>L</pre>	
C C INITIALIZATION STEP: FACTORIALS FOR THE PHASE SPACE WEIGHT IF(IBEGIN.NE.O) GOTO 103 IBEGIN=1 TWOPI=8.*DATAN(1.DO)	

CALC2009 - July 10 - 20, Dubna

Comments:

- Events have uniform weight in phase space
- Useful for testing purposes
- For real integration not that useful:
 - more integration variables than actually needed
 - Due to complicated mapping vegas unable to optimize
- Useful in constructing multi channel generators

17

Sequential splitting

Phase space can be factorized:

$$R_n(M_n^2) = \frac{1}{2M_n} \int_{\mu_{n-1}}^{M_n - m_n} dM_{n-1} d\Omega_{n-1} \frac{1}{2} p_n \dots \int_{\mu_2}^{M_3 - m_3} dM_2 d\Omega_2 \frac{1}{2} P_3 \int d\Omega_1 \frac{1}{2} P_2$$

$$M_n^2 = k_n^2, k_i = p_1 + \ldots + p_i, \mu_i = m_1 + \ldots + m_i$$

$$P_{i} = \frac{\sqrt{\lambda(M_{i}^{2}, M_{i-1}^{2}, m_{i}^{2})}}{2M_{i}}$$

Sequential splitting

generate the masses M_i

The momenta are generated in the respective rest frames

Apply boosts to all the momenta to transform them into the same (overall) rest frame (iterative procedure)

method gives mapping $[0,1]^{3n-4} \rightarrow (p_1,\ldots,p_n)$

$$w \sim \frac{1}{2M_n} \prod_i \frac{1}{2} P_i$$

Comments:

- Some freedom in ordering
- Can also be used for direct integration
- Seems to work better than Rambo when combined with Vegas
- Can be adopted to generate soft/collinear configurations
- Possible to combine different orderings

Test of soft/collinear limits of scattering amplitudes

20

Note: There is no "one size fits all" general solution to phase integration

RAMBO and sequential splitting should be taken as a starting point, very useful to get a "first" program

In typical phase space integrals there are usually more problematic variables than integration variables

 \rightarrow not possible to be good in all problematic variables !

 \rightarrow multi-channel methods

Define different mappings optimized for specific configurations

Sample/integrate using a weighted sum over the individual mappings

$$\sum_{i} p_i f_i(\vec{x}, p_1, \dots, p_n)$$

 \rightarrow sampling by composition

Taken to the extreme:

Generate one mapping for each Feynman integral [?]

Combine all channels as it was done for the probability distributions (sampling by composition)

Individual channels can be constructed using sequential splitting, RAMBO

In the case of QCD tree-amplitudes where the pole structure is pretty well understood there exist dedicated algorithms

 \rightarrow Sarge, an algorithm for generating QCD-antennas

[Hameren, Kleiss, Draggiotis]

Note:

In next-to-leading order calculations the situation is different:

We integrate $|\mathcal{T}| - \sum_{i} \text{Dipoles}_{i}$ [see Kouhei Hasegawa's talk]

→ behaviour of the combination very different compared to un-subtracted matrix elements

\rightarrow no general technique

Monte Carlo integrator provides weight and configuration

Possible to calculate (discrete) distributions = histograms at the same time i.e. $p_{\perp}, m_{ij} = \sqrt{(p_i + p_j)}$

MC integrator $w, (p_1, \dots, p_n) \rightarrow d\sigma(p_1, \dots, p_n), O(p_1, \dots, p_n)$

fill histogram with $d\sigma \times w$ according to the value of O

$$\rightarrow \frac{d\sigma}{dO}$$

Can also be understood as integrating a vector

modern MC integration packages are usually prepared for that, see i.e. Cuba by Thomas Hahn

Peter Uwer

Steps towards a full Monte Carlo

Goal: Want to have full simulation as close as possible to nature

i.e. want to have hadronic events which are distributed as in nature

→ we need so called *un-weighted* events in difference from *weighted* ones

in ideal simulation no difference between real and simulated events

 \rightarrow optimal to test the experimental analysis

If affordable (CPU time!):

Create as many MC events as you expect to observe

From weighted to un-weighted events

For un-weighted events distribution should be according to underlying theory, i.e. matrix elements, parton distribution, ...

Events generated in MC integration are *weighted*:

$$w \sim \frac{\partial(p_1, \dots, p_n)}{\partial(x_1, \dots, x_{3n-4})} |\mathcal{T}(y_1 k_1, y_2 k_2, p_1, \dots, p_n)|^2 F(y_1, \mu_f) F(y_2, \mu_f)$$

If the maximum weight w_m is known we can "un-weight" events:

1. For each event generate uniform random number r between 0 and w_m

- **2.** If w(p1,...) < r reject the event otherwise keep the event
- **3.** Give any surviving event the weight 1

 \rightarrow hit and miss algorithm

(as far as efficiency is concerned only useful if processing takes much longer then generating)

Peter Uwer

Monte Carlo Methods in High Energy Physics IV

CALC2009 - July 10 - 20, Dubna

Event generators

Very important tool in today's experimental analysis

 \rightarrow everybody should have a rough idea what goes in there

what we might see at the LHC Higgs event

how we understand it

Monte Carlo Methods in High Energy Physics IV

CALC2009 - July 10 – 20, Dubna

Monte Carlo Methods in High Energy Physics IV

CALC2009 - July 10 - 20, Dubna

Monte Carlo Methods in High Energy Physics IV

CALC2009 - July 10 - 20, Dubna

Hadronic cross sections

 $dP(\text{partons} \rightarrow \text{hadrons}) = dP(\text{resonance decays}) \qquad [\Gamma > Q_0] \\ \times dP(\text{parton shower}) \qquad [\text{TeV} \rightarrow Q_0] \\ \times dP(\text{hadronisation}) \qquad [\sim Q_0] \\ \times dP(\text{hadronic decays}) \qquad [O(\text{MeV})]$

Complex simulation \rightarrow Herwig, Pythia

Monte Carlo Methods in High Energy Physics IV

CALC2009 - July 10 – 20, Dubna

Literature

- [1] S. Ermakow. *Die Monte-Carlo-Methode und verwandte Fragen*. VEB Deutscher Verlag der Wissenschaften, 1975.
- [2] T. Fliessbach. Statistische Physik. Wissenschaftsverlag, 1993.
- [3] W. Gibbs. Computation in Modern Physics. World Scientific, 1994.
- [4] J. Hammersley and D. Handscomb. *Monte Carlo Methods*. Chapman & Hall, 1992.
- [5] F. James. MONTE CARLO THEORY AND PRACTICE. *Rept. Prog. Phys.*, 43:1145, 1980.
- [6] M. Kalos and P. Whitlock. *Monte Carlo Methods, Volume I: Basics*. John Wiley & Sons, 1986.
- [7] W. Kinzel and G. Reents. *Physics by Computer*. Springer, 1998.
- [8] D. Knuth. *The art of computer programming, Volume 2 Seminumerical Algorithms*. Addison Wesley, 2008.
- [9] M. Kolonko. Stochastische Simulation. Vieweg+Teubner, 2008.
- [10] J. Monathan. *Numerical Methods of Statistics*. Cambridge University Press, 2001.
- [11] S. Weinzierl. Introduction to Monte Carlo methods. *hep-ph/0006269v1*.
- [12] U. Wolff. Computational Physics II, Vorlesungsskipt.

1 Introduction

	1.1	Monte Carlo methods
		1.1.1 Simulation of LHC physics
		1.1.2 The Ising modell
		1.1.3 Buffon's needle
	1.2	Probability and statistics
		1.2.1 Basic facts
		1.2.2 Specific probability distribution functions
		1.2.3 The central limit theorem
2	Gen	eration of random numbers
	2.1	Generation of uniform distributions
		2.1.1 How to calculate random numbers
		2.1.2 Testing random numbers
	2.2	Generation of non-uniform distributions
		2.2.1 General algorithms
		2.2.2 Specific distrubtions
3	Mor	te Carlo integration
	3.1	Introduction
	3.2	Variance Reduction
	3.3	A concrete example: Vegas by Peter Lepage
	3.4	A note on convergence of Monte Carlo methods — and how to com-
		pare results
4	Pha	se integration
	4.1	Flat phase space with RAMBO
	4.2	Sequential splitting à la Byckling and Kajantie
	4.3	Multi-channel methods
	4.4	From phase-space integration to a full Monte Carlo

The End

Peter Uwer

Monte Carlo Methods in High Energy Physics IV

CALC2009 - July 10 - 20, Dubna