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Introduction 3

Simple definition:

“A Monte Carlo technique is any technique making
use of random numbers to solve a problem”

[F.James ’80]

Two different classes of problems:

1. Problems which are intrinsically of probabilistic nature
—> direct simulation, application of MC method appears naturally
1. Strictly deterministic problems

- Application of MC method more tricky, need to map non-
stochastic problem to a stochastic one from which information

on the original problem can be inferred
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Introduction 4

Historically:  The starting point of large scale application of MC
methods were the simulations

Some of the pioneers:
Fermi, Ulam, vNeumann, Metropoalis,...

- Manhattan project...

Examples:

® Neutron scattering and absorption in a nuclear reactor
® Simulation of LHC physics

® Ising model

® Buffon’s needle
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. 6
Ising model

Simple model of ferromagnetism

Consider d-dimensional cubic lattice with spin at each lattice site

Hamiltonian:

H=—€ Z s(x)s(y) + BZ s(x)

next neighbor coupling to
interaction external B field

UM s(x) spin {+1,-1} at position X

From Thermodynamics/statistical mechanics:
Probability to find specific configuration of spins:

H(s)
p({s}) ~ exp (— kz(; ) =exp(=BH(s))  Boltzmann factor
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. 7
Ising model

Expectation values:

(O)~ ) O(s)exp(—BH(s))
5}

{
Note:

Not possible to evaluate by brute force:
for a 10x10 lattice we have already 2'°° configurations

2'° x 10° s = 10" years
N
assume 1 FLOP on a GFLOP machine

Way out:
Generate random configurations distributed as

H(s)
kT

psh) ~ exp(— ) = exp(=BH(s))
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Ising model

Sounds easy but...
No algorithm known which generates configurations
independent from each other following the Boltzmann factor

(= general problem for some specific solutions see later)

Solution here:
Metropolis algorithm

- many downloadable simulations available...

(= Example)
Ising model very important:

® Simple model for ferromagnetism

® Interesting testground for MC methods, in particular because
1- and 2-dim. are exactly solvable - ciuster aigorithm [wolff]

® Highly non-trivial test for (pseudo) random numbers
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Buffon’s needle

Goal: Calculate the value of 1

Buffon’s (1777) idea:

Throw randomly a needle on a pattern
of equidistant parallel lines,
count the total number of throws together with
the number of hits (=the needle touches a line)

}d

hits + miss
hits

— T

(needle with length d)
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Buffon’s needle

From a simulation | obtained:

n result

10 2.85714.,2.5,2.85714,3.33333,3.33333,10,3.33333,2.85714.4,2.22222

100 3.1746,3.33333,3.50877,3.33333,2.85714,3.125,3.38983,2.7027, 3.63636,3.125

1000 3.19489,3.2,.3.15956.,3. 10078 09119.3.1746.3.07692.3.08642, 3.11526,3.10078

10000 3.1294,3.13087.,3.16556,3.16456.,3.16506,3.10849,3.11915,3.10318, 3.16006,3.10849
100000 ’% 13529,3.12774,3.14347.3.13416,3.14916,3.14268, 3.15288,3.14001,3.13996,3.1508
1000000 | 3.1416, 3.14053, 3.14156, 3.14013, 3.14159, 3.14656, 3.14291, 3.13951, 3.14345, 3.14075

Comments:

® Good news: In principle it works, but

® Bad news: it does not work very well

—> general feature of hit-and-miss MC's, for improvements be patient
how do we estimate how well it will work?
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Buffon’s needle

® \We are actually doing a MC integration, since what
we calculate is essentially the area under (1-cos(x))

This is in a certain sense actually true for every MC,
every MC method can be understood as MC integration

® Although the method might not work very well we have
still solved a non-stochastic problem using MC methods

Exercise:

Simulate Buffon’s needle
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Exercise: Buffon’s needle

Buffon’s needle

1. Simulate Buffon’s needle, determine the value of = using nmax = 1000,
10000,1000000, and 10000000 shots. A shot consist of throwing the angle
and the position.

2. Run the simulation 10 time for each nmax and try to get an naiv estimate of
the uncertainty.

3. Run the simulation 1000 times for each nmax and plot the result as an his-
togramm.

4. The number of hits follow a binomial distribution, try to understand why the
methods works not very well.
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Basic terminology

Random events

An elementary random event is an event which we cannot
decomposed into simpler events and cannot be predicted In

advance. Examples are: flipping a coin or throwing a dice.

Probability
If we have X,,...X, possible events we can attribute a

probability p.=p(X)) to each event with the usual properties:
-0<p; <1

— p(E;and/or E;) < pi+p;
— for mutually exclusive events: p(E; and E;) =0 and p(E; or E;) = p;+ p;

— for an exhaustive list of exclusive events: p(some E;) =Y p; =1

[Kolmogorov]
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Basic terminology

Conventions:

p(X;+X,+...) probability to find event out of list
p(X; X X5 X ...) probability to find X; and X, and so on

Conditional probability:
Consider two elementary random events (X, Y)

p(Xi|Y;) is the probability to find X; when Y; happened
We have:

p(Xi xY;) = p(Xi|Y;)p(Y;) = p(¥;|Xi) p(X;)
Bayes theorem

-> basis of bayesian approach, subjective probability
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Basic terminology

Random variable

For a set of events which are exhaustive and exclusive we
may characterize each event by number x.
The number x is called a random variable

Cumulative distribution function (CDF) F(y)
F(y)=p(x<y)

Expectation value:

(x) = [ ydF(
or more general for a function

(8(x)) = [ g(x)dF (x)
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Basic terminology

For a finite number of events, F(y) becomes a step function

l.e. throwing a dice:

Peter Uwer
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08 |
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0

For the expectation value we get:

(g(x)) =) 8(xi)p;
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Basic terminology

Variance and standard deviation/standard error
The mean deviation from the mean vanishes:
(x—(x)) = /xdF(x) —/xdF(x) _0;

For the quadratic deviation this is no longer the case,
we define the variance by;

Va"(X)Z<(x—<X>)2>Z/dF(X)(x—<X>)2=<x2>—<X>2-

The square root of the variance is a measure of the
dispersion of the random variable.

Ax = +/Var(x)

It is called standard deviation or standard error.
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Basic terminology

Probability distribution function (PDF)
Extend concepts to continous random variables

Define probability distribution function as probabiliy to
find the random variable between x and x + dx
~ dF(x)

For differentiable F(x) we have f(x) ;
X

FO) = [ fx)ax
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Examples for probability distribution functions

1. Uniform distribution in [a, b]

f(x,a,b) = ! (18)
b—a
0 forx<a
F(x,a,b) = %%Z fora<x<b (19)
| forx> b
1
(x) = 5(b=a) (20)
_ (b-a)
Var(x) = —> (21)
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Uniform distribution
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Gaussian distribution

2. Gaussian distribution / Normal distribution

faFo) = \/Zl_m exp(—(xz;?z) (22)
F(x,0,1) = %(1+erf(x/\/§)) (23)
(x) = X (24)
Var(x) = o (25)
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Gaussian distribution
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Poisson and ¥? -distribution

4. Poisson distribution

5. y?-distribution

fony = 22 29
ny = v (30)
Var(n) = v (31)
Z;?/Z—le—z/Z
fzn) = S2T(n)2) (32)
(z) = n (33)
Var(z) = 2n (34)
(35)

Peter Uwer

Monte Carlo Methods in High Energy Physics | CALC2009 - July 10 — 20, Dubna



Basic terminology

Composite random events

Event consisting of several elementary random events

Important case: f(x)+g(y)

What can we say about expectation value and variance ?

Expectation value:
(M) +hag(1)) = [ dadyp(, ) ((x) + ()
i [ dxpu(x)f(3) + 2 [ dypy(3)8(r) =M (f) + ol g)
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Basic terminology

Var(Mf(x) +hg(y)) = ((Mf(x)+hag(y) — (Mf(x) +hag(y)))?)
((Mf(x) + 228 (y) =M (f(x)) +R2(g(¥)))*)
MVar(f(x))+AVar(g(x))

+ 2MM((f(x)g(y)) — (f(x))

(8()))

—> variance of the sum can be larger or smaller than sum
of indvidual variances
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Covariance

cov(f(x),g(y)) = (f(x)g(y)) = (f(x)) (g(y))

Correlation

_ cov(f(x),8(y))
VVar(f(x))Var(g(y))

corr(f(x),8(y))

—1 <corr(f(x),g(y)) <1
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If x and y are independent we have

p(x,y) = Px(x)Py(y).

]
-
-
/N

S
N——"
~
09
N
~
N——r~"

(Fx)80)) = [ dxdyp()py () (¥)g0)

Note that the opposite is in general not true!

From cov = corr = 0 we cannot conclude that x and y are independent
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The central limit theorem

N
Consider sum x of N independent random variables s;  x=>s;.
We get:
N
(x) = () s)=(s1+82+...+5N)
i=1

N

delwl(Sl)...deNWN(SN)(Sl+Sz+...+SN):Z<Si)

=1

(Ax)2 = Var(x) = Var(z i) = ZV&I‘(S,-) = Z:(AS,-)2

Ax V), Var(s;)
(x) XS

and thus
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The central limit theorem

Assuming

ZVEII'(S,-) = O(]V), Z (s5;) = O(S,-)

we get the famous IAIN rule:

AXx |
m=O(1/\/JTJ).

For the special case that all s, are due to the same pdf we get

Ax  VNVar(s)  vVar(s) 1
(x) Ny  (s) N
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The central limit theorem

Let us now study the distribution of x if we repeat the sum many
times over different si, for simplicity we assume that all si follow
the same distribution and that the higher moments exist:

(') = fdss”w(s)

The probability distribution function is than given by
N

p)= [dsints) [[dsntss)-- [ dsywismote= Y s

i=1

Rewriting the delta function using

o(y) = % j: dkexp(—iky)

o0
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The central limit theorem

we get:

p(x) = —f dkfdslw(s)fdszw(SZ) deNw(SN)exp(—ik(x— S,-))

-

= % dkcxp( lkx)fdslcxp( lkSl)W(S)deQCxp( —iksy)w(s2) -

f dsyexp(—iksy)w(sy)

= % j: : dkexp(—ikx) W (k)" (61)
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The central limit theorem

To calculate W (k)" we expand
. o 1 )
W(k)= | dsexp(—iks)w(s)=1+ik(s)— Ekz(s I

use

In(1+y)=v—)"/2+...

and obtain:

In([W(0)]V) = Nin(l+ik(s)- %k2(52)+ )

N(ik(s) — %kz\/ar(s) +..)
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The central limit theorem

If we drop higher order terms we get
Wk = exp(N(ik(s) — —kZVar(S))) = exp(ik{x) — —szar(x)))

and thus

(x) L f ) exp(—ikx) exp(ik({x) — lkZVar(x)))

1 f exp(ik((x) — x)——szar(x)))
1 (x—(x))?
c
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The End
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Frequentist versus Bayesian probability

Hits
Hits + miss

P(theory|data) o< P(data|theory)P(theory)

Peter Uwer Monte Carlo Methods in High Energy Physics | CALC2009 - July 10 — 20, Dubna



	Folie 1
	 Contents
	 Introduction
	Slide 4
	 Simulation of LHC physics
	 Ising model
	Slide 7
	Slide 8
	 Buffon’s needle
	Slide 10
	Slide 11
	 Exercise: Buffon’s needle
	 Basic terminology
	Slide 14
	Slide 15
	Slide 16
	Basic terminology
	Slide 18
	 Examples for probability distribution functions
	 Uniform distribution
	 Gaussian distribution
	Slide 22
	 Poisson and c2-distribution
	Slide 24
	Slide 25
	Folie 26
	Folie 27
	 The central limit theorem
	The central limit theorem
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Folie 34
	Folie 35
	 Frequentist versus Bayesian probability

