Helmholtz International Workshop -- CALC 2009, July 10--20, Dubna

Monte Carlo Methods in High Energy Physics

Peter Uwer

Helmholtz Alliance

Tools and Precision Calculations for Physics Discoveries at Colliders

Contents

1	Intr	oduction
	1.1	Monte Carlo methods
		1.1.1 Simulation of LHC physics
		1.1.2 The Ising modell
		1.1.3 Buffon's needle
	1.2	Probability and statistics
		1.2.1 Basic facts
		1.2.2 Specific probability distribution functions
		1.2.3 The central limit theorem
2	Con	oration of random numbers
4	2 1	Generation of uniform distributions
	2.1	2 1 1 How to calculate random numbers
		2.1.1 There is a concentration numbers
	22	Generation of non-uniform distributions
	2.2	2.2.1 General algorithms
		2.2.2 Specific distrubtions
		1
3	Moi	ite Carlo integration
	3.1	Introduction
	3.2	Variance Reduction
	3.3	A concrete example: Vegas by Peter Lepage
	3.4	A note on convergence of Monte Carlo methods — and how to com-
		pare results
4	Pha	se integration
	4.1	Flat phase space with RAMBO
	4.2	Sequential splitting à la Byckling and Kajantie
	4.3	Multi-channel methods
	4.4	From phase-space integration to a full Monte Carlo

Simple definition:

"A Monte Carlo technique is any technique making use of random numbers to solve a problem"

[F.James '80]

Two different classes of problems:

- **1.** Problems which are intrinsically of probabilistic nature
 - \rightarrow direct simulation, application of MC method appears naturally
- 1. Strictly deterministic problems
 - → Application of MC method more tricky, need to map nonstochastic problem to a stochastic one from which information on the original problem can be inferred

Historically: The starting point of large scale application of MC methods were the simulations

Some of the pioneers:

Fermi, Ulam, vNeumann, Metropolis,...

→ Manhattan project...

Examples:

- Neutron scattering and absorption in a nuclear reactor
- Simulation of LHC physics
- Ising model
- Buffon's needle

Simulation of LHC physics

Simulate the underlying theory and everything we know

→ Hard scattering (quanter mechanics) emission of soft and collinear partons (shower), hadronisation, detector response

→ important to develop and test tools
 → for specific problems sometimes the only method to obtain reliable results

Ising model

Simple model of ferromagnetism

Consider d-dimensional cubic lattice with spin at each lattice site

From Thermodynamics/statistical mechanics: Probability to find specific configuration of spins:

$$p(\lbrace s \rbrace) \sim \exp\left(-\frac{H(s)}{k_b T}\right) = \exp\left(-\beta H(s)\right)$$

Boltzmann factor

Monte Carlo Methods in High Energy Physics I

Expectation values:

$$\langle O \rangle \sim \sum_{\{s\}} O(s) \exp(-\beta H(s))$$

Note:

Not possible to evaluate by brute force: for a 10x10 lattice we have already 2¹⁰⁰ configurations

$$2^{100} \times 10^{-9} \text{ s} = 10^{15} \text{ years}$$

assume 1 FLOP on a GFLOP machine

Way out:

Generate random configurations distributed as

$$p(\lbrace s \rbrace) \sim \exp\left(-\frac{H(s)}{k_b T}\right) = \exp\left(-\beta H(s)\right)$$

Monte Carlo Methods in High Energy Physics I

Sounds easy but...

No algorithm known which generates configurations independent from each other following the Boltzmann factor (→ general problem for some specific solutions see later)

Solution here:

Metropolis algorithm

 \rightarrow many downloadable simulations available...

 $(\rightarrow \text{Example})$

Ising model very important:

- Simple model for ferromagnetism
- Interesting testground for MC methods, in particular because
 1- and 2-dim. are exactly solvable → Cluster algorithm [Wolff]
- Highly non-trivial test for (pseudo) random numbers

Buffon's needle

Goal:

Calculate the value of π

Buffon's (1777) idea:

Throw *randomly* a needle on a pattern of equidistant parallel lines, count the total number of throws together with the number of hits (=the needle touches a line)

(needle with length *d*)

Buffon's needle

From a simulation I obtained:

n	result
10	2.85714,2.5,2.85714,3.33333,3.33333,10,3.33333,2.85714,4,2.22222
100	3.1746,3.33333,3.50877,3.33333,2.85714,3.125,3.38983,2.7027, 3.63636,3.125
1000	3.19489, 3.2, 3.15956, 3.10078, 3.09119, 3.1746, 3.07692, 3.08642, 3.11526, 3.10078
10000	3.1294,3.13087,3.16556,3.16456,3.16506,3.10849,3.11915,3.10318, 3.16006,3.10849
100000	3.13529,3.12774,3.14347,3.13416,3.14916,3.14268, 3.15288,3.14001,3.13996,3.1508
1000000	3.1416, 3.14053, 3.14156, 3.14013, 3.14159, 3.14656, 3.14291, 3.13951, 3.14345, 3.14075

Comments:

- Good news: In principle it works, but
- Bad news: it does not work very well

→ general feature of hit-and-miss MC's, for improvements be patient how do we estimate how well it will work? We are actually doing a MC integration, since what we calculate is essentially the area under (1-cos(x))

This is in a certain sense actually true for every MC, every MC method can be understood as MC integration

• Although the method might not work very well we have still solved a non-stochastic problem using MC methods

Exercise:

Simulate Buffon's needle

Buffon's needle

- 1. Simulate Buffon's needle, determine the value of π using nmax = 1000, 10000, and 1000000 shots. A shot consist of throwing the angle and the position.
- Run the simulation 10 time for each nmax and try to get an naiv estimate of the uncertainty.
- Run the simulation 1000 times for each nmax and plot the result as an histogramm.
- 4. The number of hits follow a binomial distribution, try to understand why the methods works not very well.

Random events

An elementary random event is an event which we cannot decomposed into simpler events and cannot be predicted in advance. Examples are: flipping a coin or throwing a dice.

Probability

If we have $X_i, ..., X_N$ possible events we can attribute a probability $p_i = p(X_i)$ to each event with the usual properties: $-0 \le p_i \le 1$

 $-p(E_i \text{ and/or } E_j) \leq p_i + p_j$

- for mutually exclusive events: $p(E_i \text{ and } E_j) = 0$ and $p(E_i \text{ or } E_j) = p_i + p_j$

- for an exhaustive list of exclusive events: $p(\text{some } E_i) = \sum p_i = 1$

[Kolmogorov]

Basic terminology

Conventions:

 $p(X_1 + X_2 + ...)$ probability to find event out of list

 $p(X_1 \times X_2 \times ...)$ probability to find X_1 and X_2 and so on

Conditional probability:

Consider two elementary random events (*X*, *Y*) $p(X_i|Y_j)$ is the probability to find X_i when Y_j happened

We have:

$$p(X_i \times Y_j) = p(X_i | Y_j) p(Y_j) = p(Y_j | X_i) p(X_i)$$

Bayes theorem

ightarrow basis of bayesian approach, subjective probability

Monte Carlo Methods in High Energy Physics I

Random variable

For a set of events which are exhaustive and exclusive we may characterize each event by number *x*. The number *x* is called a random variable

Cumulative distribution function (CDF) F(y)

$$F(y) = p(x \le y)$$

Expectation value:

$$\langle x \rangle = \int y dF(x)$$

or more general for a function

$$\langle g(x) \rangle = \int g(x) dF(x)$$

Basic terminology

For a finite number of events, F(y) becomes a step function

i.e. throwing a dice:

For the expectation value we get:

$$\langle g(x) \rangle = \sum_{i} g(x_i) p_i$$

Variance and standard deviation/standard error

The mean deviation from the mean vanishes:

$$\langle x - \langle x \rangle \rangle = \int x dF(x) - \int x dF(x) = 0;$$

For the quadratic deviation this is no longer the case, we define the variance by;

$$Var(x) = \langle (x - \langle x \rangle)^2 \rangle = \int dF(x)(x - \langle x \rangle)^2 = \langle x^2 \rangle - \langle x \rangle^2.$$

The square root of the variance is a measure of the dispersion of the random variable.

$$\Delta x = \sqrt{Var(x)}$$

It is called standard deviation or standard error.

Monte Carlo Methods in High Energy Physics I

Basic terminology

Probability distribution function (PDF)

Extend concepts to continous random variables

Define probability distribution function as probability to find the random variable between x and x + dx

For differentiable F(x) we have $f(x) = \frac{dF(x)}{dx}$

$$F(y) = \int_{-\infty}^{y} f(x) dx$$

$$\langle g(x) \rangle = \int g(x) dF(x) = \int g(x) f(x) dx$$

 $(g(x) - \langle g(x) \rangle)^2 \rangle = \int (g(x) - \langle g(x) \rangle)^2 dF(x)$

Examples for probability distribution functions

1. Uniform distribution in [*a*,*b*]

$$f(x,a,b) = \frac{1}{b-a}$$
(18)

$$F(x,a,b) = \begin{cases} 0 & \text{for } x < a \\ \frac{y-a}{b-a} & \text{for } a < x \le b \\ 1 & \text{for } x > b \end{cases}$$
(19)

$$\langle x \rangle = \frac{1}{2}(b-a)$$
(20)

$$Var(x) = \frac{(b-a)^2}{12}$$
(21)

Uniform distribution

CALC2009 - July 10 - 20, Dubna

2. Gaussian distribution / Normal distribution

$$f(x,\overline{x},\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-\overline{x})^2}{2\sigma^2})$$
(22)
$$F(x,0,1) = \frac{1}{2}(1 + \operatorname{erf}(x/\sqrt{2}))$$
(23)

$$\langle x \rangle = \frac{z}{\overline{x}} \tag{24}$$

$$Var(x) = \sigma^2 \tag{25}$$

Monte Carlo Methods in High Energy Physics I

Gaussian distribution

CALC2009 - July 10 - 20, Dubna

4. Poisson distribution

$$f(n,v) = \frac{v^n e^{-v}}{n!}$$
(29)

$$\langle n \rangle = v$$
(30)

$$Var(n) = v$$
(31)

5. χ^2 -distribution

$$f(z,n) = \frac{z^{n/2-1}e^{-z/2}}{2^{n/2}\Gamma(n/2)}$$
(32)
$$\langle z \rangle = n$$
(33)

$$\operatorname{Var}(z) = 2n \tag{34}$$

(35)

Composite random events

Event consisting of several elementary random events

Important case: f(x) + g(y)

What can we say about expectation value and variance ?

Expectation value:

$$\langle (\lambda_1 f(x) + \lambda_2 g(y)) \rangle = \int dx dy \rho(x, y) (f(x) + g(y))$$
$$= \lambda_1 \int dx \rho_x(x) f(x) + \lambda_2 \int dy \rho_y(y) g(y) = \lambda_1 \langle f \rangle + \lambda_2 \langle g \rangle$$

$\begin{aligned} Var(\lambda_1 f(x) + \lambda_2 g(y)) &= \langle (\lambda_1 f(x) + \lambda_2 g(y) - \langle \lambda_1 f(x) + \lambda_2 g(y) \rangle)^2 \rangle \\ &= \langle (\lambda_1 f(x) + \lambda_2 g(y) - \lambda_1 \langle f(x) \rangle + \lambda_2 \langle g(y) \rangle)^2 \rangle \\ &= \lambda_1^2 Var(f(x)) + \lambda_2^2 Var(g(x)) \\ &+ 2\lambda_1 \lambda_2 (\langle f(x) g(y) \rangle - \langle f(x) \rangle \langle g(y) \rangle) \end{aligned}$

→ variance of the sum can be larger or smaller than sum of indvidual variances

Monte Carlo Methods in High Energy Physics I

Covariance

$$cov(f(x), g(y)) = \langle f(x)g(y) \rangle - \langle f(x) \rangle \langle g(y) \rangle$$

Correlation

$$corr(f(x), g(y)) = \frac{cov(f(x), g(y))}{\sqrt{Var(f(x))Var(g(y))}}$$

$$-1 \le corr(f(x), g(y)) \le 1$$

If x and y are independent we have

$$\rho(x,y) = \rho_x(x)\rho_y(y).$$

$$\langle f(x)g(y)\rangle = \int dxdy \rho_x(x)\rho_y(y)f(x)g(y) = \langle f(x)\rangle \langle g(y)\rangle$$

$$cov(f(x),g(y)) = corr(f(x),g(y)) = 0.$$

Note that the opposite is in general not true!

From cov = corr = 0 we cannot conclude that x and y are independent

Consider sum x of N independent random variables s_i : $x = \sum_{i=1}^{N} s_i$.

We get:

$$\langle x \rangle = \langle \sum_{i=1}^{N} s_i \rangle = \langle s_1 + s_2 + \dots + s_N \rangle$$

=
$$\int ds_1 w_1(s_1) \dots \int ds_N w_N(s_N)(s_1 + s_2 + \dots + s_N) = \sum_{i=1}^{N} \langle s_i \rangle$$

$$(\Delta x)^2 = \operatorname{Var}(x) = \operatorname{Var}(\sum s_i) = \sum \operatorname{Var}(s_i) = \sum (\Delta s_i)^2$$

and thus
$$\frac{\Delta x}{\langle x \rangle} = \frac{\sqrt{\sum \operatorname{Var}(s_i)}}{\sum \langle s_i \rangle}$$

Monte Carlo Methods in High Energy Physics I

The central limit theorem

Assuming

$$\sum_{i} \operatorname{Var}(s_i) = O(N), \quad \sum \langle s_i \rangle = O(s_i)$$

we get the famous $1/\sqrt{N}$ rule:

$$\frac{\Delta x}{\langle x \rangle} = O(1/\sqrt{N}).$$

For the special case that all s_i are due to the same pdf we get

$$\frac{\Delta x}{\langle x \rangle} = \frac{\sqrt{N} \operatorname{Var}(s)}{N \langle s \rangle} = \frac{\sqrt{\operatorname{Var}(s)}}{\langle s \rangle} \frac{1}{\sqrt{N}}$$

The central limit theorem

Let us now study the distribution of x if we repeat the sum many times over different si, for simplicity we assume that all si follow the same distribution and that the higher moments exist:

$$\langle s^i \rangle = \int ds s^n w(s)$$

The probability distribution function is than given by

$$p(x) = \int ds_1 w(s) \int ds_2 w(s_2) \cdots \int ds_N w(s_N) \delta(x - \sum_{i=1}^N s_i).$$

Rewriting the delta function using

$$\delta(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk exp(-iky)$$

Monte Carlo Methods in High Energy Physics I

. .

we get:

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \int ds_1 w(s) \int ds_2 w(s_2) \cdots \int ds_N w(s_N) exp(-ik(x - \sum_{i=1}^N s_i))$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} dk exp(-ikx) \int ds_1 exp(-iks_1) w(s) \int ds_2 exp(-iks_2) w(s_2) \cdots$$

$$\int ds_N exp(-iks_N) w(s_N)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} dk exp(-ikx) W(k)^N$$
(61)

The central limit theorem

To calculate $W(k)^N$ we expand

$$W(k) = \int ds \exp(-iks)w(s) = 1 + ik\langle s \rangle - \frac{1}{2}k^2\langle s^2 \rangle + \dots$$

use

$$\ln(1+y) = y - y^2/2 + \dots$$

and obtain:

$$\ln([W(k)]^{N}) = N\ln(1 + ik\langle s \rangle - \frac{1}{2}k^{2}\langle s^{2} \rangle + ...)$$
$$= N(ik\langle s \rangle - \frac{1}{2}k^{2}\operatorname{Var}(s) + ...)$$

The central limit theorem

If we drop higher order terms we get

$$W(k)^{N} = \exp(N(ik\langle s \rangle - \frac{1}{2}k^{2}\operatorname{Var}(s))) = \exp(ik\langle x \rangle - \frac{1}{2}k^{2}\operatorname{Var}(x)))$$

and thus

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(-ikx) \exp(ik\langle x \rangle - \frac{1}{2}k^2 \operatorname{Var}(x)))$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(ik(\langle x \rangle - x) - \frac{1}{2}k^2 \operatorname{Var}(x)))$$

$$= \frac{1}{2\pi\Delta x} \exp(-\frac{(x - \langle x \rangle)^2}{2\Delta x^2})$$

1 Introduction

	1.1	Monte Carlo methods
		1.1.1 Simulation of LHC physics
		1.1.2 The Ising modell
		1.1.3 Buffon's needle
	1.2	Probability and statistics
		1.2.1 Basic facts
		1.2.2 Specific probability distribution functions
		1.2.3 The central limit theorem
2	Gen	eration of random numbers
	2.1	Generation of uniform distributions
		2.1.1 How to calculate random numbers
		2.1.2 Testing random numbers
	2.2	Generation of non-uniform distributions
		2.2.1 General algorithms
		2.2.2 Specific distrubtions
3	Mor	te Carlo integration
	3.1	Introduction
	3.2	Variance Reduction
	3.3	A concrete example: Vegas by Peter Lepage
	3.4	A note on convergence of Monte Carlo methods — and how to com-
		pare results
4	Pha	se integration
	4.1	Flat phase space with RAMBO
	4.2	Sequential splitting à la Byckling and Kajantie
	4.3	Multi-channel methods
	4.4	From phase-space integration to a full Monte Carlo

The End

Peter Uwer

Monte Carlo Methods in High Energy Physics I

CALC2009 - July 10 - 20, Dubna

$\frac{Hits}{Hits + miss}$

$P(\text{theory}|\text{data}) \propto P(\text{data}|\text{theory})P(\text{theory})$

Peter Uwer

Monte Carlo Methods in High Energy Physics I

CALC2009 - July 10 - 20, Dubna