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 Introduction

“A Monte Carlo technique is any technique making 
use of random numbers to solve a problem”

Simple definition:

[F.James ’80]

Two different classes of problems:

1. Problems which are intrinsically of probabilistic nature

 direct simulation, application of MC method  appears naturally

1. Strictly deterministic problems

 Application of MC method more tricky, need to map non-
stochastic problem to a stochastic one from which information 

on the original problem can be inferred 
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 Introduction

Historically:

Some of the pioneers:

 Manhattan project…

Examples:

● Neutron scattering and absorption in a nuclear reactor
● Simulation of LHC physics
● Ising model
● Buffon’s needle

The starting point of large scale application of MC 
methods were the simulations

Fermi, Ulam, vNeumann, Metropolis,…
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 Simulation of LHC physics

Simulate the underlying theory and everything we know 

 Hard scattering (quanten mechanics), emission of soft 
and collinear partons (shower), hadronisation, detector 
response

 important to develop and test tools
 for specific problems sometimes the only method to obtain reliable results
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 Ising model

Simple model of ferromagnetism

Consider d-dimensional cubic lattice with spin at each lattice site

[U.Wolff]

Hamiltonian:

s(x) spin {+1,-1} at position x

From Thermodynamics/statistical mechanics:
Probability to find specific configuration of spins:

Boltzmann factor

next neighbor
interaction

coupling to
external B field



  

7

Peter Uwer                                      Monte Carlo Methods in High Energy Physics I                          CALC2009 -  July 10 – 20, Dubna

 Ising model

Expectation values:

Not possible to evaluate by brute force: 
for a 10x10 lattice we have already 2100 configurations

 2100 x 10-9 s = 1015 years

Note:

assume 1 FLOP on a GFLOP machine

Way out:

Generate random configurations distributed as
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 Ising model

No algorithm known which generates configurations
independent from each other following the Boltzmann factor 

Solution here:

Metropolis algorithm

 many downloadable simulations available…

Ising model very important:

●Simple model for ferromagnetism
● Interesting testground for MC methods, in particular because 

1- and 2-dim. are exactly solvable  Cluster algorithm [Wolff]

●  Highly non-trivial test for (pseudo) random numbers

(Example)

Sounds easy but…

( general problem for some specific solutions see later)
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 Buffon’s needle

Goal:

Buffon’s (1777) idea:

Throw randomly a needle on a pattern
 of equidistant parallel lines,

count the total number of throws together with
the number of hits (=the needle touches a line) 

α

d

(needle with length d)

Calculate the value of π



  

10

Peter Uwer                                      Monte Carlo Methods in High Energy Physics I                          CALC2009 -  July 10 – 20, Dubna

 Buffon’s needle

From a simulation I obtained:

Comments:

● Good news: In principle it works, but

 general feature of hit-and-miss MC’s, for improvements be patient
how do we estimate how well it will work?

● Bad news: it does not work very well
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 Buffon’s needle

● We are actually doing a MC integration, since what 
we calculate is essentially the area under (1-cos(x))

This is in a certain sense actually true for every MC,
every MC method can be understood as MC integration

● Although the method might not work very well we have 
still solved a non-stochastic problem using MC methods

Exercise:

Simulate Buffon’s needle
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 Exercise: Buffon’s needle
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 Basic terminology

An elementary random event is an event which we cannot 
decomposed into simpler events and cannot be predicted in 
advance. 

Random events

Examples are: flipping a coin or throwing a dice.

Probability
If we have X1,…XN possible events we can attribute a 
probability pi=p(Xi) to each event with the usual properties:

[Kolmogorov]
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 Basic terminology

Conditional probability:

Consider two elementary random events (X,Y)

We have:

Bayes theorem

Conventions:

 basis of bayesian approach, subjective probability
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 Basic terminology

Random variable

For a set of events which are exhaustive and exclusive we 
may characterize each event by number x. 
The number x is called a random variable

Cumulative distribution function (CDF) F(y)

Expectation value:

or more general for a function
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 Basic terminology

For a finite number of events, F(y) becomes a step function

i.e. throwing a dice:

For the expectation value we get:
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Basic terminology

Variance and standard deviation/standard error

The mean deviation from the mean vanishes:

For the quadratic deviation this is no longer the case, 
we define the variance by;

The square root of the variance is a measure of the 
dispersion of the random variable. 

It is called standard deviation or standard error.
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Basic terminology

Probability distribution function (PDF)

Define probability distribution function as probabiliy to
find the random variable between x and x + dx 

Extend concepts to continous random variables

For differentiable F(x) we have
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 Examples for probability distribution functions
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 Uniform distribution

f(x) F(x)
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 Gaussian distribution
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 Gaussian distribution

f(x) F(x)
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 Poisson and χ2 -distribution
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Basic terminology

Composite random events

Event consisting of several elementary random events

Important case: 

What can we say about expectation value and variance ?

Expectation value:
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Basic terminology

 variance of the sum can be larger or smaller than sum 
of indvidual variances
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Covariance

Correlation
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If x and y are independent we have

Note that the opposite is in general not true!
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 The central limit theorem

Consider sum x of N independent random variables si:

We get:

and thus
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The central limit theorem

Assuming 

we get the famous 1/√N rule:

For the special case that all si are due to the same pdf we get
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The central limit theorem

Let us now study the distribution of x if we repeat the sum many
times over different si, for simplicity we assume that all si follow 
the same distribution and that the higher moments exist:

The probability distribution function is than given by

Rewriting the delta function using
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The central limit theorem

we get:
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The central limit theorem

To calculate              we expand

use

and obtain:
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The central limit theorem

If we drop higher order terms we get 

and thus
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The End
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 Frequentist versus Bayesian probability
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