Collider phenomenology with CalcHEP

Alexander Belyaev

Southampton University \& Rutherford Appleton LAB

OUTLINE

location of this talk

http://www.hep.phys.soton.ac.uk/~belyaev/proj/talks/dubna_calchep_2009.pdf

- Introduction into CalcHEP
- models and symbolic session
* numerical session and kinematical distributions
- event generation
- Introduction to LanHEP
- automatic generation of Feynman rules from the Lagrangian
- Beyond the parton level simulation
* event simulation using PYTHIA
- CalcHEP - PYTHIA interface and simulation of new Physics Processes
- CalcHEP Batch Interface and various applications

Practical points

- The WEB page of CalcHEP http://theory.npi.msu.su/~pukhov/calchep.html
- e-mail for your questions/remarks calchep@googlegroups.com , a.belyaev@soton.ac.uk
- some useful Manuals http://www.hep.phys.soton.ac.uk/~belyaev/manual
- exercises
for those who wants to practice and start using CalcHEP rightaway

Exercise\#xx

Introduction to CalcHEP

- Author(s)
- Alexander Pukhov
(AB and Neil Christensen have joined the project in 2009)
- Idea
- The effective study of HEP phenomenology passing at high level of automation from your favorite model to physical observables such as decay width, branching ratios, cross sections kinematic distributions, ...

Introduction to CalcHEP

- Author(s)
- Alexander Pukhov
(AB and Neil Christensen have joined the project in 2009)
- Idea
- The effective study of HEP phenomenology passing at high level of automation from your favorite model to physical observables such as decay width, branching ratios, cross sections kinematic distributions, ...
- Analogous packages (matrix element generators) http://www.ippp.dur.ac.uk/montecarlo/BSM/ http://wwww-theory.Ibl.gov/tools/
- CompHEP (Boos et al)
* MadGraph/MadEvent (Maltoni, Stelzer)
- Grace/Helas (Fujimoto et al)
- FeynArts/FeynCalc/FormCalc (Hahn et al)
- WHIZARD,O'mega (Moretti, Ohl, Reuter)
- Sherpa (Krauss et al)

Features/Limitations of CalcHEP

- Can evaluate any decay and scattering processes within any (user defined) model!

Features/Limitations of CalcHEP

- Can evaluate any decay and scattering processes within any (user defined) model!
- Tree-level processes

Features/Limitations of CalcHEP

- Can evaluate any decay and scattering processes within any (user defined) model!
- Tree-level processes
- Squared Matrix Element calculation
* no spin information for outgoing particles - spin averaged amplitude

Features/Limitations of CalcHEP

- Can evaluate any decay and scattering processes within any (user defined) model!
- Tree-level processes
- Squared Matrix Element calculation
* no spin information for outgoing particles - spin averaged amplitude
- Limit on number of external legs (involved particles) and number of diagrams
* official limit - 8 , unofficial - none
- limit is set from the practical point of view:
- $2 \rightarrow 6(1 \rightarrow 7)$ set the essential time/memory limit
- number of diagrams ~ 500 set the disk space and time limit

Quick start with CalcHEP: practical notes on the installation

- Download code, read manual and compile http://theory.npi.msu.su/~pukhov/calchep.html

CalcHEP - a package for calculation of Feynman diagrams and integration over multi-particle phase space.

Authors - Alexander Pukhov, Alexander Belyaev, Neil Christensen

The main idea in CalcHEP was to enable one to go directly from the Lagrangian to the cross sections and distributions effectively, with the high level of automation. The package can be compiled on any Unix platform.

General information

- Main facilities, Old Versions, Acknowledgments News\&Bugs

> Manual
> calchep_man_2.3.5(ps.gz)
> (137 pages, 445 KB, March 18, 2005)
> See also: Dan Green, High Pt physics at hadron colliders (Cambrige University Press)

Codes download.

- Licence Installation References\&Contributions

CalcHEP code for UNIX: version 2.5.3 (March 23,2009) version 2.6.a (version under development)

Quick start with CalcHEP: practical notes on the installation

- Download code, read manual and compile http://theory.npi.msu.su/~pukhov/calchep.html
- tar -zxvf calchep_2.x.x.tgz
- cd calchep_2.x.x
- make
the currrent version is $2 . x . x=2.5 .4$
- Create work directory
* From calchep_2.x.x directory:
./mkUsrDir ../calc_work
- Supported operating system
- Linux, IRIX, IRIX64, HP-UX, OSF1, SunOS, Darwin, CYGWIN (see getFlags file)

Exercise\#1: Install CalcHEP

Starting CalcHEP

- cd ../calc_work
- Files:
bin -> /calchep_2.x.x/bin
calchep
calchep_batch
calchep.ini
models/
results/
tmp/
- Start: ./calchep

CalcHEP menu structure: symbolic part

Model: prtcl $x x$. mdl

3e. . Calcher/s											$\checkmark \wedge$
Particles											
[Clr-Del-Size-Read-ErrMes											
Full name	IA	$1 \mathrm{~A}^{+}$	I number	12*spin	1 mass	Iwidth	Icolor		l $>$ LaTex (A)	l $>$ LaTeX	$X\left(A^{+}\right)<$
gluon	IG	IG	121	12	10	10	18	IG	Ig	Ig	
photon	IA	IA	122	12	10	10	11	IG	I \gamma	I \gamma	
Z-boson	12	12	123	12	IMZ	IwZ	11	IG	12	12	
W-boson	$1 \mathrm{~W}+$	IW-		12	IMW	1 wW	11	IG	$\mathrm{lW}^{\wedge}+$	1W^	
Higgs		Ih	125	10	IMh	I!wh	11	I	Ih	Ih	
electron	le	IE	111	11	10	10	11	I	$1 \mathrm{e}^{\wedge}-$	$1 \mathrm{e}^{\wedge}+$	
e-neutrino	Ine	INe	112	11	10	10	11	IL	I \backslash nu_e	I \backslash bar $\{$ \}	\nu\}_e
muon	1 m	IM	113	11	1 Mm	10	11	I	I $\backslash m u^{\wedge}$ -	$1 \backslash m u^{\wedge}+$	
m-neutrino	Inm	INm	114	11	10	10	11	IL	I \backslash nu_ \mu	I \bar [\nu\}_\mu
tau-lepton		IL	115	11	1 Ml	10	11	I	I \tau^-	I \tau^-	
t-neutrino	Inl	IN1	116	11	10	10	11	IL	I \nu_\tau	I ${ }^{\text {bar }}$ [\nu\}_\tau
d-quark		ID	11	11	10	10	13	1	Id	I ${ }^{\text {bar }}$ [d]	
u-quark		IU	12	11	10	10	13	I	Iu	I b bar $\{0$	
s-quark		IS	13	11	1 Ms	10	13	I	Is	I \bar s	
c-quark	Ic	IC	14	11	1 Mc	10	13	I	Ic	I ${ }^{\text {bar }}$ [c]	
b-quark		IB	15	11	1 Mb	10	13	I	Ib	I \bar \{b	
t-quark		IT	16	11	1 Mt	Iwt	13	I	It	I ${ }^{\text {bar }}$ [t	

Model: vars $x x$.mdl

Model: func $x x$.mdl

Model: Igrng $x x$.mdl

Model: extlibxx.mdl

Details of symbolic session

The syntax for the input is: $\mathrm{P} 1[, \mathrm{P} 2]$-> P3, P4 [, ..., [N*x]]

- 'Pl'..'P4' are particle names, N is a number of particles
- hadron/composite particle scattering
'p,p->W+,b,B'
unknown particle are assumed to be composite:
'p' consists of u,U,d,D,s,S,c,C,b,B,G
- wild cards/names for outgoing particles
'H -> 2*x'
- intermediate particles can be non-trivially excluded 'W+ > 2, A>1, Z>3'
- particle width can be calculated 'on-fly'
'!wtop' , i.e. '!' symbol should be used in the prt table
- particles spin

0, 1/2, 1, 3/2, 2
Exercise\#2
calculate SM Higgs boson Decay width
and branching ratios as a function of
Higgs boson mass
calculate SM Higgs boson Decay width and branching ratios as a function of Higgs boson mass

Principle KEYS for CalcHEPs GUI

Enter menu selection (forward)

Exit menu selection (back)

Help!

Example of the symbolic calculation

```
vok CalcHEP/symb 
List of particles (antiparticles)
\begin{tabular}{|c|c|c|}
\hline G(G)- gluon & A(A) - photon & Z(Z )- Z-boson \\
\hline \(W+(W-)-W\)-boson & h(h )-Higgs & \(e(E)\) - electron \\
\hline \(\mathrm{ne}(\mathrm{Ne})\) - e-neutrino & m (M ) - muon & \(\mathrm{nm}(\mathrm{Nm})\) - m-neutrino \\
\hline \(1(\mathrm{~L}\) )- tau-lepton & \(\mathrm{nl}(\mathrm{Nl})\) - t-neutrino & d(D )- d-quark \\
\hline u(U) - u-quark & s(S )- s-quark & c (C )- c-quark \\
\hline b(B) - b-quark & t (T )- t-quark & \\
\hline
\end{tabular}
Enter process: p,p -> W,b,B composit ' p ' consists of: \(\mathrm{u}, \mathrm{U}, \mathrm{d}, \mathrm{D}, \mathrm{s}, \mathrm{S}, \mathrm{c}, \mathrm{C}, \mathrm{b}, \mathrm{B}, \mathrm{G}\) composit ' \(W\) ' consists of: \(W+, W-\) Exclude diagrams with
```


Example of the symbolic calculation

```
muk CalcHEP/symb
        Model: Standard Model
    Process: p.p -> W.b.B
                            Feynman diagrams
472 diagrams in }24\mathrm{ subprocesses are constructed.
0 diagrams are deleted.
```


View diagrams

Squaring technique Write down processes

Example of the symbolic calculation

-- Calchep/symb						\checkmark	\times
$\begin{aligned} & 472 \\ & 0 \end{aligned}$	Model:	Standard Model					
	Process: p.p -> W.b.B						
	diagrams diagrams	Feynman diagrams in 24 subprocesses are deleted.	are constructed.	View diagrams			
	NN	Subprocess		Del	Rest		
	11 u, D -> W+, b, B			0115			
				T	0116		
	21 u, S $\rightarrow \mathrm{W}+$, b, B$31 \mathrm{u}, \mathrm{B} \rightarrow \mathrm{W}+, \mathrm{b}, \mathrm{B}$				$\begin{array}{ll}01 & 26 \\ 01 & 15\end{array}$		
	$51 \mathrm{U} . \mathrm{s} \rightarrow \mathrm{N}-\mathrm{b} . \mathrm{B}$				0116		
	$61 \mathrm{U}, \mathrm{b} \rightarrow \mathrm{N}-\mathrm{b}, \mathrm{B}$			1	0126		
	71 d.U $\rightarrow \mathrm{W}-\mathrm{b}, \mathrm{B}$			1	0115		
	$81 \mathrm{~d}, \mathrm{C} \rightarrow \mathrm{W}-\mathrm{b}, \mathrm{B}$			1	0116		
	$91 \mathrm{D} . \mathrm{u} \rightarrow \mathrm{W}+\mathrm{b}, \mathrm{B}$			1	0115		
	101 D.c $\rightarrow \mathrm{H}_{+}, \mathrm{b}, \mathrm{B}$			1	0116		
	111 s.U $\rightarrow \mathrm{H}-\mathrm{b}, \mathrm{B}$			$\begin{array}{ll}01 & 16 \\ \\ & P g D n\end{array}$			

Example of the symbolic calculation

F1-Help,F2-Man, PgUp,PgDn,Home, End, \# .Esc

Example of the symbolic calculation

F1-Help F2-Man F3-Model F4-Diagrams F5-Switches F6-Results F9-Ref F10-Quit

Example of the symbolic calculation

x-e. Calchep/symb	\checkmark ¢ \times
Delete, On/off.Restore, Latex, Ghosts	1/120

F1-Help,F2-Man,PgUp,PgDn,Home,End,\# ,Esc

Example of the symbolic calculation

```
>uk .CalcHEP/symb
Standard Model
    Process: p.p -> W.b.B
                            Feynman diagrams
472 diagrams in }24\mathrm{ subprocesses are constructed.
0 diagrams are deleted.
                            Squared diagrams
5208 diagrams in 24 subprocesses are constructed.
0 diagrams are deleted.
0 diagrams are calculated.
```


Example of the symbolic calculation

```
\M% CalcHEP/symb
        Model: Standard Model
    Process: p.p -> W.b.B
    Feynman diagrams
472 diagrams in 24 subprocesses are constructed.
0 diagrams are deleted.
    Squared diagrams
5 2 0 8 \text { diagrams in } 2 4 \text { subprocesses are constructed.}
0 diagrams are deleted.
5 2 0 8 ~ d i a g r a m s ~ a r e ~ c a l c u l a t e d . ~
0 Out of memory
```


C code

C-compiler
Edit Linker

Example of the symbolic calculation

```
    CalcHEP/symb
        Model: Standard Model
    Process: p.p -> W.b.B
                            Feynman diagrams
472 diagrams in }24\mathrm{ subprocesses are constructed.
0 diagrams are deleted.
                            Squared diagrams
5208 diagrams in 24 subprocesses are constructed.
0 diagrams are deleted.
5 2 0 8 ~ d i a g r a m s ~ a r e ~ c a l c u l a t e d . ~
0 Out of memory
```


C code

C-compiler

Edit Linker
REDUCE code
MATHEMATICA code
FORM code
Enter new process

Numerical part of CalcHEP

CalcHEP/num

(sub)Process: u, D $\rightarrow W^{+}, \mathrm{b}, \mathrm{B}$ Monte Carlo session: 2(continue)

```
Subprocess
IN state
Model parameters
Constraints
QCD coupling
Breit-Wigner
Cuts
Phase space mapping
Vegas
Generate events
```


subprocess menu

```
Subprocess
IN state
Model parameters
Constraints
QCD coupling
Breit-Higner
Cuts
Phase space mapping
Vegas
Generate events
```

u	D	-> $W+b$	B
U	S	$\rightarrow \vec{d}+\mathrm{b}$	B
u	B	$\rightarrow \mathrm{N}+\mathrm{b}$	B
U	d	$\rightarrow \mathrm{N}-\mathrm{b}$	B
U	5	$\rightarrow N-b$	B
U	b	$\rightarrow \mathrm{N}-\mathrm{b}$	B
d	U	$\rightarrow \mathrm{N}-\mathrm{b}$	B
d	0	$\rightarrow \mathrm{N}-\mathrm{b}$	B
D	U	$\rightarrow \mathrm{N}+\mathrm{b}$	B
D	c	$\rightarrow \mathrm{N}+\mathrm{b}$	B
5	U	$\rightarrow \mathrm{N}-\mathrm{b}$	B
5	C	$\rightarrow \mathrm{N}-\mathrm{b}$	B
S	u	$\rightarrow \mathrm{X}+\mathrm{b}$	B
S	C	$\rightarrow \mathrm{N}+\mathrm{b}$	B
c	D	$\rightarrow \mathrm{N}+\mathrm{b}$	B
C	S	$\rightarrow \mathrm{N}+\mathrm{b}$	B

control of the initial states and parton density functions

model parameters

Subprocess	alfEMZ= 0.0078181
IN state	alfSMZ $=0.1172$
Model parameters	$\mathrm{Q}=100$
Constraints	SW= 0.481
QCD coupling	s12= 0.221
Breit-Wigner	s23= 0.041
Cuts	s13 $=0.0035$
Phase space mapping	$\mathrm{Mm}_{\mathrm{m}}=0.1057$
Vegas	$\mathrm{Ml}=1.777$
Generate events	McMc= $=1.2$
	$M s=0$
	$\begin{gathered} \mathrm{MbMb}=4.25 \\ \mathrm{Mtp}=175 \end{gathered}$
	MZ $=91.187$
	$\mathrm{Mh}=120$

dependent parameters

QCD coupling and the scale

Subprocess
IN state
Model parameters
Constraints
QCD coupling
Breit-Wigner
Cuts
Phase space mapping
Yegas
Generate events

QCD alpha

```
parton dist. alpha !ON
    alpha(MZ)= 0.1172
    nf = 5
    order= NLO
    mb(mb)= 4.200
    Mtop(pole)= 175.00
    Q[Gev] = M12
    Alpha(Q) plot
```


control of resonances

control of resonances

```
Subprocess
IN state
Model parameters
Constraints
QCD coupling
Breit-Wigner
Cuts
Phase space mapping
Yegas
Generate events
Model parameters
Constraints
QCD coupling
Breit-Wigner
Cuts
Phase space mapping
Vegas
Generate events
```


Breit-Wigner

BreitWigner range 2.7
 T-channel widths OFF
 GI in t -channel OFF
 GI in s-channel OFF
 \downarrow F1

setting kinematical cuts

This table apples cuts on the phase space. A phase space function is described in the first column. Its limits are defined and the second and the third columns. If one of these fields is empty then a one-side cut is applied.
The phase space function is defined by its name which characterize type of cut and a particle list for which the cut is applied.
For example. "T(u)" means transverse momentum of 'u'-quark:
$T(u, D)$ means summary transverse momentum of quark pair.
The following cut functions are available:
A - Angle in degree units:
C - Cosine of angle:
J - Jet cone angle;
E - Energy of the particle set:
M - Mass of the particle set:
P - Cosine in the rest frame of pair:

	Cuts	5
Clr-Del-Size-Read-ErrMes		
Parameter	1> Min bound	<I> Max bound <
T(b)	120	1
T (B)	120	1
N(b)	1-5	15
N(B)	1-5	15
J (b, B)	10.5	1

phase-space mapping

integration over the phase space

Resulting \mathbf{M}_{bb} and $\mathrm{M}_{\mathrm{wtb}}$ kinematical distributions

Exercise\#3

1. Calculate WbB production rates at Tevatron and LHC for PT b-jet > 20 GeV , b-Jet separation >0.5, max pseudorapidity < 3
2. Plot bb- and Wb invariant mass distributions for PT b-jet $>20 \mathrm{GeV}$ and PT b-jet $>40 \mathrm{GeV}$

generation of events

GUI gives user a full control of details of symbolic/numerical session. Is there automation of calculation involving many sub-processes?

there are several useful scripts which run various loops and aimed to make a calculation easy

- cycle over subprocesses
- exit from the numerical session
- cd results
- ../bin/subproc_cycle lumi nmax
requires 2 parameters:

1. luminosity
2. max number of events per process
e.g.
../bin/subproc_cycle 1000100000

running subproc_cycle for SM model

running subproc_cycle for SM(CKM=1) model

./bin/subproc_cycle 00			
\#Subprocess 1	u, D -> w+, b, B	Cross section $=9.8549 \mathrm{E}+00$	0 events
\#Subprocess 2	(U, d -> W-, b, B)	Cross section $=5.6112 \mathrm{E}+00$, 0 events
\#Subprocess 3	(d, U -> W-, b, B)	Cross section $=5.6156 \mathrm{E}+00$, 0 events
\#Subprocess 4	(D, u $->$ W+, b, B)	Cross section $=9.9153 \mathrm{E}+00$, 0 events
\#Subprocess 5	(s, C -> w-, b, B)	Cross section $=1.5792 \mathrm{E}+00$	0 events
\#Subprocess	($\mathrm{S}, \mathrm{c} \rightarrow \mathrm{W}+\mathrm{b}, \mathrm{b}, \mathrm{B}$	Cross section $=1.3757 \mathrm{E}+00$	0 events
\#Subprocess 7	c, S-> w+, b, B	Cross section $=1.3475 \mathrm{E}+00$	0 events
\#Subprocess 8	(C, s -> W-, b, B)	Cross section $=1.6218 \mathrm{E}+00$	0 events
Sum of distributions is stored in file distr_1_8			
Total Cross Se	tion $36.9212[\mathrm{pb}]_{\wedge}$		

Note the d-and s-quarks IDs

d-quark	Id	ID	181	11	10	10	13	I	Id
u-quark	Iu	IU	12	11	10	10	13	I	Iu
s-quark	Is	IS	183	I1	10	10	13	I	Is

For SM(CKM=1) model PDF of d - and s - quarks is redefined

Accessing your results

- results are stored in "results" directory
- output files:
- n_calchep numerical module
* prt_nn protocol
* distr_nn_mm summed distributions
* distr_nn individual distribution
* events_nn.txt events file
- list_prc.txt list of processes
- qnumbers qnumbers - PYTHIA input with new prt definitions
- session.dat current session status - format is similar to prt_nn one
- for every new process the "results" directory is offered to be renamed or removed

protocol prt_nn

```
    CalcHEP kinematics module
The session parameters:
#Subprocess 1 ( u, D -> W+, b, B
#Session_number 1
#Initial_state inP1=7.000000E+03 inP2=7.000000E+03
    Polarizātions= { 0.000000E+00 0.000000E+00 }
        StrFun1="PDT:cteq6m(proton)" 2212
        StrFun2="PDT:cteq6m(proton)" 2212
#Physical_Parameters
    alfEM\overline{Z}=7.818060999999999E-03
    alfSMZ = 1.172000000000000E-01
#Cuts
*** Table
    Cuts
```



```
#Regularization
*** Table ***
    Regularization
\begin{tabular}{llll} 
Momentum & \(\mid>\) Mass & \(<\mid>\) Width \(<\mid\) Power \(\mid\) \\
45 & \(\mid M Z\) & \(\mid w Z\) & \(\mid 2\) \\
45 & \(\mid M h\) & \(\mid w h\) & \(\mid 2\)
\end{tabular}
#END
\begin{tabular}{cccccc}
\(==================================\) & & \\
\#IT & Cross section & [pb] & Error \(\%\) & nCall & chi**2 \\
1 & \(2.0373 \mathrm{E}+00\) & \(3.30 \mathrm{E}+01\) & 20000 & \\
2 & \(8.6164 \mathrm{E}+00\) & \(2.86 \mathrm{E}+01\) & 20000 &
\end{tabular}
```


useful scripts for numerical session

see calchep_2.x.x/bin/ directory

- subproc_cycle
- sum_distr
- show distr
- tab_view
- events2tab
- gen_events
- name_cycle
- pcm_cycle
../bin/subproc_cycle 1000100000
../bin/sum_distr distr_2 distr_3 > distr_sum
../bin/show_distr distr_sum
../bin/tab_view < tab_1.txt

> Exercise\#4
> learn how to use:
> 1) gen_events
> 2) events $2 t a b$
> 3) tab_view

scripts for numerical session

- events2tab

Parameters:

1- name of variable,
2- minimum limit,
3- maximum limit,
4- number of bins(<=300).
File with events must be passed to input. ../bin/events2tab "T(b)" 1100200 < events_1.txt >tab.txt ../bin/tab_view < tab.txt

- name_cycle

1: Name of parameter
2: Initial value
3: Step
4: Number of steps
../bin/name_cycle Mh 1001011
scripts above became a part of calchep_batch interface - to be discussed in the following lecture(s)

