% File: qft_symm.tex % Section: QFT % Title: QFT: Symmetries % Last modified: 30.03.2006 % \documentclass[a4paper,12pt]{article} \usepackage{amsmath,amssymb} \textwidth 16cm \textheight 25cm \oddsidemargin 0cm \topmargin -1.5cm \pagestyle{empty} \begin{document} \begin{center} \large\textbf{QFT: SYMMETRIES} \end{center} \vspace{0cm} \begin{center} \large\textbf{N\"other's theorem} \end{center} \vspace{.1cm} Let a Lagrangian depend on fields and their first derivatives, \begin{equation} \label{} S = \int\!dx\,\mathcal{L}(x)\,, \ \ \ \mathcal{L}(x) = \mathcal{L}(\varphi^a(x), \varphi^a_{,\mu}(x))\,, \ \ \ \varphi_{,\mu}(x) = \partial_\mu\varphi(x)\,, \end{equation} and let infinitesimal transformations \begin{align} x^\mu &\rightarrow x'{}^\mu = x^\mu + \delta x^\mu\,, \label{tra1} \\ \varphi^a(x) &\rightarrow {\varphi^a}'(x') = \varphi^a(x) + \delta\varphi^a(x) \label{tra2} \end{align} be parametrized by a finite number of constant parameters $\omega^k$\,. The `form variation' \begin{equation} \label{} \bar{\delta}\varphi(x) \doteq \varphi'(x)-\varphi(x) = \delta\varphi(x) - \varphi_{,\mu}(x)\delta x^\mu \end{equation} is designed to commute with space-time derivatives, \ $ \bar{\delta}\varphi_{,\mu}^{a} = \partial_\mu\bar{\delta}\varphi^a $\,. We say that a theory defined by $\mathcal{L}$ is invariant under transformations (\ref{tra1}), (\ref{tra2}) if \begin{equation} \label{} \mathcal{L}'(x')\,dx' = \mathcal{L}(x)\,dx\,. \end{equation} In that case, from \begin{gather} \mathcal{L}'(x')-\mathcal{L}(x) = \frac{\partial\mathcal{L}}{\partial\varphi^a}\,\bar{\delta}\varphi^a + \frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}} \,\bar{\delta}\varphi^a_{,\mu} + \partial_\mu\mathcal{L}\,\delta x^\mu\,, \\ dx' = \det\Bigl(\frac{\partial x'}{\partial x}\Bigr)\,dx = (1+\partial_\mu\delta x^\mu)\,dx \end{gather} we derive \begin{multline} \label{main} 0 = \mathcal{L}'(x')\,\frac{dx'}{dx} - \mathcal{L}(x) = \frac{\partial\mathcal{L}}{\partial\varphi^a}\,\bar{\delta}\varphi^a + \frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}} \,\partial_\mu\bar{\delta}\varphi^a + \partial_\mu(\mathcal{L}\,\delta x^\mu) \\ = \Bigl(\frac{\partial\mathcal{L}}{\partial\varphi^a} - \partial_\mu\frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}}\Bigr) \bar{\delta}\varphi^a + \partial_\mu\Bigl( \frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}} \bar{\delta}\varphi^a + \mathcal{L}\delta x^\mu\Bigr) = \Bigl[\,\Bigl(\frac{\partial\mathcal{L}}{\partial\varphi^a} - \partial_\mu\frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}}\Bigr) \psi_{k}^{a} - \partial_\mu J_{k}^{\mu}\Bigr]\omega^k \end{multline} where \begin{equation} \label{curr} J_{k}^{\mu} = -\frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}}\psi_{k}^{a} - \mathcal{L}\xi_{k}^{\mu}\,, \ \ \ \ \ \delta x^\mu = \xi_{k}^{\mu}\omega^k\,, \ \ \ \ \ \bar{\delta}\varphi^a = \psi_{k}^{a}\omega^k\,. \end{equation} We conclude that on shell all N\"other currents are conserved, \begin{equation} \label{conserv} \frac{\partial\mathcal{L}}{\partial\varphi^a} - \partial_\mu\frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}} = 0 \ \ \Rightarrow \ \ \partial_\mu J_{k}^{\mu} = 0\,. \end{equation} From the calculations in (\ref{main}) it is also seen that off shell, for $x$-dependent $\omega^k$, the relations \begin{equation} \label{off} \partial_\mu J_{k}^{\mu} = \Bigl(\frac{\partial\mathcal{L}}{\partial\varphi^a} -\partial_\mu\frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}}\Bigr) \psi_{k}^{a}\,, \ \ \ \ \ \delta S = \int\!\mathcal{L}'dx' - \int\!\mathcal{L}dx = -\!\int\!dx\,J_k^\mu\,\partial_\mu\omega^k \end{equation} hold in a theory which is invariant for constant $\omega$'s. \newpage \begin{center} \large\textbf{Energy-momentum tensor} \end{center} \vspace{.1cm} As an important example, we consider a shift of coordinates by a constant 4-vector $\varepsilon^\mu$ (playing here the role of $\omega^k$)\,, without additional independent field transformations. Any fields are scalars under such shift, so \begin{equation} \delta x^\mu = \varepsilon^\mu\,, \ \ \ \ \delta\varphi^a = 0 \ \ \ \Rightarrow \ \ \ \bar{\delta}\varphi^a = -\varphi_{,\mu}^{a}\,\delta x^\mu\,, \ \ \ \xi_{\nu}^{\mu} = \delta_{\nu}^{\mu}\,, \ \ \ \psi_{\nu}^{a} = - \varphi_{,\nu}^{a}\,. \end{equation} The corresponding N\"other current is known as the energy-momentum (or stress) tensor, \begin{equation} \label{stress} T_{\nu}^{\mu} = \frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}} \,\varphi^a_{,\nu} - \mathcal{L}\delta_{\nu}^{\mu}\,. \end{equation} From (\ref{off}) we see that it describes (off shell) the change of the action under general coordinate transformations $\delta x^\mu=\varepsilon^\mu(x)$\,: \begin{equation} \label{dels} \delta S = -\int\!dx\,T_\nu^\mu\,\partial_\mu\varepsilon^\nu(x)\,. \end{equation} However, it should be noted that for $x$-dependent $\omega^k$ we, in many cases, actually deal with a more general `form variation' $\bar{\delta}\varphi^a$ than (\ref{curr})\,: \begin{equation} \label{chi} \bar{\delta}\varphi^a = \psi_{k}^{a}\omega^k + \chi_{k}^{a\mu}\partial_\mu \omega^k\,. \end{equation} In this situation \begin{multline} \label{off2} \delta S = \int\!dx\, \Bigl\{\Bigl[\,\Bigl(\frac{\partial\mathcal{L}}{\partial\varphi^a} - \partial_\mu\frac{\partial\mathcal{L}}{\partial\varphi^a_{,\mu}}\Bigr) \psi_{k}^{a} - \partial_\mu J_{k}^{\mu}\Bigr]\omega^k \\ + \Bigl[-J_{k}^{\mu} + \frac{\partial\mathcal{L}}{\partial\varphi^a}\chi_{k}^{a\mu} + \frac{\partial\mathcal{L}}{\partial\varphi^a_{,\nu}} \partial_\nu \chi_{k}^{a\mu}\Bigr]\,\partial_\mu \omega^k + \Bigl[\frac{\partial\mathcal{L}}{\partial\varphi^a_{,\nu}}\chi_{k}^{a\mu} \Bigr]\,\partial_\nu \partial_\mu \omega^k \Bigr\}\,, \end{multline} and the relations (\ref{off})\,, (\ref{dels}) are generalized by $\chi$-terms. In the most interesting case, when the action $S$ is invariant under such ($x$-dependent) transformations, the expressions inside the square brackets in (\ref{off2}) must vanish identically. This fact (the second N\"other theorem) necessitates that some identical relations between the equations of motion take place. In other words, a local symmetry of a given field theory causes its equations of motion to be mutually dependent (and, as a result, singular). For a theory (with gravity, of course) that is invariant under general coordinate transformations $\delta x^\mu=\varepsilon^\mu(x)$\,, the second square bracket in (\ref{off2}) yields the following off-shell identity: \begin{equation} \label{tchi} T_{\nu}^{\mu} \ = \ \frac{\partial\mathcal{L}}{\partial\varphi^a}\chi_{\nu}^{a\mu} + \frac{\partial\mathcal{L}}{\partial\varphi^a_{,\lambda}} \partial_\lambda \chi_{\nu}^{a\mu}\,. \end{equation} This relation, by the way, allows to compare the definition (\ref{stress}) with another, so-called metrical, definition of the energy-momentum tensor, \begin{equation} \label{metrt} \Theta_{\mu\nu} \doteq \frac{2}{\sqrt g}\, \frac{\partial\mathcal{L}}{\partial g^{\mu\nu}}\,. \end{equation} Let us suppose that our theory involves the metrics $g^{\mu\nu}$ (without derivatives) and some \emph{scalar} fields $\varphi^a$\,. For the latter $\chi_{\nu}^{a\mu}=0$\,, whereas for $g^{\mu\nu}$ they are easily extracted from \begin{equation} \label{} \bar{\delta}g^{\mu\nu} = -g^{\mu\nu}_{,\alpha}\varepsilon^\alpha + g^{\alpha\nu}\partial_\alpha\varepsilon^\mu + g^{\mu\alpha}\partial_\alpha\varepsilon^\nu\,. \end{equation} We find from (\ref{tchi}) that \begin{equation} \label{} T_{\nu}^{\mu} \ = \ 2\,g^{\mu\alpha}\frac{\partial\mathcal{L}}{\partial g^{\alpha\nu}}\,, \end{equation} which, after lowering the index, coincides with $\Theta_{\mu\nu}$ up to a scalar factor. However, in a more general theory $T$ and $\Theta$ may differ. \end{document}