Holography, Matrix Factorizations and K-stability

Alessandro Tomasiello

SQS 2019, Yerevan

[based on work with M. Fazzi]

Introduction

Particularly simple solutions in string theory:

 $Mink_4 \times Calabi-Yau_6$

KählerRicci-flat

If CY is conical:

 $ds_{\rm CY}^2 = dr^2 + r^2 ds_{\rm SE}^2$

Calabi-Yau₆ \equiv Cone(Sasaki-Einstein₅) [by definition]

Introduction

Particularly simple solutions in string theory:

 $Mink_4 \times Calabi-Yau_6$

KählerRicci-flat

If CY is conical:

 $ds_{CY}^2 = dr^2 + r^2 ds_{SE}^2$ Calabi-Yau₆ \equiv Cone(Sasaki-Einstein₅) [by definition]

$AdS_5 \times \frac{SE_5}{4} \longrightarrow CFT_4$

No general method to find such pairs [or even the two sides]

$AdS_5 \times SE_5 \quad \longleftrightarrow \quad CFT_4$

No general method to find such pairs [or even the two sides]

Recent progress:

• K-stability: gives a way to check that a cone is CY

[Chen, Donaldson, Sun '12; ...; Collins, Szekelyhidi '15]

Matrix factorizations: give a way to associate a quiver to a cone

[Van den Bergh '04; ...; Aspinwall, Morrison '12]

This talk: we'll put these two methods to find new holographic pairs

[Fazzi, AT '19]

I. Review K-stability

II. Matrix factorizations

III. Holographic pairs

I. Sasaki-Einstein

•Kähler manifold: complex & symplectic

easy to obtain: holomorphic equations in \mathbb{CP}^N or \mathbb{C}^N

• When is a Kähler manifold also Ricci-flat?

compact case: if and only if $c_1 = 0$ [Yau '77]

noncompact case: this theorem doesn't apply

I. Sasaki-Einstein

•Kähler manifold: complex & symplectic

easy to obtain: holomorphic equations in \mathbb{CP}^N or \mathbb{C}^N

• When is a Kähler manifold also Ricci-flat?

compact case: if and only if $c_1 = 0$ [Yau '77]

noncompact case: this theorem doesn't apply

example:

"conifold"
$$\{x^2 + y^2 + z^2 + t^2 = 0\} \subset \mathbb{C}^4$$
 \exists Ricci-flat metric \checkmark
[Romans '85; Candelas, de la Ossa '90;
Klebanov, Witten '98]Brieskorn-Pham $\{x^2 + y^2 + z^2 + t^k = 0\} \subset \mathbb{C}^4$ \nexists Ricci-flat metric \times
 $k \geq 3$ Gauntlett, Martelli, Sparks, Yau '06]

So how do we find conical CY?

• Explicit metrics

- Cosets [eg. conifold]
- 'Cohomogeneity one' <> system of ODEs

for ex. $Y^{p,q}$ [Gauntlett, Martelli, Sparks, Waldram '04]

So how do we find conical CY?

• Explicit metrics

- Cosets [eg. conifold]
- 'Cohomogeneity one' system of ODEs
 - for ex. $Y^{p,q}$ [Gauntlett, Martelli, Sparks, Waldram '04]
- Toric case: isometry $\supset U(1)^3$
 - geometry reduces to 3d real cone

• easy combinatorial requirement \Rightarrow

[Futaki, Ono, Wang '09]

So how do we find conical CY?

• Explicit metrics

- Cosets [eg. conifold]
- 'Cohomogeneity one' system of ODEs
 - for ex. $Y^{p,q}$ [Gauntlett, Martelli, Sparks, Waldram '04]
- Toric case: isometry $\supset U(1)^3$
 - geometry reduces to 3d real cone
 - easy combinatorial requirement

Ricci-flat metric

[Futaki, Ono, Wang '09]

- •New method: K-stability
 - 'Stability': Use complexified gauge group to look for solutions of some real equation

[for ex. for self-duality equations on bundles] [Donaldson '85; Uhlenbeck, Yau '86]

developed for Kähler–Einstein and then for Sasaki–Einstein

[Chen, Donaldson, Sun '12; ...; Collins, Szekelyhidi '15] Idea:

• If we know Ricci-flat metric exists, it is the one that minimizes volume

[Martelli, Sparks, Yau '05, 06]

 $\begin{array}{ll} \mbox{volume of K\"ahler metric:} \\ \mbox{function of vector field} \\ \xi = I \cdot r \partial_r \\ \xi = U(1)^r \mbox{ isometry torus} \\ \mbox{complex} \\ \mbox{ radial} \\ \mbox{structure} \\ \end{array} \begin{array}{ll} \mbox{radial} \\ \mbox{rescaling} \end{array} \left\{ r = 3: \mbox{ toric case} \right\} \\ \end{array}$

Idea:

• If we know Ricci-flat metric exists, it is the one that minimizes volume

[Martelli, Sparks, Yau '05, 06]

volume of Kähler metric: function of vector field $\xi = I \cdot r \partial_r \quad \in U(1)^r \text{ isometry torus}$ $\xi = I \cdot r \partial_r \quad \in U(1)^r \text{ isometry torus}$ f(r) = 3: toric case

• To show that Ricci-flat metric does exist:

check volume minimization including degenerations

trick: enough to compute a 'Futaki invariant', derivative on extra parameters

Examples:

• conifold $\{x^2 + y^2 + z^2 + t^2 = 0\} \subset \mathbb{C}^4$

we know Ricci-flat metric exists: minimize

$$\operatorname{Vol}(\xi = \sum_{i} a_i v_i) \quad \Longrightarrow \quad a_1 = a_2 = 0$$

and this determines metric.

 $U(1)^3 \text{ isom. torus}$ $v_1 = x\partial_y - y\partial_x, v_2 = z\partial_t - t\partial_z$ $v_3 = x\partial_x + y\partial_y + z\partial_z + t\partial_t$

Examples:

• conifold
$$\{x^2 + y^2 + z^2 + t^2 = 0\} \subset \mathbb{C}^4$$

we know Ricci-flat metric exists: minimize
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \implies a_1 = a_2 = 0$
and this determines metric.
U(1)³ isom. torus
 $v_1 = x\partial_y - y\partial_x, v_2 = z\partial_t - t\partial_z$
 $v_3 = x\partial_x + y\partial_y + z\partial_z + t\partial_t$

• Brieskorn–Pham $\{x^2 + y^2 + z^2 + t^k = 0\} \subset \mathbb{C}^4$

 $\operatorname{Vol}(\xi = \sum_{i} a_i v_i) \, \rightleftharpoons \, a_1 = 0$

 $\mathrm{U}(1)^2$ isom. torus $v_1 = x\partial_y - y\partial_x$ $v_2 = k(x\partial_x + y\partial_y + z\partial_z) + 2t\partial_t$

Examples:

• conifold
$$\{x^2 + y^2 + z^2 + t^2 = 0\} \subset \mathbb{C}^4$$

we know Ricci-flat metric exists: minimize
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = a_2 = 0$
and this determines metric.
• Brieskorn-Pham $\{x^2 + y^2 + z^2 + t^k = 0\} \subset \mathbb{C}^4$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$
 $\operatorname{Vol}(\xi = \sum_i a_i v_i) \Rightarrow a_1 = 0$

But we need to check degenerations

consider for example

•
$$\lambda \neq 0$$
: same manifold
 $\{x^2 + y^2 + z^2 + \lambda t^k = 0\}$

• $\lambda \neq 0$: same mannold • $\lambda = 0$: degeneration, with new isometry $v' = t\partial_t$ minimize with resp. to $\xi = a_1v_1 + a_2v_2 + a'v' \quad \Rightarrow$

•
$$k < 3$$
: minimum has $a' = 0 \checkmark$
• $k \ge 3$: minimum has $a' \ne 0$
 $\sqrt[]{}$
 $x^2 + y^2 + z^2 = 0$ ($\mathbb{C}^2/\mathbb{Z}_2 \times \mathbb{C}$)

not for the original manifold!

In practice, it's enough to check $\partial_{a'}$ Vol \equiv Futaki invariant

Slogan: Futaki of all degenerations should be positive

II. Dual CFTs

On a stack of D3-branes $rightarrow \mathcal{N} = 4$ SYM

the singularity at the tip of the cone makes things more interesting

- several types of D-branes are possible
- their interactions give rise to more complicated quiver theories

II. Dual CFTs

On a stack of D3-branes $rightarrow \mathcal{N} = 4$ SYM

the singularity at the tip of the cone makes things more interesting

- several types of D-branes are possible
- their interactions give rise to more complicated quiver theories

• 4d gauge theory is conformal for some choice of ranks:

usually equal, but not always

[conifold: $N_1 = N_2$]

• How does one find the quiver associated to a singularity?

• Orbifolds: algorithm with finite group rep. theory

[Douglas, Moore '96]

• Toric: algorithm involving dimers

[Hanany, Kennaway '05; Franco, Hanany, Kennaway, Vegh, Wecht '05]

- How does one find the quiver associated to a singularity?
 - Orbifolds: algorithm with finite group rep. theory

[Douglas, Moore '96]

• Toric: algorithm involving dimers

[Hanany, Kennaway '05; Franco, Hanany, Kennaway, Vegh, Wecht '05]

• Reformulated as a mathematical problem: Exact each type of D-brane is a module (=representation) of ring of functions on CY a 'basis' is made of co-kernels of maps Φ such that $\exists \Psi \mid \Psi \Phi = \Phi \Psi = f \operatorname{Id}$ where $\{f = 0\}$ is CY; "matrix factorization" (MF) [Eisenbud '80; ...]

- How does one find the quiver associated to a singularity?
 - Orbifolds: algorithm with finite group rep. theory

[Douglas, Moore '96]

• Toric: algorithm involving dimers

[Hanany, Kennaway '05; Franco, Hanany, Kennaway, Vegh, Wecht '05]

- Reformulated as a mathematical problem: each type of D-brane is a module (=representation) of ring of functions on CY a 'basis' is made of co-kernels of maps Φ such that $\exists \Psi \mid \Psi \Phi = \Phi \Psi = f \operatorname{Id}$ where $\{f = 0\}$ is CY; "matrix factorization" (MF)
- example, conifold: $\Phi = \begin{pmatrix} x+iy & z+it \\ -z+it & x-iy \end{pmatrix}$ $\Psi = \begin{pmatrix} x-iy & -z-it \\ z-it & x+iy \end{pmatrix}$ $f = x^2 + y^2 + z^2 + t^2$
- quiver is reduced to finding all MFs; this is called "non-commutative crepant resolution" (NCCR)
 [Van den Bergh '04]

III. Putting it together

Let's see if these techniques can be applied at the same time.

We need a conical space:

III. Putting it together

Let's see if these techniques can be applied at the same time.

We need a conical space:

• which is K-stable.

in practice, 'easy' to check for cases with isometry torus $\mathrm{U}(1)^2$

combinatorial methods exist similar to toric case

[Altmann, Hausen '03; ...; Ilten, Süss '17]

III. Putting it together

Let's see if these techniques can be applied at the same time.

We need a conical space:

• which is K-stable.

in practice, 'easy' to check for cases with isometry torus $\mathrm{U}(1)^2$

combinatorial methods exist similar to toric case

[Altmann, Hausen '03; ...; Ilten, Süss '17]

• where NCCR exists.

in principle algebraic, but lengthy; done for several classes [Iyama, Wemyss '18]

• We first look among some spaces which are known to be K-stable

• BP
$$(p,q)$$
: $\{x^2 + y^2 + z^p + t^q = 0\}$
K-stable if $\frac{1}{2} < \frac{p}{q} < 2$ ∞ many SE with topology S^5 !
NCCR exists if $p = q$ [Fazzi, AT'19]

[Collins, Szekelyhidi '15]

• We first look among some spaces which are known to be K-stable

• BP
$$(p,q)$$
: $\{x^2 + y^2 + z^p + t^q = 0\}$
K-stable if $\frac{1}{2} < \frac{p}{q} < 2$ ∞ many SE with topology S^5 !
NCCR exists if $p = q$ [Fazzi, AT 'r9]
• Yau-Yu-II (p,q) : $\{x^2 + y^2 + z^p + zy^q = 0\}$ [Yau, Yu 'o3]
K-stable if $\frac{p^2 - 1}{2p - 1} < q < 2(p - 1)$ [Collins, Szekelyhidi 'r5]
NCCR exists if $p = q + 1$ [Fazzi, AT 'r9]

notable case: $p = 3, q = 2 \quad c > \quad$ threefold 'lift' of \mathbb{C}^2/D_4 singularity

[Collins, Szekelyhidi '15]

• We first look among some spaces which are known to be K-stable

• BP
$$(p,q)$$
: $\{x^2 + y^2 + z^p + t^q = 0\}$
K-stable if $\frac{1}{2} < \frac{p}{q} < 2$ ∞ many SE with topology S^5 !
NCCR exists if $p = q$ [Fazzi, AT'19]
• Yau-Yu-III (p,q) : $\{x^2 + y^2 + z^p + zy^q = 0\}$ [Yau, Yu'03]
K-stable if $\frac{p^2 - 1}{2p - 1} < q < 2(p - 1)$ [Collins, Szekelyhidi '15]
NCCR exists if $p = q + 1$ [Fazzi, AT'19]
notable case: $p = 3, q = 2 \Rightarrow$ threefold 'lift' of \mathbb{C}^2/D_4 singularity
• Yau-Yu-III (p,q) : $\{x^2 + y^2 + z^pt + zt^q = 0\}$ invite results

... similar results

[Collins, Szekelyhidi '15]

• However, these cases are sort of **boring**: obtained from 'generalized conifolds' by int. out adjoints

[Gubser, Nekrasov, Shatashvili '98]

• However, these cases are sort of **boring**: obtained from 'generalized conifolds' by int. out adjoints

[Gubser, Nekrasov, Shatashvili '98]

• NCCR exists for large class of similar (but not equal) quivers with some extra adjoints superpotential $Tr\phi_i^p$ for adjoints

K-stability restrictions are strong but not deadly

• However, these cases are sort of **boring**: obtained from 'generalized conifolds' by int. out adjoints

[Gubser, Nekrasov, Shatashvili '98]

• NCCR exists for large class of similar (but not equal) quivers with some extra adjoints superpotential $\text{Tr}\phi_i^p$ for adjoints

K-stability restrictions are strong but not deadly

 One could look for more interesting examples by exploring systematically the Yau–Yu classification of hypersurfaces with at least one C* action

[Yau, Yu '03]

We found more examples starting from existing NCCRs

• a three-node quiver:

$$x^{2} + ty^{2} + t^{2}z = x^{2} + t(y^{2} + tz) = 0$$

 $W = \operatorname{Tr}\left(e_0 \,\alpha_1 \beta_1 + e_1^2 (\beta_1 \alpha_1 + \alpha_2 \beta_2) + e_2 \,\beta_2 \alpha_2\right)$

We found more examples starting from existing NCCRs

• a three-node quiver:

$$x^{2} + ty^{2} + t^{2}z = x^{2} + t(y^{2} + tz) = 0$$

$$e_{0} \underbrace{\overset{\alpha_{1}, \beta_{1}}{\longleftrightarrow} \overset{\alpha_{2}, \beta_{2}}{\longleftrightarrow} \overset{\alpha_{2}, \beta_{2}}{\bigcup} \underbrace{\overset{\alpha_{2}, \beta_{2}}{\bigcup} \beta_$$

 $W = \operatorname{Tr}\left(e_0 \,\alpha_1 \beta_1 + e_1^2 (\beta_1 \alpha_1 + \alpha_2 \beta_2) + e_2 \,\beta_2 \alpha_2\right)$

• an example related to the 'Laufer' singularity:

$$x^2 + y^3 + z^2 t = 0$$

 $W = \operatorname{Tr}\left(\beta e_0 \alpha + \alpha \epsilon_1^2 \beta + \epsilon_1 e_1^2\right)$

We found more examples starting from existing NCCRs

• a three-node quiver:

$$x^{2} + ty^{2} + t^{2}z = x^{2} + t(y^{2} + tz) = 0$$

 $\begin{array}{c} \alpha_1, \beta_1 \\ \bullet \\ \bullet \\ U(N) \\ U(2N) \\ U(N) \\ U(2N) \\ U(N) \\ \end{array} \begin{array}{c} e_2 \\ \bullet \\ U(N) \\ U(N) \\ \end{array} \end{array}$

 $W = \operatorname{Tr}\left(e_0 \,\alpha_1 \beta_1 + e_1^2 (\beta_1 \alpha_1 + \alpha_2 \beta_2) + e_2 \,\beta_2 \alpha_2\right)$

• an example related to the 'Laufer' singularity:

$$x^2 + y^3 + z^2 t = 0$$

• we also tried the original Laufer's singularity

 $x^2 + y^3 + z^2t + yt^3 = 0$

but only one U(1) symmetry;

difficult to prove it's really K-stable

Conclusions

• Progress in finding conical CYs [K-stability]...

... and in how to find their duals [MF]

Proof of concept: several examples exist where both techniques apply [Fazzi, AT '19]

• K-stability: possible physical interpretation

Maybe lessons for CFTs more generally?

[Collins, Xie, Yau '16; Benvenuti, Giacomelli '16]

• What about the CYs without an associated quiver?

we tried alternative mathematical procedures, but they failed to provide a CFT ['Maximal modification algebras']