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Introduction

Particularly simple solutions in string theory:

e Kihler
® Ricci-flat

Mink, x Calabi—Yaug
If CY is conical:

dS%Y = dr? + 7“2ds§E Calabi—Yaug = Cone(Sasaki—Einsteins)
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near-horizon limit
of D3-branes
Y\

AdS5 X SEs5 < > CFT4 with A/ = 1 susy
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AdSs x SEs5 < > CFT4

No general method to find such pairs [or even the two sides]

Recent progress:

e [(-stability: gives a way to check that a cone is CY

[Chen, Donaldson, Sun ’12; ...; Collins, Szekelyhidi "15}

® Matrix factorizations: give a way to
associate a quiver to a cone

[Van den Bergh ’04; ...; Aspinwall, Morrison ‘12}

This talk: we’ll put these two methods to find new holographic pairs

[Fazzi, AT ‘19}



Plan

I. Review K-stability
I1. Matrix factorizations

I11. Holographic pairs



I. Sasaki—Einstein

e Kihler manifold: complex & symplectic

easy to obtain: holomorphic equations in CP? or C¥

® When is a Kiahler manifold also Ricci-flat?

compact case: if and only if ¢; = 0 [Yau 77}

noncompact case: this theorem doesn’t appl
P pply



I. Sasaki—Einstein

e Kihler manifold: complex & symplectic

easy to obtain: holomorphic equations in CP? or C¥

® When is a Kiahler manifold also Ricci-flat?

compact case: if and only if ¢; = 0 [Yau 77}

noncompact case: this theorem doesn’t apply

example:
“conifold” {22 +y* + 22 +t* =0} Cc C* 3 Ricci-flat metric v/
[Romans ’85; Candelas, de la Ossa ’90;
Klebanov, Witten ‘98]
Brieskorn—Pham {z? + y* + 2% +t* = 0} c C* B Ricci-flat metric x

k Z 3 [Gauntlett, Martelli, Sparks, Yau ‘061
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So how do we find conical CY?

‘ExpliCit metrics ® Cosets [eg. conifold]
® ‘Cohomogeneity one’ > system of ODEs

fOf CX. Y P-4d {Gauntlett, Martelli, Sparks, Waldram ‘o4}

e Toric case: isometry D U(1)"

/

® geometry reduces to 3d real cone <——<

® casy combinatorial requirement => Ricci-flat metric

[Futaki, Ono, Wang ‘o9}

® New method: K-stability
® ‘Stability’: Use complexified gauge group to look for solutions of some real equation
[for ex. for self-duality equations on bundles}  [Donaldson 85; Uhlenbeck, Yau 86}

deVCIOp ed fOI' Kﬁhler—Einstein [Chen, Donaldson, Sun ’12; ...;
and then for Sasaki—Einstein Collins, Szekelyhidi x5}



Idea:

® If we know Ricci-flat metric exists, it is the one that minimizes volume
[Martelli, Sparks, Yau ’o5, 06}
volume of Kihler metric:

function of vector field & =170, € U(1)" isometry torus

complex radial [r = 3: toric casel
structure rescaling



Idea:

® If we know Ricci-flat metric exists, it is the one that minimizes volume
[Martelli, Sparks, Yau ’o5, 06}
volume of Kihler metric:

function of vector field & =170, € U(1)" isometry torus

complex radial [r = 3: toric casel
structure rescaling

® To show that Ricci-flat metric does exist:

check volume minimization including degenerations

trick: enough to compute a ‘Futaki invariant’, derivative on extra parameters



Examples:
® conifold {x*+y*+2* +t* =0} c C* U(1)? isom. torus

we know Ricci-flat metric exists: minimize v1 = 20y — YOy, V2 = 20y — 10,

VOI(& = ZZ CLZ"U,,;) |::> a1 = Q9 = 0 U3 — xax + yﬁy + 262 + tat

and this determines metric.



Examples:
® conifold {z°+y*+2°+t* =0} C C*
we know Ricci-flat metric exists: minimize
Vol(§ =) ,a;v;) &> a1 =a3=0
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Examples:
® conifold {x*+y*+2* +t* =0} c C* U(1)? isom. torus

we know Ricci-flat metric exists: minimize v1 = 20y — YOy, V2 = 20y — 10,

VOI(S = ZZ CLZ"U,I:) |::> a1 = Q9 = 0 U3 — xax + yﬁy + Z(?Z + tat

and this determines metric.

® Brieskorn—Pham {22 + 32 + 22 +t¥ =0} c C* U(1)? isom. torus
V1 = 20, — YOy

Vol(¢ =) . a;v;)) &> a1 =0
( > ) vo = k(20 + y0, + 20,) + 2t0,

But we need to check degenerations

consider for example

e \ # 0: same manifold
{22 + 9% + 22 + \tF = 0}
e \ = 0: degeneration, with new isometry v’ = t0,



minimize with resp. to £ = a1v1 + asve +ad’v/ > ek < 3: minimum hasa’ =0 v

e k > 3: minimum has a’ # 0

v

>+ 1y +22=0 (C?/Zy x C)

not for the original manifold!
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e k > 3: minimum has a’ # 0

v
>+ 1y +22=0 (C?/Zy x C)

true
minimum! ordinary not for the original manifold!
volume minimization:
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I/ / CFT point of view:
A emergent symmetry in IR

[Collins, Xie, Yau ’16}




minimize with resp. to £ = a1v1 + asve +ad’v/ > ek < 3: minimum hasa’ =0 v
e k > 3: minimum has a’ # 0

v

/ >+ 1y +22=0 (C?/Zy x C)

true
minimum! ordinary not for the original manifold!
volume minimization:

’ ‘ CL1:O

I/ / CFT point of view:
A emergent symmetry in IR

[Collins, Xie, Yau ’16}

In practice, it’s enough to check 0, Vol = Futaki invariant

Slogan: Futaki of all degenerations should be positive



I1. Dual CFTs

On a stack of D3-branes > N =4SYM

the singularity at the tip of the cone
makes things more interesting <
® several types of D-branes are possible

® their interactions give rise to more complicated quiver theories



I1. Dual CFTs

On a stack of D3-branes > N =4SYM

the singularity at the tip of the cone
makes things more interesting <
® several types of D-branes are possible

® their interactions give rise to more complicated quiver theories

gauge
) fields
® for ex., conifold: 0>

U(M).«—». U(N,)

matter fields

® 4d gauge theory is conformal for some choice of ranks:

usually equal, but not always lconifold: Ny = N}



® How does one find the quiver associated to a singularity?

® Orbifolds: algorithm with finite group rep. theory W

[Douglas, Moore ’96}

® Toric: algorithm involving dimers (_}I _)

[Hanany, Kennaway ’os; Franco, Hanany, Kennaway, Vegh, Wecht ‘o051
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® Orbifolds: algorithm with finite group rep. theory k }/— } n_(rf

[Douglas, Moore ’96} ——T/ O—iL—®
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® Toric: algorithm involving dimers

[Hanany, Kennaway ’os; Franco, Hanany, Kennaway, Vegh, Wecht ‘o051 (b)

® Reformulated as a mathematical problem: [Douglas "o0; Berenstein, Leigh 'or; .

each type of D-brane is a module (srepresentation) of ring of functions on CY
a ‘basis’ is made of co-kernels of maps ® such that AU | P =¥ = fId

where {/ = 0} is CY; “matrix factorization” (MF) [Eisenbud '80; ...]



® How does one find the quiver associated to a singularity?

® Orbifolds: algorithm with finite group rep. theory k h

[Douglas, Moore ’96}

Ao PN

® Toric: algorithm involving dimers K [+ *\_/ P

@)——B)—3)
—{ f.,\> //‘:.

[Hanany, Kennaway ’os; Franco, Hanany, Kennaway, Vegh, Wecht ‘o051 (b)

® Reformulated as a mathematical problem: [Douglas "00; Berenstein, Leigh or; ...

each type of D-brane is a module (srepresentation) of ring of functions on CY
a ‘basis’ is made of co-kernels of maps ® such that AU | P =¥ = fId
where {/ = 0} is CY; “matrix factorization” (MF) (Eisenbud *8o; ..

oexample, conifold: <I>:( x + iy z—l—it) \II:<33—Z:3/ —Z—.it) f:$2+y2—|—252—|—t2

—z4it T —iy z—ait  x+y

® quiver is reduced to finding all MFs; this is called

“non-commutative crepant resolution” (NCCR) [Van den Bergh o4}
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We need a conical space:
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II1. Putting it together

Let’s see if these techniques can be applied at the same time.

We need a conical space:

® which is K-stable. , , o
in practice, ‘easy’ to check for cases with isometry torus U(1)?

s [
combinatorial methods exist A |

. . . | D1

similar to toric case | P
[Altmann, Hausen ’03; ...; Ilten, Siiss '171 o = tail(A;) —~
/ [
® where NCCR exists.

in principle algebraic, but lengthy; done for several classes  {yama Wemyss i8]



® We first look among some spaces which are known to be K-stable [Collins, Szekelyhidi '15]

* BP(p, q): {z° +y* + 2P + 17 =0}

[Collins, Szekelyhidi ’15}
K-stable if £ < o <2 oo many SE with topology S°!

NCCR exists if p = ¢ [Fazzi, AT 19]
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® We first look among some spaces which are known to be K-stable [Collins, Szekelyhidi '15]

* BP(p, q): {z° +y* + 2P + 17 =0}

[Collins, Szekelyhidi 151

K-stable if £ < o <2 oo many SE with topology S°!
NCCR exists if p = ¢ [Fazzi, AT 19]
o Yau—Yu-Il(p, q): {x? + y* + 2P + 2y? = 0} [Yau, Yu 03}
. -1
K_Stable lf 2]9 —1 Sa= 2(p B 1) [Collins, Szekelyhidi 15}
NCCR exists lfp — ( —+ 1 {Fazzi, AT 19}

notable case: p = 3,q =2 > threefold ‘lift’ of C*/ D, singularity

e Yau—Yu-IIl(p, q): {x* + y* + 2Pt + 2t? = 0} o
.. similar results
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0<—>0

quiver:

* However, these cases are sort of boring: obtained f N
from ‘generalized conifolds’ by int. out adjoints o e
[Gubser, Nekrasov, Shatashvili ’98} N f
® NCCR exists for large class of similar (but not equal) f) b3
quivers with some extra adjoints f. «> .N
superpotential Tr¢! for adjoints ¢1< O o)

NS

K-stability restrictions are strong but not deadly

e One could look for more interesting examples by exploring systematically
the Yau—Yu classification of hypersurfaces with at least one C* action [Yau, Yu 03]



We found more examples starting from existing NCCRs

€1

® a three-node quiver: ; D ;
€0 a1, P1 2, P2 €9
Qe—>0«——>0
v}ty P =t +t(yt +t2) =0 U(N)  U@N)  UW0)

W = Tr (eg a1 + €5 (Bron + azf2) + €2 Bacv)
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We found more examples starting from existing NCCRs

€1

® a three-node quiver: ; D ;
€0 a1, P1 2, P2 €9
Qe—>0«——>0
v}ty P =t +t(yt +t2) =0 U(N)  U@N)  UW0)

W = Tr (eg a1 + €5 (Bron + azf2) + €2 Bacv)

Oel

e <>
x2+y3+22t20 " .a,ﬁ Dq

® an example related to the ‘Laufer’ singularity:

W = Tr (Beoax + ae; 8 + ere])

® we also tried the original Laufer’s singularity
tentative superpotential:

v +yt 2ty =0 same as above +

T 2 4
but only one U(1) symmetry; r(eg + €7)

difficult to prove it’s really K-stable



Conclusions

® Progress in finding conical CYs {K-stability]l...
... and in how to find their duals {MF}

Proof of concept: several examples exist where both techniques apply [Fazzi, AT ‘19]

® K-stability: possible physical interpretation

[Collins, Xie, Yau '16;
Maybe lessons for CFTs more generally? Benvenuti, Giacomelli 16]

® What about the CYs without an associated quiver?

we tried alternative mathematical procedures,

but they failed to provide a CFT [‘'Maximal modification algebras’}]



