Holography,
 Matrix Factorizations and K-stability

Alessandro Tomasiello
SQS 2019, Yerevan
[based on work with M. Fazzi]

Introduction

Particularly simple solutions in string theory:

Mink $_{4} \times$ Calabi- Yau $_{6}$

- Kähler
- Ricci-flat

If CY is conical:

$$
\left.d s_{\mathrm{CY}}^{2}=d r^{2}+r^{2} d s_{\mathrm{SE}}^{2} \quad \text { Calabi-Yau }_{6} \equiv \operatorname{Cone(Sasaki-Einstein}{ }_{5}\right)
$$

Introduction

Particularly simple solutions in string theory:

Mink $_{4} \times$ Calabi- Yau $_{6}$

- Kähler
- Ricci-flat

If CY is conical:
$d s_{\mathrm{CY}}^{2}=d r^{2}+r^{2} d s_{\mathrm{SE}}^{2} \quad$ Calabi-Yau ${ }_{6} \equiv$ Cone(Sasaki-Einstein ${ }_{5}$)
[by definition]

$$
\mathrm{AdS}_{5} \times \mathrm{SE}_{5} \quad \mathrm{CFT}_{4}
$$

No general method to find such pairs [or even the two sides]

$\mathrm{AdS}_{5} \times \mathrm{SE}_{5} \longleftrightarrow \mathrm{CFT}_{4}$

No general method to find such pairs [or even the two sides]
Recent progress:

- K -stability: gives a way to check that a cone is CY
[Chen, Donaldson, Sun 'ı2; ...; Collins, Szekelyhidi ' ${ }^{\prime} 5$ 〕
- Matrix factorizations: give a way to associate a quiver to a cone
[Van den Bergh 'O4; ...; Aspinwall, Morrison ' ${ }^{\text {I2 }}$]

This tallk: we'll put these two methods to find new holographic pairs

Plan

I. Review K-stability

II. Matrix factorizations

III. Holographic pairs

I. Sasaki-Einstein

- Kähler manifold: complex \& symplectic
easy to obtain: holomorphic equations in $\mathbb{C P}^{N}$ or \mathbb{C}^{N}
- When is a Kähler manifold also Ricci-flat? compact case: if and only if $c_{1}=0 \quad$ [Yau $\left.{ }^{\prime} 77\right]$
noncompact case: this theorem doesn't apply

I. Sasaki-Einstein

- Kähler manifold: complex \& symplectic
easy to obtain: holomorphic equations in $\mathbb{C P}^{N}$ or \mathbb{C}^{N}
- When is a Kähler manifold also Ricci-flat?

$$
\text { compact case: if and only if } c_{1}=0
$$

noncompact case: this theorem doesn't apply
example:
"conifold" $\quad\left\{x^{2}+y^{2}+z^{2}+t^{2}=0\right\} \subset \mathbb{C}^{4}$
\exists Ricci-flat metric \checkmark
[Romans '85; Candelas, de la Ossa '90;
Klebanov, Witten '98]
Brieskorn-Pham $\left\{x^{2}+y^{2}+z^{2}+t^{k}=0\right\} \subset \mathbb{C}^{4}$
\nexists Ricci-flat metric \times
$k \geq 3$
[Gauntlett, Martelli, Sparks, Yau 'o6]

So how do we find conical CY?

- Explicit metrics
- Cosets [eg. conifold]
- 'Cohomogeneity one' \Rightarrow system of ODEs for ex. $Y^{p, q} \quad$ [Gauntlett, Martelli, Sparks, Waldram '04]

So how do we find conical CY?

- Explicit metrics
- Cosets [eg. conifold]
- 'Cohomogeneity one’ \Rightarrow system of ODEs for ex. $Y^{p, q} \quad$ [Gauntlett, Martelli, Sparks, Waldram '04]
- Toric case: isometry $\supset \mathrm{U}(1)^{3}$
- geometry reduces to 3d real cone
- easy combinatorial requirement \Rightarrow Ricci-flat metric

So how do we find conical CY?

- Explicit metrics
- Cosets [eg. conifold]
- 'Cohomogeneity one’ \Rightarrow system of ODEs for ex. $Y^{p, q}$ [Gauntlett, Martelli, Sparks, Waldram '04]
- Toric case: isometry $\supset \mathrm{U}(1)^{3}$
- geometry reduces to 3d real cone
- easy combinatorial requirement \Rightarrow Ricci-flat metric
- New method: K-stability
- 'Stability': Use complexified gauge group to look for solutions of some real equation
[for ex. for self-duality equations on bundles] [Donaldson '85; Uhlenbeck, Yau '86]
[Chen, Donaldson, Sun 'ı2; ...; Collins, Szekelyhidi ' ${ }^{5} 5$

Idea:

- If we know Ricci-flat metric exists, it is the one that minimizes volume
volume of Kähler metric: function of vector field

Idea:

- If we know Ricci-flat metric exists, it is the one that minimizes volume
volume of Kähler metric: function of vector field
[Martelli, Sparks, Yau '05, 06] volume of Kahler metric: $\xi=\underset{\uparrow}{I} \cdot r \underbrace{}_{r}$
complex
structure $\underset{\substack{\text { radial } \\ \text { rescaling }}}{ } \in U(1)^{r}$ isometry torus
- To show that Ricci-flat metric does exist:
check volume minimization including degenerations trick: enough to compute a 'Futaki invariant', derivative on extra parameters

Examples:

- conifold $\left\{x^{2}+y^{2}+z^{2}+t^{2}=0\right\} \subset \mathbb{C}^{4}$ we know Ricci-flat metric exists: minimize

$$
\operatorname{Vol}\left(\xi=\sum_{i} a_{i} v_{i}\right) \quad \Rightarrow \quad a_{1}=a_{2}=0
$$

and this determines metric.

Examples:

- conifold $\left\{x^{2}+y^{2}+z^{2}+t^{2}=0\right\} \subset \mathbb{C}^{4}$
we know Ricci-flat metric exists: minimize

$$
\operatorname{Vol}\left(\xi=\sum_{i} a_{i} v_{i}\right) \quad \Rightarrow \quad a_{1}=a_{2}=0
$$

and this determines metric.

- Brieskorn-Pham $\left\{x^{2}+y^{2}+z^{2}+t^{k}=0\right\} \subset \mathbb{C}^{4}$

$$
\operatorname{Vol}\left(\xi=\sum_{i} a_{i} v_{i}\right) \Rightarrow a_{1}=0
$$

$\mathrm{U}(1)^{3}$ isom. torus

$$
\begin{gathered}
v_{1}=x \partial_{y}-y \partial_{x}, v_{2}=z \partial_{t}-t \partial_{z} \\
v_{3}=x \partial_{x}+y \partial_{y}+z \partial_{z}+t \partial_{t}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{U}(1)^{2} \text { isom. torus } \\
v_{1}=x \partial_{y}-y \partial_{x} \\
v_{2}=k\left(x \partial_{x}+y \partial_{y}+z \partial_{z}\right)+2 t \partial_{t}
\end{gathered}
$$

Examples:

- conifold $\left\{x^{2}+y^{2}+z^{2}+t^{2}=0\right\} \subset \mathbb{C}^{4}$
$\mathrm{U}(1)^{3}$ isom. torus
we know Ricci-flat metric exists: minimize

$$
\operatorname{Vol}\left(\xi=\sum_{i} a_{i} v_{i}\right) \quad \Rightarrow \quad a_{1}=a_{2}=0
$$

$$
\begin{gathered}
v_{1}=x \partial_{y}-y \partial_{x}, v_{2}=z \partial_{t}-t \partial_{z} \\
v_{3}=x \partial_{x}+y \partial_{y}+z \partial_{z}+t \partial_{t}
\end{gathered}
$$

and this determines metric.

- Brieskorn-Pham $\left\{x^{2}+y^{2}+z^{2}+t^{k}=0\right\} \subset \mathbb{C}^{4}$

$$
\begin{gathered}
\mathrm{U}(1)^{2} \text { isom. torus } \\
v_{1}=x \partial_{y}-y \partial_{x} \\
v_{2}=k\left(x \partial_{x}+y \partial_{y}+z \partial_{z}\right)+2 t \partial_{t}
\end{gathered}
$$

But we need to check degenerations

consider for example

$$
\left\{x^{2}+y^{2}+z^{2}+\lambda t^{k}=0\right\}
$$

- $\lambda \neq 0$: same manifold
- $\lambda=0$: degeneration, with new isometry $v^{\prime}=t \partial_{t}$
minimize with resp. to $\xi=a_{1} v_{1}+a_{2} v_{2}+a^{\prime} v^{\prime} \quad \Rightarrow \quad \bullet k<3$: minimum has $a^{\prime}=0 \checkmark$
- $k \geq 3$: minimum has $a^{\prime} \neq 0$

$$
x^{2}+y^{2}+z^{2}=0 \quad\left(\mathbb{C}^{2} / \mathbb{Z}_{2} \times \mathbb{C}\right)
$$

not for the original manifold!
minimize with resp. to $\xi=a_{1} v_{1}+a_{2} v_{2}+a^{\prime} v^{\prime}$
Δ

- $k<3$: minimum has $a^{\prime}=0 \checkmark$
- $k \geq 3$: minimum has $a^{\prime} \neq 0$

$$
x^{2}+y^{2}+z^{2}=0 \quad\left(\mathbb{C}^{2} / \mathbb{Z}_{2} \times \mathbb{C}\right)
$$

not for the original manifold!

CFT point of view: emergent symmetry in IR
[Collins, Xe, Yau 'ı6]
minimize with resp. to $\xi=a_{1} v_{1}+a_{2} v_{2}+a^{\prime} v^{\prime} \quad \Delta \quad \bullet k<3$: minimum has $a^{\prime}=0 \checkmark$

- $k \geq 3$: minimum has $a^{\prime} \neq 0$

$$
x^{2}+y^{2}+z^{2}=0 \quad\left(\mathbb{C}^{2} / \mathbb{Z}_{2} \times \mathbb{C}\right)
$$

not for the original manifold!

CFT point of view: emergent symmetry in IR
[Collins, Xie, Yau 'ı6]

In practice, it's enough to check $\partial_{a^{\prime}} \mathrm{Vol} \equiv$ Futaki invariant

Slogan: Futaki of all degenerations should be positive

II. Dual CFTs

On a stack of D_{3}-branes $\quad \Rightarrow \quad \mathcal{N}=4 \mathrm{SYM}$
the singularity at the tip of the cone makes things more interesting

- several types of D-branes are possible

- their interactions give rise to more complicated quiver theories

II. Dual CFTs

On a stack of D_{3}-branes $\quad \Rightarrow \quad \mathcal{N}=4 \mathrm{SYM}$
the singularity at the tip of the cone makes things more interesting

- several types of D-branes are possible
- their interactions give rise to more complicated quiver theories
- for ex., conifold: Δ

- 4d gauge theory is conformal for some choice of ranks:
usually equal, but not always
- How does one find the quiver associated to a singularity?
- Orbifolds: algorithm with finite group rep. theory
[Douglas, Moore '96]
- Toric: algorithm involving dimers
[Hanany, Kennaway '05; Franco, Hanany, Kennaway, Vegh, Wecht '05]

(a)

(b)
- How does one find the quiver associated to a singularity?
- Orbifolds: algorithm with finite group rep. theory
[Douglas, Moore '96]
- Toric: algorithm involving dimers
[Hanany, Kennaway '05; Franco, Hanany, Kennaway, Vegh, Wecht ‘o5]

(a)

(b)
- Reformulated as a mathematical problem:
[Douglas 'oo; Berenstein, Leigh 'or; ...] each type of D-brane is a module (=representation) of ring of functions on CY a 'basis' is made of co-kernels of maps Φ such that $\quad \exists \Psi \mid \Psi \Phi=\Phi \Psi=f \mathrm{Id}$ where $\{f=0\}$ is CY; "matrix factorization" (MF)
- How does one find the quiver associated to a singularity?
- Orbifolds: algorithm with finite group rep. theory
[Douglas, Moore '96]
- Toric: algorithm involving dimers
[Hanany, Kennaway '05; Franco, Hanany, Kennaway, Vegh, Wecht ‘o5]

(a)

(b)
- Reformulated as a mathematical problem:
[Douglas 'oo; Berenstein, Leigh 'or; ...]
a 'basis' is made of co-kernels of maps Φ such that $\quad \exists \Psi \mid \Psi \Phi=\Phi \Psi=f \mathrm{Id}$ where $\{f=0\}$ is CY; "matrix factorization" (MF)
- example, conifold: $\quad \Phi=\left(\begin{array}{cc}x+i y & z+i t \\ -z+i t & x-i y\end{array}\right) \quad \Psi=\left(\begin{array}{cc}x-i y & -z-i t \\ z-i t & x+i y\end{array}\right) \quad f=x^{2}+y^{2}+z^{2}+t^{2}$
- quiver is reduced to finding all MFs; this is called "non-commutative crepant resolution" (NCCR)

III. Putting it together

Let's see if these techniques can be applied at the same time.
We need a conical space:

III. Putting it together

Let's see if these techniques can be applied at the same time.

We need a conical space:

- which is K -stable.
in practice, 'easy' to check for cases with isometry torus $\mathrm{U}(1)^{2}$
combinatorial methods exist similar to toric case
[Altmann, Hausen '03; ...; Ilten, Süss ' ${ }^{\prime} 7$]

III. Putting it together

Let's see if these techniques can be applied at the same time.

We need a conical space:

- which is K -stable.
in practice, 'easy' to check for cases with isometry torus $\mathrm{U}(1)^{2}$
combinatorial methods exist similar to toric case
[Altmann, Hausen '03; ...; Ilten, Süss 'ı17]

- where NCCR exists. in principle algebraic, but lengthy; done for several classes
- We first look among some spaces which are known to be K-stable
- $\operatorname{BP}(p, q):\left\{x^{2}+y^{2}+z^{p}+t^{q}=0\right\}$
[Collins, Szekelyhidi ' ${ }^{5} 5$ §
K-stable if $\frac{1}{2}<\frac{p}{q}<2 \quad \infty$ many SE with topology $S^{5}!$
NCCR exists if $p=q$
- We first look among some spaces which are known to be K-stable
- $\operatorname{BP}(p, q):\left\{x^{2}+y^{2}+z^{p}+t^{q}=0\right\}$
[Collins, Szekelyhidi ' ${ }^{5}$ §
K-stable if $\frac{1}{2}<\frac{p}{q}<2 \quad \infty$ many SE with topology $S^{5}!$
NCCR exists if $p=q$
- Yau-Yu-II $(p, q):\left\{x^{2}+y^{2}+z^{p}+z y^{q}=0\right\}$

K-stable if $\frac{p^{2}-1}{2 p-1}<q<2(p-1)$
NCCR exists if $p=q+1$
notable case: $p=3, q=2 \Rightarrow$ threefold 'lift' of \mathbb{C}^{2} / D_{4} singularity

- We first look among some spaces which are known to be K -stable
- $\mathrm{BP}(p, q):\left\{x^{2}+y^{2}+z^{p}+t^{q}=0\right\}$
[Collins, Szekelyhidi ’ ${ }^{5}$ §
K-stable if $\frac{1}{2}<\frac{p}{q}<2 \quad \infty$ many SE with topology $S^{5}!$
NCCR exists if $p=q$
- Yau-Yu-II $(p, q):\left\{x^{2}+y^{2}+z^{p}+z y^{q}=0\right\}$

$$
\text { NCCR exists if } p=q+1
$$

notable case: $p=3, q=2 \Rightarrow$ threefold 'lift' of \mathbb{C}^{2} / D_{4} singularity

- Yau-Yu-III $(p, q):\left\{x^{2}+y^{2}+z^{p} t+z t^{q}=0\right\}$
... similar results
- However, these cases are sort of boring: obtained from 'generalized conifolds' by int. out adjoints
[Gubser, Nekrasov, Shatashvili '98]

- However, these cases are sort of boring: obtained from 'generalized conifolds' by int. out adjoints

[Gubser, Nekrasov, Shatashvili '98]

- NCCR exists for large class of similar (but not equal) quivers with some extra adjoints
superpotential $\operatorname{Tr} \phi_{i}^{p}$ for adjoints
K-stability restrictions are strong but not deadly

- However, these cases are sort of boring: obtained from 'generalized conifolds' by int. out adjoints

[Gubser, Nekrasov, Shatashvili '98]

- NCCR exists for large class of similar (but not equal) quivers with some extra adjoints superpotential $\operatorname{Tr} \phi_{i}^{p}$ for adjoints

K-stability restrictions are strong but not deadly

- One could look for more interesting examples by exploring systematically the Yau-Yu classification of hypersurfaces with at least one \mathbb{C}^{*} action

We found more examples starting from existing NCCRs

- a three-node quiver:

$$
x^{2}+t y^{2}+t^{2} z=x^{2}+t\left(y^{2}+t z\right)=0
$$

$$
W=\operatorname{Tr}\left(e_{0} \alpha_{1} \beta_{1}+e_{1}^{2}\left(\beta_{1} \alpha_{1}+\alpha_{2} \beta_{2}\right)+e_{2} \beta_{2} \alpha_{2}\right)
$$

We found more examples starting from existing NCCRs

- a three-node quiver:

$$
x^{2}+t y^{2}+t^{2} z=x^{2}+t\left(y^{2}+t z\right)=0
$$

$$
\begin{aligned}
& \underbrace{e_{0}}_{\mathbf{U}(N)} \underset{\mathbf{U}(2 N)}{\stackrel{\alpha_{1}, \beta_{1}}{e_{1}} \overbrace{\mathbf{U}(N)}^{\alpha_{\alpha_{2}}, \beta_{2}})^{e_{2}}} \\
& W=\operatorname{Tr}\left(e_{0} \alpha_{1} \beta_{1}+e_{1}^{2}\left(\beta_{1} \alpha_{1}+\alpha_{2} \beta_{2}\right)+e_{2} \beta_{2} \alpha_{2}\right)
\end{aligned}
$$

- an example related to the 'Laufer' singularity:

$$
x^{2}+y^{3}+z^{2} t=0
$$

$$
W=\operatorname{Tr}\left(\beta e_{0} \alpha+\alpha \epsilon_{1}^{2} \beta+\epsilon_{1} e_{1}^{2}\right)
$$

We found more examples starting from existing NCCRs

- a three-node quiver:

$$
x^{2}+t y^{2}+t^{2} z=x^{2}+t\left(y^{2}+t z\right)=0
$$

$$
W=\operatorname{Tr}\left(e_{0} \alpha_{1} \beta_{1}+e_{1}^{2}\left(\beta_{1} \alpha_{1}+\alpha_{2} \beta_{2}\right)+e_{2} \beta_{2} \alpha_{2}\right)
$$

- an example related to the 'Laufer' singularity:

$$
x^{2}+y^{3}+z^{2} t=0
$$

$$
W=\operatorname{Tr}\left(\beta e_{0} \alpha+\alpha \epsilon_{1}^{2} \beta+\epsilon_{1} e_{1}^{2}\right)
$$

- we also tried the original Laufer's singularity

$$
x^{2}+y^{3}+z^{2} t+y t^{3}=0
$$

but only one $\mathrm{U}(1)$ symmetry;
tentative superpotential: same as above +

$$
\operatorname{Tr}\left(e_{0}^{2}+e_{1}^{4}\right)
$$ difficult to prove it's really K-stable

Conclusions

- Progress in finding conical CYs $\{\mathrm{K}$-stability \rceil... ... and in how to find their duals [MF〕

Proof of concept: several examples exist where both techniques apply

- K-stability: possible physical interpretation

Maybe lessons for CFTs more generally?

- What about the CYs without an associated quiver?
we tried alternative mathematical procedures, but they failed to provide a CFT
['Maximal modification algebras']

