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near-horizon limit 
of D3-branes

AdS5⇥ SE5 CFT4 with N = 1 susy
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AdS5⇥ SE5 CFT4

No general method to find such pairs [or even the two sides]

Recent progress:

•K-stability: gives a way to check that a cone is CY

• Matrix factorizations: give a way to 
associate a quiver to a cone

This talk: we’ll put these two methods to find new holographic pairs 

[Chen, Donaldson, Sun ’12; …; Collins, Szekelyhidi ’15]

[Van den Bergh ’04; …; Aspinwall, Morrison ‘12]

[Fazzi, AT ‘19]



I. Review K-stability

Plan

II. Matrix factorizations

III. Holographic pairs
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•Kähler manifold: complex & symplectic

easy to obtain: holomorphic equations in CPN or CN

• When is a Kähler manifold also Ricci-flat? 
compact case: if and only if c1 = 0 [Yau ’77]

noncompact case: this theorem doesn’t apply 
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@ Ricci-flat metric ⇥
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example:
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“conifold”
[Romans ’85; Candelas, de la Ossa ’90; 
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•Explicit metrics • Cosets [eg. conifold]

• ‘Cohomogeneity one’ 

So how do we find conical CY?

system of ODEs
for ex. Y p,q [Gauntlett, Martelli, Sparks, Waldram ‘04]

•New method: K-stability

• ‘Stability’: Use complexified gauge group to look for solutions of some real equation

[for ex. for self-duality equations on bundles]

developed for Kähler–Einstein
and then for Sasaki–Einstein

[Chen, Donaldson, Sun ’12; …; 
Collins, Szekelyhidi ’15]

[Donaldson ’85; Uhlenbeck, Yau ‘86]

• Toric case: isometry � U(1)3

• geometry reduces to 3d real cone

• easy combinatorial requirement Ricci-flat metric
[Futaki, Ono, Wang ‘09]



Idea: 

• If we know Ricci-flat metric exists, it is the one that minimizes volume
[Martelli, Sparks, Yau ’05, 06]

volume of Kähler metric: 
function of vector field ⇠ = I · r@r

complex 
structure

2 U(1)r isometry torus

radial 
rescaling

[r = 3: toric case]



Idea: 

• If we know Ricci-flat metric exists, it is the one that minimizes volume
[Martelli, Sparks, Yau ’05, 06]

volume of Kähler metric: 
function of vector field ⇠ = I · r@r

complex 
structure

2 U(1)r isometry torus

radial 
rescaling

[r = 3: toric case]

• To show that Ricci-flat metric does exist:
check volume minimization including degenerations

trick: enough to compute a ‘Futaki invariant’, derivative on extra parameters
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•  

Vol(⇠ =
P

i aivi) a1 = 0

and this determines metric.

But we need to check degenerations
consider for example

{x2 + y

2 + z

2 + �t

k = 0}
• � 6= 0: same manifold

• � = 0: degeneration, with new isometry v0 = t@t
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minimize with resp. to ⇠ = a1v1 + a2v2 + a0v0 • k < 3: minimum has a0 = 0 X
• k � 3: minimum has a0 6= 0

x

2 + y

2 + z

2 = 0

not for the original manifold!

In practice, it’s enough to check @a0Vol ⌘ Futaki invariant

Slogan: Futaki of all degenerations should be positive

(C2/Z2 ⇥ C)

a1 = 0

ordinary 
volume minimization:

true 
minimum!

�
� = 0

a0

CFT point of view: 
emergent symmetry in IR

[Collins, Xie, Yau ’16]
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On a stack of D3-branes 

the singularity at the tip of the cone
makes things more interesting

N = 4 SYM

• several types of D-branes are possible

• their interactions give rise to more complicated quiver theories



II. Dual CFTs
On a stack of D3-branes 

the singularity at the tip of the cone
makes things more interesting

N = 4 SYM

• several types of D-branes are possible

• their interactions give rise to more complicated quiver theories

• for ex., conifold:
gauge
fields

matter fields

U(N2)

• 4d gauge theory is conformal for some choice of ranks:

U(N1)

usually equal, but not always [conifold: N1 = N2]



• How does one find the quiver associated to a singularity?
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• How does one find the quiver associated to a singularity?

• Orbifolds: algorithm with finite group rep. theory

• Toric: algorithm involving dimers

[Douglas, Moore ’96]

[Hanany, Kennaway ’05; Franco, Hanany, Kennaway, Vegh, Wecht ‘05]

• example, conifold:
� =

✓
x+ iy z + it

�z + it x� iy

◆
 =

✓
x� iy �z � it

z � it x+ iy

◆
f = x

2 + y

2 + z

2 + t

2

• quiver is reduced to finding all MFs; this is called
“non-commutative crepant resolution” (NCCR) [Van den Bergh ’04]

• Reformulated as a mathematical problem:

each type of D-brane is a module (=representation) of ring of functions on CY

a ‘basis’ is made of co-kernels of maps � such that 9 |  � = � = fId

where {f = 0} is CY; “matrix factorization” (MF) [Eisenbud ’80; …]

[Douglas ’00; Berenstein, Leigh ’01; …]
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III. Putting it together
Let’s see if these techniques can be applied at the same time.

We need a conical space:

p1

p2

p3

�3

�1

�2

� = tail(�i)

• which is K-stable.

combinatorial methods exist
similar to toric case
[Altmann, Hausen ’03; …; Ilten, Süss ’17]

in practice, ‘easy’ to check for cases with isometry torus U(1)2

• where NCCR exists.

in principle algebraic, but lengthy; done for several classes [Iyama, Wemyss ’18]



• We first look among some spaces which are known to be K-stable [Collins, Szekelyhidi ’15]

• BP(p, q): {x2 + y
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q = 0}

K-stable if 1
2 < p

q < 2 1 many SE with topology S5!
[Collins, Szekelyhidi ’15]

[Fazzi, AT ’19]NCCR exists if p = q
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• BP(p, q): {x2 + y

2 + z

p + t

q = 0}

K-stable if 1
2 < p

q < 2 1 many SE with topology S5!
[Collins, Szekelyhidi ’15]

[Fazzi, AT ’19]NCCR exists if p = q

[Yau, Yu ’03]• Yau–Yu-II(p, q): {x2 + y

2 + z

p + zy

q = 0}

[Collins, Szekelyhidi ’15]

On the other hand, the beta function of each node automatically vanishes

�
i

⌘ N +
N

2
(R

↵i +R
↵i�1 +R

�i +R
�i�1 � 1� 1� 1� 1) = 0 . (4.7)

Therefore the model (in the UV) is expected to flow to a fixed point, with the supercon-

formal R-symmetry determined through a-maximization, which yields R
↵i = R

�i =
1
2 .

The central charges then read

a =
27p

128
N2 � 3p

16
, c =

27p

128
N2 � p

8
. (4.8)

As expected, c� a = 0 at large N , and we can extract the following volume from a:

V (⇠) =
N2

4a
=

32

27

1

p
. (4.9)

This of course matches 2a0 in (2.37) with q = p.

These theories are obtained from the generalized conifold of type A
p�1 [18] by inte-

grating out their massive adjoints [67]. Indeed notice that the defining equation of BP

(p, p) can be mapped to [67, Eq. (6.10)] (or (3.18)) via linear coordinate redefinitions.

For example when p is odd

zp + tp =
p�1Y

i=0

(z + !it) �! z̃t̃(z̃ + t̃)
p�3Y

i=1

(z̃ + �
i

t̃) , (4.10)

for appropriate �
i

.

YY-II

The second class in [36], as reviewed in section 2.6, consists of singularities with equation

uv + f(z, t) = 0, and f(z, t) = zp + ztq.

This is a compound A
m

with m = min(p�1, q). According to the criterion (3.9) [17,

Sec. 5], an NCCR exists if f factorizes in m� 1 factors. This is only the case if either
q

p�1 ⌘ r is an integer, or if its inverse p�1
q

⌘ s is an integer.

On the other hand their links will admit SE metric provided [4, Sec. 8]

p2 � 1

2p� 1
< q < 2(p� 1) (4.11)

or in other words p+1
2p�1 < q

p�1 < 2. Since p+1
2p�1 > 1

2 for any p, neither integer r or

31

K-stable if

NCCR exists if p = q + 1 [Fazzi, AT ’19]

notable case: p = 3, q = 2 threefold ‘lift’ of C2/D4 singularity
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• However, these cases are sort of boring: obtained 
from ‘generalized conifolds’ by int. out adjoints

… …

quiver:

[Gubser, Nekrasov, Shatashvili ’98]

[Yau, Yu ’03]

• One could look for more interesting examples by exploring systematically
the Yau–Yu classification of hypersurfaces with at least one C⇤ action

• NCCR exists for large class of similar (but not equal) 
quivers with some extra adjoints

K-stability restrictions are strong but not deadly … …
superpotential Tr�p

i for adjoints
�1

�3



We found more examples starting from existing NCCRs 

to a Calabi–Yau threefold.

The quivers can again be constructed by using the algorithm reviewed in section 3.2.

M1 = (u, f1) M2 = (u, f1f2)

M3 = (u, f1f2f3)R

f2

inc f3

u

inc

f1 inc

f4

u

Figure 6: NCCR for P

T4,4,2,2(�). Here f1 = t, f2 = z, f3 = z � t, f4 = z � �t.

5 Additional examples: compound D4 threefolds

So far we have found NCCRs by applying the IW algorithm of section 3.2. While this

made it fast to find them, it has limited us to finding quivers which are morally similar

to the higher-degree generalized quivers, as we commented in section 3.2.3. In this

section we break free of this limitation and explore more general cases. These are again

of compound type, but to our knowledge no algorithm of the type in 3.2 is available.

We will reproduce two examples that were recently identified in [19] by looking at the

single-D3 moduli space, strengthening those dualities.

5.1 A linear three-node quiver

Consider the threefold

p = x2 + ty2 + t2z = x2 + t(y2 + tz) = 0 . (5.1)

This singularity is not isolated: the gradient dp vanishes along the entire z axis. It is a

compound D4 singularity: for example if we intersect it with the non-generic hyperplane

y � z = 0 we get the D4 equation x2 + yt(y + t) = 0.16

16The check with more generic hyperplanes t = f(x, y, z) is more complicated. One way to establish
it is of cD4 type is to compute the Jacobi ring C[x, y, z]/h@

x

p, @

y

p, @

z

pi, find a minimal set of generators
by Gröbner bases methods, and compare with the generators of the Jacobi ring of the D4 singularity.
We did this by computer algebra.

37

this case we simply look for the matrix factorizations (3.5) by hand. We can take

(�, )4 =

0

BBB@

2

6664

x �y �t 0

ty x 0 �t

tz 0 x y

0 tz �ty x

3

7775
,

2

6664

x y t 0

�ty x 0 t

�tz 0 x �y

0 �tz ty x

3

7775

1

CCCA
; (5.5a)

(�, )2 =

 "
x �t

y2 + tz x

#
,

"
x t

� (y2 + tz) x

#!
. (5.5b)

These two MFs define two CMs, respectively N1, M2 of rank two and one, via (3.4);

we then define an algebra A via (3.7). Recall that this A is NCCR if it is Cohen–

Macaulay and if its global dimension is finite. The check of the CM property can be

done by computer [81]. Showing finite global dimension is in general di�cult. However,

following [82], one can argue that there exists a unique rank-four CM generator ⇤ such

that A = End
R

(⇤) is an NCCR. Since we have found one, namely R�N1�M2, it must

be that End
R

(R � N1 � M2) is the NCCR we are after.18 One can now compute the

relations in the quiver and the superpotential using the prescription explained in [15]

(or via the path algebra procedure explained in [56,83]). We get the quiver in figure 7,

with superpotential

W = Tr
�
e0 ↵1�1 + e21(�1↵1 + ↵2�2) + e2 �2↵2

�
. (5.6)

R

N1 M2

↵1 ↵2

�1 �2

e2e1e0

Figure 7: The proposed NCCR for R = C[x, y, z, t]/(5.1). N1 ⌘ coker is a rank-two
CM and corresponds to a physical SU(2N) group, whereas M2 ⌘ coker is rank-one and
corresponds to a physical SU(N) group.

This quiver was already found to correspond to the singularity (5.1) by computing

the single-D3 moduli space (3.2). The ranks N single D3
i

are the ranks of the CM modules

in figure 7, namely (1, 2, 1). The gauge invariants are given by [19, Eq. (D.53)], and

satisfy the hypersurface equation (5.1) upon imposing the F-terms coming from the

superpotential (5.6).

18We would like to thank M. Wemyss for discussions on this point.
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• a three-node quiver:
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e2↵1, �1 ↵2, �2

U(N) U(N)U(2N)
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by Gröbner bases methods, and compare with the generators of the Jacobi ring of the D4 singularity.
We did this by computer algebra.

37

this case we simply look for the matrix factorizations (3.5) by hand. We can take

(�, )4 =

0

BBB@

2

6664

x �y �t 0

ty x 0 �t

tz 0 x y

0 tz �ty x

3

7775
,

2

6664

x y t 0

�ty x 0 t

�tz 0 x �y

0 �tz ty x

3

7775

1

CCCA
; (5.5a)

(�, )2 =

 "
x �t

y2 + tz x

#
,

"
x t

� (y2 + tz) x

#!
. (5.5b)

These two MFs define two CMs, respectively N1, M2 of rank two and one, via (3.4);

we then define an algebra A via (3.7). Recall that this A is NCCR if it is Cohen–

Macaulay and if its global dimension is finite. The check of the CM property can be

done by computer [81]. Showing finite global dimension is in general di�cult. However,

following [82], one can argue that there exists a unique rank-four CM generator ⇤ such

that A = End
R

(⇤) is an NCCR. Since we have found one, namely R�N1�M2, it must

be that End
R

(R � N1 � M2) is the NCCR we are after.18 One can now compute the

relations in the quiver and the superpotential using the prescription explained in [15]

(or via the path algebra procedure explained in [56,83]). We get the quiver in figure 7,

with superpotential

W = Tr
�
e0 ↵1�1 + e21(�1↵1 + ↵2�2) + e2 �2↵2

�
. (5.6)

R

N1 M2

↵1 ↵2

�1 �2

e2e1e0

Figure 7: The proposed NCCR for R = C[x, y, z, t]/(5.1). N1 ⌘ coker is a rank-two
CM and corresponds to a physical SU(2N) group, whereas M2 ⌘ coker is rank-one and
corresponds to a physical SU(N) group.

This quiver was already found to correspond to the singularity (5.1) by computing

the single-D3 moduli space (3.2). The ranks N single D3
i

are the ranks of the CM modules

in figure 7, namely (1, 2, 1). The gauge invariants are given by [19, Eq. (D.53)], and

satisfy the hypersurface equation (5.1) upon imposing the F-terms coming from the

superpotential (5.6).

18We would like to thank M. Wemyss for discussions on this point.
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e0
• a three-node quiver:

e1

e2↵1, �1 ↵2, �2

• an example related to the ‘Laufer’ singularity:

We now look for the quiver by using matrix factorizations. This can be done using

techniques discussed in [55,56],19 and leads to

(�, )4 =

0

BBB@

2

6664

x �z �y 0

tz x 0 �y

y2 0 x z

0 y2 �tz x

3

7775
,

2

6664

x z y 0

�tz x 0 y

�y2 0 x �z

0 �y2 tz x

3

7775

1

CCCA
. (5.13)

As usual this defines a CM module N via (3.4), which has rank two. It turns out

that A = End(R � N) is already an NCCR. It leads to the quiver in figure 8, with

superpotential

W = Tr
�
�e0↵ + ↵✏21� + ✏1e

2
1

�
. (5.14)

Again this was already obtained in [19, Sec. 4.2] by di↵erent methods.

R N

�

↵

e1

✏1

e0

Figure 8: The NCCR of R = C[x, y, z, t]/(5.10). N is a rank-two CM (corresponding to an
SU(2N) gauge group), which can be obtained from the matrix factorization in (5.13).

As a cross-check we can again perform a-maximization. Doing so yields the IR

R-charges [19, Eq. (4.14)]

R(↵) = R(�) = 1��⇤ , R(e0) = 2�⇤ , R(✏1) = �⇤ , R(e1) = 1� �⇤
2

(5.15)

with �⇤ = 2
15(8 �

p
19). This agrees with the earlier result (5.11), once we take into

account that the coordinates in (5.10) are the gauge invariants

x = ↵e1✏1� , y = ↵✏1� , z = ↵e1� , t = �✏21 . (5.16)

19The hypersurface (5.10) can be obtained as a threefold slice of the so-called universal flop of
length two [84], i.e. the sixfold X

2 + UY

2 + 2V Y Z + WZ

2 + (UW � V

2)T 2 = 0 ⇢ C7, by taking
e.g. X = x, Y = z, Z = y, U = t, V = 0, W = y, T = 0. (See [55, 56] for more details.) Applying
the cut to the MF of the universal flop we obtain (5.13)
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e1

✏1↵, �

Marginality of the superpotential constrains the R-charges of the various fields,

which we can parameterize via

R(e1) = � , R(e0) = R(e2) = 2� , R(↵
i

) = R(�
i

) = 1�� . (5.7)

In terms of � the central charges are given by

a(�) =
27

8
(�� 2)(�� 1)�N2 � 3

32
�
�
51�2 � 81�+ 40

�
, (5.8a)

c(�) =
27

8
(�� 2)(�� 1)�N2 +

1

32
�(9(27� 17�)�� 110) . (5.8b)

As expected [26], they are equal at large N . Maximizing a with respect to � we obtain

the fixed-point value �⇤ =
1
3(3�

p
3), where a attains the value a = 3

4

p
3N2 +O(N0).

This means the dual L5 has an SE metric with volume

Vol(L5) =
aN=4SYM

a
Vol(S5) =

N2

4a(�⇤)
⇡3 =

⇡3

3
p
3
, (5.9)

matching (5.4).

5.2 Laufer degeneration

We now consider the singularity

x2 + y3 + z2t = 0 . (5.10)

It has featured recently in [19], and is a degeneration of the Laufer singularity (5.18)

we will consider in the next section.

It has two C⇤ actions, with a charge matrix we gave back in (2.29), on the coordinates

(x, y, z, t). The Reeb vector that minimizes the volume is given by

⇠UV-L =

✓
3

10
(
p
19 + 7),

1

5
(
p
19 + 7),

1

2
(
p
19 + 1),

2

5
(8�

p
19)

◆
, (5.11)

leading to

Vol(L5) =
1

243

⇣
19
p
19� 28

⌘
⇡3 . (5.12)

The counting of test configurations was performed already in section 2.5 to illustrate

the general procedure; it was concluded there that none are necessary. Thus (5.10) gives

rise to a Calabi–Yau threefold.
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We found more examples starting from existing NCCRs 

to a Calabi–Yau threefold.

The quivers can again be constructed by using the algorithm reviewed in section 3.2.

M1 = (u, f1) M2 = (u, f1f2)

M3 = (u, f1f2f3)R

f2

inc f3

u

inc

f1 inc

f4

u

Figure 6: NCCR for P

T4,4,2,2(�). Here f1 = t, f2 = z, f3 = z � t, f4 = z � �t.

5 Additional examples: compound D4 threefolds

So far we have found NCCRs by applying the IW algorithm of section 3.2. While this

made it fast to find them, it has limited us to finding quivers which are morally similar

to the higher-degree generalized quivers, as we commented in section 3.2.3. In this

section we break free of this limitation and explore more general cases. These are again

of compound type, but to our knowledge no algorithm of the type in 3.2 is available.

We will reproduce two examples that were recently identified in [19] by looking at the

single-D3 moduli space, strengthening those dualities.

5.1 A linear three-node quiver

Consider the threefold

p = x2 + ty2 + t2z = x2 + t(y2 + tz) = 0 . (5.1)

This singularity is not isolated: the gradient dp vanishes along the entire z axis. It is a

compound D4 singularity: for example if we intersect it with the non-generic hyperplane

y � z = 0 we get the D4 equation x2 + yt(y + t) = 0.16

16The check with more generic hyperplanes t = f(x, y, z) is more complicated. One way to establish
it is of cD4 type is to compute the Jacobi ring C[x, y, z]/h@

x

p, @

y

p, @

z

pi, find a minimal set of generators
by Gröbner bases methods, and compare with the generators of the Jacobi ring of the D4 singularity.
We did this by computer algebra.
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this case we simply look for the matrix factorizations (3.5) by hand. We can take

(�, )4 =

0
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x �y �t 0
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tz 0 x y

0 tz �ty x

3

7775
,
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x y t 0

�ty x 0 t

�tz 0 x �y

0 �tz ty x

3

7775

1

CCCA
; (5.5a)

(�, )2 =

 "
x �t

y2 + tz x

#
,

"
x t

� (y2 + tz) x

#!
. (5.5b)

These two MFs define two CMs, respectively N1, M2 of rank two and one, via (3.4);

we then define an algebra A via (3.7). Recall that this A is NCCR if it is Cohen–

Macaulay and if its global dimension is finite. The check of the CM property can be

done by computer [81]. Showing finite global dimension is in general di�cult. However,

following [82], one can argue that there exists a unique rank-four CM generator ⇤ such

that A = End
R

(⇤) is an NCCR. Since we have found one, namely R�N1�M2, it must

be that End
R

(R � N1 � M2) is the NCCR we are after.18 One can now compute the

relations in the quiver and the superpotential using the prescription explained in [15]

(or via the path algebra procedure explained in [56,83]). We get the quiver in figure 7,

with superpotential

W = Tr
�
e0 ↵1�1 + e21(�1↵1 + ↵2�2) + e2 �2↵2

�
. (5.6)

R

N1 M2

↵1 ↵2

�1 �2

e2e1e0

Figure 7: The proposed NCCR for R = C[x, y, z, t]/(5.1). N1 ⌘ coker is a rank-two
CM and corresponds to a physical SU(2N) group, whereas M2 ⌘ coker is rank-one and
corresponds to a physical SU(N) group.

This quiver was already found to correspond to the singularity (5.1) by computing

the single-D3 moduli space (3.2). The ranks N single D3
i

are the ranks of the CM modules

in figure 7, namely (1, 2, 1). The gauge invariants are given by [19, Eq. (D.53)], and

satisfy the hypersurface equation (5.1) upon imposing the F-terms coming from the

superpotential (5.6).

18We would like to thank M. Wemyss for discussions on this point.
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e0
• a three-node quiver:

e1

e2↵1, �1 ↵2, �2

• an example related to the ‘Laufer’ singularity:

We now look for the quiver by using matrix factorizations. This can be done using

techniques discussed in [55,56],19 and leads to

(�, )4 =

0
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x �z �y 0

tz x 0 �y

y2 0 x z

0 y2 �tz x

3
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,
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x z y 0

�tz x 0 y

�y2 0 x �z
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1

CCCA
. (5.13)

As usual this defines a CM module N via (3.4), which has rank two. It turns out

that A = End(R � N) is already an NCCR. It leads to the quiver in figure 8, with

superpotential

W = Tr
�
�e0↵ + ↵✏21� + ✏1e

2
1

�
. (5.14)

Again this was already obtained in [19, Sec. 4.2] by di↵erent methods.

R N

�

↵

e1

✏1

e0

Figure 8: The NCCR of R = C[x, y, z, t]/(5.10). N is a rank-two CM (corresponding to an
SU(2N) gauge group), which can be obtained from the matrix factorization in (5.13).

As a cross-check we can again perform a-maximization. Doing so yields the IR

R-charges [19, Eq. (4.14)]

R(↵) = R(�) = 1��⇤ , R(e0) = 2�⇤ , R(✏1) = �⇤ , R(e1) = 1� �⇤
2

(5.15)

with �⇤ = 2
15(8 �

p
19). This agrees with the earlier result (5.11), once we take into

account that the coordinates in (5.10) are the gauge invariants

x = ↵e1✏1� , y = ↵✏1� , z = ↵e1� , t = �✏21 . (5.16)

19The hypersurface (5.10) can be obtained as a threefold slice of the so-called universal flop of
length two [84], i.e. the sixfold X

2 + UY

2 + 2V Y Z + WZ

2 + (UW � V

2)T 2 = 0 ⇢ C7, by taking
e.g. X = x, Y = z, Z = y, U = t, V = 0, W = y, T = 0. (See [55, 56] for more details.) Applying
the cut to the MF of the universal flop we obtain (5.13)
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Marginality of the superpotential constrains the R-charges of the various fields,

which we can parameterize via

R(e1) = � , R(e0) = R(e2) = 2� , R(↵
i

) = R(�
i

) = 1�� . (5.7)

In terms of � the central charges are given by

a(�) =
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, (5.8a)

c(�) =
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8
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1

32
�(9(27� 17�)�� 110) . (5.8b)

As expected [26], they are equal at large N . Maximizing a with respect to � we obtain

the fixed-point value �⇤ =
1
3(3�

p
3), where a attains the value a = 3

4

p
3N2 +O(N0).

This means the dual L5 has an SE metric with volume

Vol(L5) =
aN=4SYM

a
Vol(S5) =

N2

4a(�⇤)
⇡3 =

⇡3

3
p
3
, (5.9)

matching (5.4).

5.2 Laufer degeneration

We now consider the singularity

x2 + y3 + z2t = 0 . (5.10)

It has featured recently in [19], and is a degeneration of the Laufer singularity (5.18)

we will consider in the next section.

It has two C⇤ actions, with a charge matrix we gave back in (2.29), on the coordinates

(x, y, z, t). The Reeb vector that minimizes the volume is given by

⇠UV-L =

✓
3

10
(
p
19 + 7),

1

5
(
p
19 + 7),

1

2
(
p
19 + 1),

2

5
(8�

p
19)
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, (5.11)

leading to

Vol(L5) =
1

243

⇣
19
p
19� 28

⌘
⇡3 . (5.12)

The counting of test configurations was performed already in section 2.5 to illustrate

the general procedure; it was concluded there that none are necessary. Thus (5.10) gives

rise to a Calabi–Yau threefold.
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• we also tried the original Laufer’s singularity

difficult to prove it’s really K-stable

but only one U(1) symmetry;

tentative superpotential:
same as above +

The anomalies turn out to be

aUV-L =
1

100

⇣
19
p
19 + 28

⌘
N2 +

1064
p
19� 5857

3000
,

cUV-L =
1

100

⇣
19
p
19 + 28

⌘
N2 +

2003
p
19� 10714

6000
;

(5.17)

this a is in agreement with (5.12) via (2.16).

5.3 Laufer’s theory

We now turn to the Laufer singularity

x2 + y3 + z2t+ yt3 = 0 . (5.18)

The quiver was first constructed in [15], and has appeared recently in physics in [19,55].

It has only one C⇤ action, which is given by the charge matrix

(9, 6, 7, 4) . (5.19)

Given that it is complexity two, we cannot apply the method reviewed in section 2.5.

It is easy however to find some test configurations by hand. In the notation (2.22):

�1 = (1, 0, 0, 0) , �2 = (0, 6, 1,�2) , �3 = (0, 0, 1, 0) , �4 = (0, 0,�1, 2) .

(5.20)

These make (5.18) degenerate respectively to y3 + z2t + yt3 = 0, x2 + z2t + yt3 = 0,

x2 + y3 + yt3 = 0, and finally to x2 + y3 + z2t = 0, which is our old friend (5.10).

The Futaki is positive for all four: from (2.25) we obtain that Fut/a0 is respectively
19
27 ,

23
7 ,

1
3 ,

1
21 . Even though we do not have the general method of section 2.5 to definitely

make sure our test configurations are all that exist, this seems to be the case; we thus

conclude the Laufer singularity (5.18) is a Calabi–Yau threefold.20

The matrix factorization and quiver for Laufer, similar to (5.13), is discussed at

length in [15, 55]. The quiver is the one in [19, Fig. 6]; it is similar to the one in figure

8, but without the adjoint e0. The gauge invariants are still the ones in (5.16). The

20A similar analysis can be performed for the generalization x

2 + y

3 + z

2
t + t

2n+1
y = 0; however,

already for �4 the Futaki is negative for n > 1. It would be easy to repeat the calculation (also for
the NCCR) for the model in [15, 85]. The latter is a cD4 threefold p(x, y, z, t; �) = 0 with an isolated
singularity at the origin, and it depends on a complex modulus �. When � = 0, it coincides with
Laufer with n = 1. However, for � 6= 0 it is complexity-three, and we cannot use the method of section
2.5 to check K-stability.
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Conclusions
•Progress in finding conical CYs [K-stability]…

• What about the CYs without an associated quiver? 

• K-stability: possible physical interpretation 

we tried alternative mathematical procedures, 
but they failed to provide a CFT [‘Maximal modification algebras’]

Maybe lessons for CFTs more generally?

… and in how to find their duals [MF]

Proof of concept: several examples exist where both techniques apply

[Collins, Xie, Yau ’16; 
Benvenuti, Giacomelli ‘16]

[Fazzi, AT ‘19]


