Yerevan

 SQS-2019
Evaluating the Chern-Simons Path Integral on a Genral Seifert Manifold

George Thompson
(Matthias Blau, Keita Mady \& K. Narain)
ICTP, arXiv: 1812.10966

August 27, 2019

Witten's Chern-Simons Invariant

- P be a (trivial) principal G fibre bundle over M. Denote the space of connections by \mathbb{A}.
- The action at level k is

$$
I(\mathbb{A})=i \frac{k}{4 \pi} \int_{M} \operatorname{Tr}\left(\mathbb{A} \wedge d \mathbb{A}+\frac{2}{3} \mathbb{A} \wedge \mathbb{A} \wedge \mathbb{A}\right)
$$

and Tr is normalized so that under large gauge transformations $I\left(\mathbb{A}^{g}\right)=I(\mathbb{A})+2 \pi i n$.

- The invariant

$$
Z_{k, G}[M]=\int_{\mathbb{A}} \exp (I(\mathbb{A}))
$$

On any Seifert 3-Manifold The Answer Is Known

- Lawrence and Rozansky, Rozansky, Mariño, Hansen, Hansen and Takata find,
$\sum_{\mathbf{n}_{0} \in \mathbb{Z}}\left(\prod_{i=1}^{N} \sum_{\mathbf{n}_{i}=1}^{a_{i}-1}\right) \int_{\mathfrak{t}} d \phi \sqrt{T_{M}\left(\phi ; \mathbf{n}_{i}\right)} . \exp \left(4 \pi i \Phi\left(\mathcal{L}_{M}\right)+i k_{\mathfrak{g}} I(\phi, \mathbf{n})\right)$
where $k_{\mathfrak{g}}=k+c_{\mathfrak{g}}$ where $c_{\mathfrak{g}}$ is the dual Coxeter number for the group G.

$$
\Phi\left(\mathcal{L}_{M}\right)=-\frac{\operatorname{dim} G}{48}\left(c_{1}\left(\mathcal{L}_{M}\right)-12 \sum_{i=1}^{N} s\left(b_{i}, a_{i}\right)\right)
$$

So Why Bother?

- The formula come from an application of the Reshetikhin-Turaev invariant which combines quantum groups and surgery presentations of the manifold. (CFT and surgery).
- But this is a gauge theory problem and it should be doable. The pay-off would be an application to other theories with no known CFT interpretation.
- There is also an extra benefit in that we get a concrete relationship with the intersection pairings on certain moduli spaces of vector bundles on Riemann surface with marked points.

Here Goes

- Going to be very brief with precious few details... first the Seifert spaces themselves.

Orbifolds \& Line V-bundles

- Σ a smooth genus g Riemann surface with N orbifold points p_{i} : locally around each point the neighborhood is $D^{2} / \mathbb{Z}_{a_{i}}$

$$
z \longrightarrow \zeta . z, \quad \zeta=\exp \left(2 \pi i / a_{i}\right)
$$

- We consider V-line bundles on Σ with the local description $D^{2} \times \mathbb{C} / \mathbb{Z}_{a_{i}}$ with the action on local coordinates as

$$
(z, s) \longrightarrow\left(\zeta . z, \zeta^{b_{i}} \cdot s\right)
$$

with integers $0 \leq b_{i}<a_{i}$.

- The first Chern class of such a line V-bundle is (in \mathbb{Q})

$$
c_{1}(\mathcal{L})=\operatorname{deg}(\mathcal{L})+\sum_{i=1}^{N} \frac{b_{i}}{a_{i}}
$$

The underlying manifolds of interest

- $M\left[\operatorname{deg}(\mathcal{L}), g,\left(a_{i}, b_{i}\right)\right]=S(\mathcal{L})$

The circle V -bundle associated to the line V -bundle \mathcal{L}.

- Such an M is smooth if $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$ for $i=1, \ldots, N$.
- These are integral homology spheres if $g=0$ and $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1, \forall i \neq j$.

Structure on M

- Let κ be a connection on M (a globally defined real 1-form) and ξ the fundamental vector field on M,

$$
\iota_{\xi} \kappa=1 \quad L_{\xi} \kappa=0
$$

Locally, $\kappa=d \theta+\beta(\theta$ a fibre direction $0 \leq \theta<1)$.

Back to the Gauge Theory

- We will take advantage of the principal bundle structure on M to simplify our lives ...

Make CS look like Yang-Mills on Σ

- Use the $U(1)$ bundle structure and the associated nowhere vanishing vector field to decompose connections as

$$
\mathbb{A}=A+\kappa \phi, \quad \iota_{\xi} A=0
$$

- The Chern-Simons action is now

$$
I(A, \phi)=i \frac{k}{4 \pi} \int_{M}\left(\kappa \operatorname{Tr} A \iota_{\kappa} d A+\kappa \operatorname{Tr} \phi F_{A}+\kappa d \kappa \operatorname{Tr} \phi^{2}\right)
$$

and this has some resemblance to the YM action.

Gauge Choices

- Impose the gauge condition that ϕ is constant in the fibre direction,

$$
\iota_{\xi} \cdot d \phi=0
$$

So ϕ is a $U(1)$ invariant section of ad (P). Equivalently it is a section of the trivial adjoint V-bundle V over Σ.

- Gauge transformations which also do not depend on the fibre still act, $\phi \longrightarrow g^{-1} . \phi . g$
- Decompose the Lie algebra as $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{k}$ with \mathfrak{t} the Cartan sub-algebra and set $\phi^{\mathfrak{k}}=0$. However, there is a price to be paid... (more on this soon).

So now where are we?

- The action is

$$
I(A, \phi)=i \frac{k}{4 \pi} \int_{M} \operatorname{Tr}\left(\kappa A L_{\phi} A+\kappa \phi \cdot F_{A}^{\mathfrak{t}}+\kappa d \kappa \phi^{2}\right)
$$

together with a ghost action

$$
\int_{M} \operatorname{Tr}\left(\bar{c} * L_{\phi} c\right)
$$

- Integrating out the charged A and the ghosts (they are also charged) leaves us with

$$
\operatorname{det}\left(L_{\phi}\right)^{\Omega^{0}(\Sigma, \mathfrak{k})} / \operatorname{det}\left(L_{\phi}\right)^{\Omega^{1}(\Sigma, \mathfrak{k}) / 2}
$$

So We are left with an Abelian Theory on Σ

- The path integral of ineterst is

$$
\int_{(A, \phi)} \frac{\operatorname{det}\left(L_{\phi}\right)^{\Omega^{0}(\Sigma, \mathfrak{k})}}{\operatorname{det}\left(L_{\phi}\right)^{\Omega^{1}(\Sigma, \mathfrak{k}) / 2}} \exp (I(A, \phi))
$$

- The path integral over A imposes the condition that

$$
d_{\Sigma} \phi=0 \quad \text { so that } \phi \text { is constant }
$$

- On Abelianizing $\phi^{\mathfrak{g}} \longrightarrow \phi^{\mathfrak{k}}$ you pay a price, namely: even though the bundle you started with was trivial you have 'liberated' nontrivial abelian bundles. Which ones? In this case all possible line V-bundles.

Correct Derivation

- So the previous is an outline of a derivation. To turn it into a derviation we need to substitute

$$
\mathbb{A} \rightarrow \mathbb{A}+\mathbb{A}_{B}
$$

where \mathbb{A}_{B} is a background field taking into account the non-trivial bundles that we should sum over.

Correct Derivation Continued

- The ratio determinants that we needed to calcualte are of operators that are sections of non-trivial bundles. The ratio can be evaluated by the Holomorphic Lefschetz fixed point formula (which goes into the Kawasaki index theorem).
- And that is it.

The Answer Explained

- Recall the answer is

$$
\sum_{\mathbf{n}_{0} \in \mathbb{Z}}\left(\prod_{i=1}^{N} \sum_{\mathbf{n}_{i}=1}^{a_{i}-1}\right) \int_{\mathfrak{t}} d \phi \sqrt{T_{M}\left(\phi ; \mathbf{n}_{i}\right)} \cdot \exp \left(4 \pi i \Phi\left(\mathcal{L}_{M}\right)+i k_{\mathfrak{g}} I(\phi, \mathbf{n})\right)
$$

- The \mathbf{n}_{i} label the possible non-trivial line V-bundles at the i'th orbifold point. \mathbf{n}_{0} is the possible line bundle at some regular point.
- $\sqrt{T_{M}\left(\phi ; \mathbf{n}_{i}\right)}$ is the absolute value of the ratio of determinants, while $\exp \left(4 \pi i \Phi\left(\mathcal{L}_{M}\right)\right)$ is its phase.

Thanks To:

- Everyone who helped in the organisation of this meeting.

