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Let us consider integrable systems of ODEs of the form

dui
dt

=
∑
j,k

Cijk uj uk, i, j, k = 1, . . . , n, (1)

where Cijk = Cikj are constants.

The main feature of integrable systems of the form (1) is
the existence of infinitesimal polynomial symmetries and first
integrals.

Another evidence of the integrability is the absent of
moveable singularities in solutions for complex t. The so-called
Painlevé approach is based on this assumption. We use the
Kowalevski-Lyapunov test, which is one of incarnations of the
Painlevé approach.



Infinitesimal symmetries and first integrals

Suppose we have a dynamical system

d ui

dt
= Fi(u

1, . . . , un), i = 1, . . . , n . (2)

Definition. The dynamical system

d ui

dτ
= Gi(u

1, . . . , un), i = 1, . . . , n (3)

is called (infinitesimal) symmetry for (2) iff (2) and (3) are
compatible.

The compatibility means that

XY − Y X = 0,

where X =
∑
Fi

∂
∂ui
, Y =

∑
Gi

∂
∂ui
.



Definition. The function I(u1, . . . , un) is called first integral for
the system (2) iff

X(I) = 0.

Kowalevski-Lyapunov integrability test

Systems of the form (1) possess special Kowalevski
solutions of the form

ui(t) =
zi
t
,

where
−zi =

∑
j,k

Cijk zj zk.



For any Kowalevski solution consider a formal solution of
the form

ui =
zi
t

+ ε pi t
s + · · ·

The numbers pi are defined from the system of linear equations

s pi =
∑
j,k

Cijk (pjzk + pkzj).

We see that the Kowalevski exponents s are eigen-values and
(p1, . . . pn) are corresponding eigen-vectors of a matrix defined
by the Kowalevski solution.

Definition. System (1) satisfies the Kowalevski-Lyapunov
integrability test iff for any Kowalevski solution all exponents
are integers.



Two-component case

Consider systems of the form{
ut = α1u

2 + α2uv + α3v
2,

vt = β1v
2 + β2uv + β3u

2.
(4)

Two systems related to each other by a linear transformation of
the form

û = r1u+ r2v , v̂ = r3u+ r4v , r1r4 − r2r3 6= 0 (5)

are called equivalent.
Consider polynomial first integrals of systems (4).

Lemma 1. Let I be a first integral of a system (4). Then for
any N {

uτ = IN (α1u
2 + α2uv + α3v

2),

vτ = IN (β1v
2 + β2uv + β3u

2)

is a symmetry of (4).



Any polynomial integral can be written in the form

I =

m∏
i=1

(u− µiv)ki , ki ∈ N.

Proposition. m 6 3.
Consider the case m = 3. Using transformations (5), we

send µi to 0, 1 and ∞. For such a normalization we have

I = uk1(u− v)k2vk3 , (6)

where ki are natural numbers which are defined up to the
permutations. Without loss of generality we may assume that
k1, k2, k3 have no a non-trivial common devisor.

Proposition. Suppose that a system (4) has an integral
(6). Then it is given (up to a scaling u→ µu, v → µv) by{

ut = −k3 u2 + (k2 + k3)uv

vt = −k1 v2 + (k1 + k2)uv.
(7)



Theorem. The Kowalevski exponents for (7) have the form

s1 =
k2 + k3
k1

, s2 =
k1 + k3
k2

, s3 =
k1 + k2
k3

. (8)

The system passes through the Kowalevski-Lyapunov test
iff these numbers are natural. The natural numbers si satisfy
the identity ∑

i

1

si + 1
= 1

well known in elementary geometry.
Lemma 2. There exist only three admissible sets k1, k2, k3.

They are:
Case 1. k1 = k2 = k3 = 1;
Case 2. k1 = k3 = 1, k2 = 2;
Case 3. k1 = 1, k2 = 2, k3 = 3.
Remark. In the case 1 the symmetry orders are 2 + 3m,

for the case 2 they are 2 + 4m and in the case 3 we get 2 + 6m.



Non-abelian ODEs
c It is easy to see that all components of the matrix uv − vu are
first integrals for the non-abelian system.

In the case m = 1 we have a system of two ODEs which can
be written in the Hamiltonian form

ut = −∂H
∂v

, vt =
∂H

∂u

with the Hamiltonian

H =
1

3
u3 − 1

3
v3 − cuv + bu− av.



For generic a, b, c the relation H = const is an elliptic curve
and the dynamical system describes the motion of its point.

In the case of arbitrary m the system remains to be
Hamiltonian with the Hamiltonian

H = tr

(
1

3
u3 − 1

3
v3 − cuv + bu− av

)
and non-abelian constant Poisson bracket.

The homogeneous non-abelian system possesses the
following Lax (L,A)-pair

L =

 1 0 0
0 ε 0
0 0 ε2

 λ+

 0 3εu 3v
v 0 (ε− 1)u
u (2ε+ 1)v 0

 ,

A = −1

3

 ε2 0 0
0 ε 0
0 0 1

 λ+
1

3

 0 3ε2u 3v
εv 0 (ε+ 2)u
u (1− ε)v 0


where

ε2 + ε+ 1 = 0.



Proposition 1. The Lax equation

L̄t = [A, L̄],

where L̄ = λL+ λ cP + aQ+ bR,

P =

 ε+ 2 0 0
0 −2ε− 1 0
0 0 ε− 1

 ,

Q =

 0 3(ε+ 2) 0
0 0 −3

ε− 1 0 0

 ,

R =

 0 0 3(1− ε)
2ε+ 1 0 0

0 −3ε 0


is equivalent to the non-abelian system (??).



Let us consider “ODE systems” of the form

dxα
dt

= Fα(x), x = (x1, ..., xN ), (9)

where xi(t) are m×m matrices, Fα are (non-commutative)
polynomials with constant scalar coefficients. As usual, a
symmetry is defined as an equation

dxα
dτ

= Gα(x), (10)

compatible with (9).

We call system (9) integrable if it possesses infinitely many
linearly independent symmetries.



The simplest class of such non-abelian systems are quadratic
systems of the formut = α1uu+ α2u v + α3v u+ α4v v,

vt = β1v v + β2v u+ β3u v + β4uu.
(11)

Definition. Two systems of the form (11) are called
equivalent if they are related by a transformation (5) or by an
involution ? (the “transposition”) defined by the formulas

u? = u , v? = v , (a b)? = b? a?. (12)

Some experiments with non-triangular systems (11) having
symmetries of a small degree have been made in paper [1]. One
of the results is:



Theorem. Any non-triangular equation (11) possessing a
symmetry of the form

uτ = γ1uuu+ γ2uu v + γ3u v u+ γ4v u u+

γ5u v v + γ6v u v + γ7v v u+ γ8v v v,

vτ = δ1uuu+ δ2uu v + δ3u v u+ δ4v u u+

δ5u v v + δ6v u v + δ7v v u+ δ8v v v

is equivalent to one of the following:

a) :

{
ut = uu− u v,
vt = v v − u v + v u,

b) :

{
ut = u v,

vt = v u,

c) :

{
ut = uu− u v,
vt = v v − u v,

d) :

{
ut = −u v,
vt = v v + u v − v u,

e) :

{
ut = u v − v u,
vt = uu+ u v − v u,

f) :

{
ut = v v,

vt = uu.



It is a remarkable fact that a requirement of the existence
of just one cubic symmetry selects a finite list of equations with
no free parameters (or more precisely, all possible parameters
can be removed by linear transformations (5)).

The five non–equivalent equations with quartic symmetries
are given by{

ut = −u v,
vt = v v + u v,

{
ut = −v u,
vt = v v + u v,

{
ut = uu− 2v u,

vt = v v − 2v u,{
ut = uu− u v − 2v u,

vt = v v − v u− 2u v,
g) :

{
ut = uu− 2u v,

vt = v v + 4v u.

Using computer algebra system CRACK, T.Wolf verified that it
is a complete list of non–triangular systems that have quartic
(but have no cubic) symmetries.



Possibly equatiosn a) and g) have only one symmetry while
the other 9 have infinitely many.

Attempts to describe systems (11) with fifth order
symmetries by a straightforward computation looks rather
hopeless. One of the reasons is that the coefficients of (11) turn
out to be related by algebraic relations. Even if they can be
resolved, the coefficients very often becomes algebraic numbers.

Example. The non-abelian systemut = 11
√

7uu− 7
√

7 v v,

vt = −4
√

7 v u− 4
√

7u v + 30uu

has a symmetry of fifth order.



We say that the system (11) is a non-abelization of a
system (7) if in the abelian limit (11) coincides with (7).

New state of the classification problem.

Let us assume the the abelian limit of the system (11):
1 has a polynimial integral I (and therefore possesses an
ibfinite sequance of polynomial symmetries);
2 satisfies the Kowalevski-Lyapunov test.

We also assume that (11) has symmetries such that their
abelean limits coincides with symmetries described in Item 1.



Consider the abelian systems{
ut = −k3 u2 + (k2 + k3)uv

vt = −k1 v2 + (k1 + k2)uv,

These systems have first integral

I = uk1(u− v)k2vk3 .

The following three possibilities follows from the
Kowalevski-Lyapunov test:

Case 1. k1 = k2 = k3 = 1;
Case 2. k1 = k3 = 1, k2 = 2;
Case 3. k1 = 1, k2 = 2, k3 = 3.



It is clear that any non-abelization this system has the form{
ut = −k3 u2 + (k2 + k3)uv + α(uv − vu)

vt = −k1 v2 + (k1 + k2) vu+ β(vu− uv),
(13)

where α and β are some constants.
Involution (12) transforms α and β in (13) as follows:

α→ −α− k2 − k3, β → −β − k2 − k1.

A non-abelization is called integrable if it has symmetries
whose abelian limit coincides with the symmetries of (7).



In the case k1 = k2 = k3 = 1 the abelian system (7) has a fifth
order symmetry.

Theorem 1. In the case k1 = k2 = k3 = 1 there exist the
following non-equivalent integrable non-abelizations:

1. α = −1, β = −1;
2. α = 0, β = −1;
3. α = 0, β = −2;
4. α = 0, β = 0;
5. α = 0, β = −3.

Remark. The system 1 is equivalent to the system from
Example 1. The systems 4 and 5 are new.



In the case k1 = k3 = 1, k2 = 2 the abelian system (7) has a
symmetry of order 6.

Theorem 2. In the case k1 = k3 = 1, k2 = 2 there exist the
following non-equivalent integrable non-abelizations:

1. α = −1, β = −1;
2. α = 0, β = −2;
3. α = 0, β = 0;
4. α = 0, β = −4.

Remark. The systems 2, 3 and 4 are new.



In the case k1 = 1, k2 = 2, k3 = 3 the abelian system (7)
has a symmetry of order 8.

Theorem 3. In the case k1 = 1, k2 = 2, k3 = 3 there exist
the following non-equivalent integrable non-abelizations:

1. α = −2, β = 0;
2. α = −4, β = 0;
3. α = −6, β = 0;
4. α = 0, β = −6.
5. α = 0, β = 0.

Remark. All these systems are new.



Consider the case of abelian systems with a two-root first
integral. By a linear transformation it can be reduced to

I = uk1vk2 .

The Kowalevskaya-Lyapunov test leads to k1 = k2 = 1. The
orders of symmetries are 2 + 2n, i.e. the simplest symmetry has
order 4. The possible non-abelizations are given by{

ut = −b2 u2 + a2 uv + α(uv − vu)

vt = −a2 v2 + b2 vu+ β(vu− uv).
(14)

Theorem 4. There exist the following non-triangular
integrable non-equaivalent systems of the form (14):

1. a2 = b2 = 1, α = 0, β = 0;
2. a2 = b2 = 1, α = 0, β = −2;
3. a2 = b2 = 1, α = 0, β = −1;
4. a2 = 1, b2 = 0, α = 0, β = 1.



In the case of abelian systems with a one-root first integral
we have

I = u.

Their non-abelizataion is given by{
ut = α(uv − vu)
vt = b1 v

2 + b2 vu+ b3u
2 + β(vu− uv).

(15)

The simplest symmetry has order 3.

Theorem 5. There exist the following integrable
non-triangular non-equivalent systems (15):

1. b1 = b2 = 1, b3 = 0, α = 1, β = 0;
2. b1 = b2 = 0, b3 = 1, α = 1, β = 0.

Conjecture. Theorems 1-5 give a complete list of
integrable systems (11).



Triangular Laurent transformations.

Some of systems (11) admit invertible Laurent
transformations. Consider systems of the form{

ut = −p u2 + q uv
vt = −a v2 + b vu+ c uv.

(16)

It can be easily verified that the composition of the
transformation

u = ū, v = ū−1v̄ū

and the involution (12) maps (16) to{
ut = −p u2 + q uv
vt = −a v2 + (c− p) vu+ (b+ p)uv.

(17)

Thus we have an involution τ : (16)→ (17) on the set of
systems of the form (16).



In the case of Theorem 1 τ : β 7→ −β − 3 and therefore the
systems 2,3 and 4,5 are dual with respect to τ .

In the case of Theorem 2 the involution τ corresponds to
β 7→ −β − 4. The cases 3,4 are dual and the case 2 is the
self-dual.

In the case of Theorem 3 the systems 1,2 and 4,5 are dual
and 3 is self-dual.

In the case of Theorem 4 the systems 1,2 and 4,5 are dual
and 3 is self-dual.

The first system of Theorem 5 can be reduced to a
triangular system {

ut = 0
vt = v2 + vu

by a Laurent triangular transformation The latter system can
be easily integrated in quadratures.



The second system of Theorem 5 implies

vtt = [vt, v]. (18)

In the matrix case this equation can be reduce to a linear
equation by the following way. If Y is a matrix solution of the
equation

Yt = Y (c1t+ c2),

where ci are arbitrary constant matrices, then v = −YtY −1 is a
general solution of (18).


