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Extension of Poincaré Algebra

Space-Time symmetry.
* - % The Lorentz and Poincaré groups were discovered during the
investigating of the symmetries of the Maxwell equations

V-E=0, V-B=0,
Vxﬁz_laj, Vngl‘lE
c Ot c Ot

invariant with respect to the transformations of space-time
coordinates
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Extension of Poincaré Algebra

The Poincaré algebra L(P)

[PN7 PV] = 0’
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Extension of Poincaré Algebra

% - % |t have been found that The Maxwell equations are invariant
with respect to the conformal group H. Bateman, "The
Transformation of the Electrodynamics Equations” . Proc. of
London Math.Soc.. 8 (1910) 223-264.

* - % [ he other important symmetry exhibited by Electrodynamic
Equations is the gauge symmetry

Ay — Ay +0up, Fu — Fu, Action — Action

The Faraday-Maxwell equations were the indispensable source of
fundamental symmetries !
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Extension of Poincaré Algebra

In Quantum Field Theory

One of the main requirement imposed on quantum field theories is
their invariance with respect to the Poincaré group P.

It is of great interest to study extended Poincaré algebras and
groups, the invariance with respect to which may impose
limitations on the form of the Fundamental interactions and
became the guiding principle in formulating theories beyond the
Standard Model.
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Extension of Poincaré Algebra

Supersymmetry transformation

EXTENSION OF THE ALGEBRA OF POINCARE GROUP GENERATORS AND VIOLATION OF P IN-

Yu.A. Gol'fand and E.P. Likhtman

Physics Institute, USSR Academy of Sciences

Submitted 10 March 1971

ZhETF Pis. Red. 13, No. B, 452 - 455 (20 April 1971)

One of the main requirements Amposed on quantum fleld theory is invariance
of the theory to the Poincare group [1]. However, only a fraction of the inter-
actions satisfying this requirement is realized in nature. It is possible that
these interactions, unlike others, have a higher degree of symmetry. is
therefore of interest to study different algebras and groups, the invariance
with respect to which imposes )imlbablons on the form of the elementary parti-
cle interaction. present paper we propose, in constructing the Hamil-
toﬂian fopmulation of the quantum !‘Seld theory, to_use as the basis a special
algel N 1s an extension of the algebra 7or the Poincare group gen-
erate o purpose of the paper is to find such

s in w‘licn the Hamiltonian operator describes the (nteraction of quantized

ields
he extension of the algebra 7 is carried out in the following manner:
we add to the generators P, and M, the bispiror generators W, and W, which
we shall call the generators of spinor translations. In order to obtain the
algebra £, 1t 1s necessary to find the Lorentz-invariant form of the permuta-
tion relations between the translation generators. In order not to violate
subsequently the connection between the spin and statistics, we shall consider
anticommutators of the operators W, and Wy. A generalization of the Jacobi

1dentities imposes stringent limitations on the form of the posaible commuta-
We confine ourselves to con-

tion relations between the algebra operators.
sideration of only those algebras X, in which Lhere are no subalgebras Q such
that ¥ < Q and ° # Q. This cholce is governed by the fact that the remain-
ing algebras R are obtained by further extending the algebras £, and the
fleld theories corresponding to them will have a still higher degree of sym-
metry.

n investigation of :hc albegras 2 has shown that upon spatial inversion
they do not go over into themse:
of the alcebra. s a result, in a fleld theory
an algebra, the parity should not be conserved'), a
servation is completely determined by the algebra eets
discuss one of the algebras

Dy Mol = 'W,a"u * B - Bk, B Ml (R R -
(1a)

that 1s invariant sgainst su

We shall stop to

vt
(M PAL = (80P =80 R0 My, vl. = p,,,,Lv; W=wy,.

(1b)

W, W), =y P (W W, = 0 (B, WL =
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Extension of Poincaré Algebra

We propose to formulate a quantum field theory based on algebra
La(P) = L(P) ® L(G), an extension of the Poincaré L(P) and
Lee L(G) algebras with infinite set of tensor generators L)1+s.

....................... A=(0,1,2,3) s=0,1,2,...
where L, € G and the extended current algebra is defined as
[La> L] = ifabeLe
[Las Ly'] = ifabe L2

[Lé\l ) Ll))\ﬂ = Z'fabcLé\M2
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Extension of Poincaré Algebra

We add to the generators P, and M,,, the new generators L)1+s
The extension of the Poincaré algebra Lg(P) is:

[P, PY] =0,
(MM, P =i(n™ P — ¥ PY),
(AP M/\p] = i(nH° MY — 77“)‘ MVP + 771//\ MHP — VP M“)‘),

[PN) Lc)z\lm)\s] - O’
[MMV, L()I\l...)\s] _ ,L'(,r/)\ll/LgAQ...AS 4o+ _n)\suLél...)\s_lu)’

(Lo, LN = i LN (5 =0,1,2, ).

The generators L)1*s carry internal charges a and high helicities .
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Extension of Poincaré Algebra

Py=—iofP)  Lyvtn=attatn Ly [Lay L] = ifaseLe
[PH’LZ/lv---vlJ'n] = _i((SMNlLZLQ,-.-7Mn + .+ 5””"@51""’“"*1)

yeooy I yeee o geeey
(Lt ok, Ly ] = fape Lt

E.A. lvanov, V.I. Ogievetsky
Lett.Math.Phys. 1 (1976) 309-313
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Extension of Poincaré Algebra

Supersymmetric Extension of Lg(P)
[P*, P"] =0,
M, PV = i PR =y PY),
[MH, M) = (0 M MO g MEP e M),

[P*, Ly™] =0,

[P¥, QL] =0

[]\4#1/7 L?I\l.“)\s] — Z-(n)\lz/L;aL)\g...)\s . ,rl)\l,uLZAQ...)\s 4o+ ,',]ASVLél.‘.AS
) 7 ) 1

M, Q] = S Q)0 A = 51,7

L)\l.../\n L/\n+1-~~)\s o Al As _

[L, Ly | = ifape L) , s=0,1,2,...

{Qh, @4} =-209("C)apPy, i=1,..,N
(Lo, Q4] = 0.
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Extension of Poincaré Algebra

Automorphism of the extended current algebra

Ly, — Lg
Ly — L)'+ PML,
Ly — Ly + PMLo2 4 P Lot 4+ PM PR L,

ME = MP,

The example how the gauge transformation works

Ly + PYLa, Ly + P2Ly] =
= i fape (L2 4+ PM L2 + PA2L2 4 pMpreL)
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Extension of Poincaré Algebra

The algebra Lg(P) is gauge invariant:
Lx\l...)\s N L)\l...)\s +
a a
+ Y PMLy e 4 Yy PP LA 4 PYLPY L,
1 2
P - P
M"Y —  M*,

These generators are transforming similar to the Abelian tensor
gauge field.

This is “off-shell” symmetry, the operator P2 has any value.

All representations of the Lél'“)‘S, s =1,2,... are defined modulo
longitudinal terms.
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Extension of Poincaré Algebra

This extended authomorphism of the algebra is a property intrinsic
to the algebroids
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Extension of Poincaré Algebra

The reducible representation of Lg(P) has the following form:

Pt — R,
9 9 9 9
M — et Ly Ly ger L v
W o, ~F ) T g, — ¢ e

L(’;l“)‘s —eM.eM® L,
The gauge transformation of Lél""\s induces the transformation
et — et + akt,

which is a gauge transformation of the photon polarisation vector.
The generators L)1 are indeed gauge generators.
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Extension of Poincaré Algebra

What is the helicity content of the L)1*s operators ?

The Pauli-Lubanski operators W* can be used to investigate the
helicity content

1
WH = 5guw\p]\/[y)\pp
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Extension of Poincaré Algebra

The Longitudinal representation

it is trivial representation as far as the helicity content of this
representation is empty

(W, LIM-2] =0
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Extension of Poincaré Algebra

The Transversal representation
the following commutation relation take place with L,
(W, LY = —iurp Lo Py
for massless states P, = (w,0,0,w) WH" =w(—h, T— h),
h=Js, © =K1 —Jo, m =Ko+ Ji,
defining LY = L £ L§, we shall get
[h, LY] = £LY,

therefore the helicity content is h = (+1,—1)
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Extension of Poincaré Algebra

The commutation relation with second level generator L)1*2 is

(Wis Lyn] = —iepvpo Loy + €pnpo L) Po
defining
LYy = Ly + 2Ly — L,
LO = L) — 2iL% — L,
b =L% + L
we shall get

[hv L(:lti] =12 Laii? [ha Lif] =0,

therefore the helicity content is h = (+2,0,—-2)
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Extension of Poincaré Algebra

The rank-s generators

(LFF o L)
carry the helicities:
h=(+858—2, .. ,—S+2,—5)

in total s + 1 states

G.S. J.Phys.A 47 (2014) 055204
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Extension of Poincaré Algebra

The explicit Transversal representation of the generators LjAl“)‘S

S
Lj)‘l"')‘s = H (§k>‘" + ei‘Pei" + e_we’l”) @& L,

n=1
where the helicity vectors are e = (e7 Fie})/2,
L, € SU(N)
k, is the momentum vector k> =0, k-ex =0

the £ and ¢ are Wigner variables on the cylinder

peSl ¢eR.
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Extension of Poincaré Algebra

The La*1H* are high helicity generators

LM =

— (eiwej\:....ej\ﬁ LeTisPeM A 4 §Sk/\1...k’\s) ® Lg,
indeed the helicity operator has the form

.0
h——Z%

“Fs carries the helicities

and the operator L

h=%4s,4(s—2),.c.y

we have also the transversality properties

ki Lyt =0, k* =0, kte, =0
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Extension of Poincaré Algebra

Using transversal representation one can calculate Killing forms:

Lg: tr(LaLp) = Oqp,

Lg(P): tr(Lél"')‘”LZ‘"“”“’\Qs) = 5abs!(77/\1)‘277/\3>‘4...77)‘23‘1)‘25 + per)

where

v = ke FME2 + R
kk ’

ka2 =0

_1p2
tr(LyAn Ly ) = 6y, / Mo 1O e,y
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

The Yang-Mills theory is defined using Killing form on the Lee
algebra L(G)
t?“(LaLb) = 5ab

and the Lagrangian is
1
L= _ZtT(Gquw)

where

G = LaGly = 04y (@) — 0, Au(w) — iglAu(2) Au(a)]
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

The Yang-Mills non-Abelian tensor gauge fields
=1
=> = Aixa (@) Lyvs = A%Lg + A%\ Lo +

The field strength tensor
Guv(x,e) = 0, A, (z,e) — 0, Au(x,e) —iglAu(z, e) Ay (xz,e)]

and the Lagrangian density is

L(x)=tr G (z,e)G,(z,e) /Q’ e)G(z, e)e” T Ap(e)De)\.
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

In components the Lagrangian is

L=L1+Lot= — 4waG“

B G,uu)\ 779N 4GZVGGV AN + .

where the field strength tensors are:
GY, = 0,A%L—0,AY + gf Ab AL,
o = OuApy — O A+ gf*( Az Apy + AZ,\ AL ),
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

Helicity spectrum of the tensorgluons

+1
+2, 0

+3, +1, +1

+4, +2, +2, 0

45, +£3, 3, +£1, +1
16, +4, +4, +£2, £2, 0
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

a, aad’ C, Yy

Interaction Vertices of gluons and tensorgluons
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

Tree level scattering amplitudes of (n-2)-gluons and 2-tensorgluons
calculated using BCFW formalism.G.Georgiou and G.S. [JMP 2011.

M, (1%, i, ks, 75, nT) =

<ij >4 <<z'j>)2s—2

_ s =2 4.¢(4) ( pab
= 2 P
A ) s T e e

They reduce to the Parke-Taylor formula when s = 1.
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

The collinear behavior:

a

b
| > SplitT$E(ate, b) x MITG(..., P2 L),
A==+1

Miree( . ate b, L)

n—1

%

Antoniadis and Savvidy, Mod.Phys.Lett.(2012)
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

The splitting probabilities are:

ZQS.H — 5 2s+1
Pra(z) = Ci(G) (1- z)2s-1 + < z2s)1 ] ’
r — 2 2541
- 1 L2541
Prr(z) = C3(G) S Z] :
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

The quark and gluon splitting probabilities of Altarelli-Parisi:

1+ 22
1—2z’
_ )2
Pa(s) = Comt L=
P(z) = T(R)[Z*+(1-2)%,
1 24 (1—2)4

Paa(z) = CaG) 21— 2) + 2(1—z) - 2(1-2)]’

Py(z) = C2(R)

where Cy(G) = N, Cy(R) = 2= T(R) = L for the SU(N)
groups.
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

1
h _ o —
Pl = e T —apwie T ho+hetha ==L

The formula describes all known splitting probabilities found earlier
in QFT and the generalised Yang-Mills theory.

R. Kirschner, G.S.,Mod.Phys.Lett.A32(2017)1750121
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Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Extension of Yang-Mills Theory

Generalisation of DIGLAP evolution equations

q fldy y,t quJ( )+G(y7) qG’( )]
G(x,1) = ;,3 f; fij’ (v, )PGqJ( )+ Gy, ) Pac(%) + T(y,t) Por(%)

T(x,t) = 92 [} [G(y,t) Pra(2) +T(y,t) Pre(2)).

The af(t) is the running coupling constant (o = g%/47)

(0%

t:i
a(t) l+biat ’

where

bl = bquarks + bgluons + btensorgluons
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Tree and 1-loop amplitudes

Extension of Yang-Mills Theory

Asymptotic Freedom of Tensorgluons

Both calculations gave the identical result :

«
t) = ————
a() 1+bat ’
where
1252 — 1 —4ngT
by = 2=t (1287 = )C(G) —dnyT(R) )y

127

at s=1 it reproduces the Gross-Wilczek-Politzer result

Tensorgluons "accelerate” the asymptotic freedom !
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Extension of Yang-Mills Theory Tree and 1-loop amplitudes

Asymptotic Freedom of Tensorgluons

Generalisation of the YM effective action T'(A) gives 1-loop
effective action similar to G.S., Phys.Lett.B 1977

Summing the spectrum of the tensorgluons in external field

ko = (2n 4 14 2s)gH + ki

one can get
vim =Ty WH g9 L
2 4 AR p2 o 27
where now
1252 — 1
by = ——Cy(G
! 1or 26,
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Grand Unification
Tensorgluons

How the contribution of tensor-gluons changes the high energy
behavior of the coupling constants of the SM 7
The coupling constants evolve with scale as

: L o™ 2123
= g 111 —, 1= 1,4,9,
ai(M)  ai(p) T p
consider only the contribution of s = 2 tensor-bosons:
For the SU(3). x SU(2)r x U(1) group with its coupling
constants a3, a2 and aq and six quarks ny = 6 and SU(5)
unification group we will get

110 1
- O =-——4
om 3’ o

the solution of the system of equations (5) gives

M o« < 1 8 1 )
In— = — — = :
poo 58 \ae(p)  3as(p)

1
2bg = —b5b4, 2by
2
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Grand Unification
Tensorgluons

If one takes a;(Mz) =1/128 and as(Mz) = 1/10 one can get
that coupling constants have equal strength at energies of order

M ~ 4 x 10°GeV = 40 TeV,

it is much smaller than the previous GU scale M ~ 104GeV
the value of the weak angle remains intact :
) 1 5ag(My)
2 e
sin“ Oy = - + ————,
W69 a(My)

the coupling constant at the unification scale is of order
a(M) =0,01.
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Grand Unification
Tensorgluons

Summary

Asymptotic Freedom of Tensorgluons of spin s=1,2,.....

2.1 (126~ OH(G) — dngT(R) 4

Baym = —
4872

1

a 1

5 1|

% o
L.

PROTON ’ I y

0 56
Moy ~ 4 x 10*GeV/
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Grand Unification

Tensorgluons

Thank you!
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