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Foreword
Based on RP-1006, Fucito, Morales, Pacifici, RP-1103, RP-1601,
G. Poghosyan & RP-1602;
ongoing work: Functional relations for N = 2 SYM with gauge
group SU(3)
Motivated by
Alexei Zamolodchikov’s unpublished paper ”Generalized Mathieu
equation and Liouville TBA”-2000
& recent papers:
Alba Grassi, Jie Gu, Marcos Marino-arXiv:1908.07065
Davide Fioravanti & Daniele Gregory-arXiv:1908.08030
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The field content and action

A

λ ψ

φ

S =

∫
d4xd4θ=τtrΨ2

Scalar potential: V ∼ tr[φ, φ†]2
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Low energy effective action

Below Ψ includes only massless fields (i.e. those from the Cartan
of the gauge group)

Seff =

∫
d4xd4θ=F(Ψ)

F - the Seiberg Witten prepotential
In the case of SU(2)

F(Ψ) =
i

2π
Ψ2 log

2Ψ2

e3Λ2
− i

π

∞∑
k=1

Fk

(
Λ

Ψ

)4k

Ψ2

F1 = 1
2 , F2 = 5

16 , F3 = 3
4 , F4 = 1469

512 ,...
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Moduli space of instantons, ADHM
gauge group: U(N); instanton number: k ; V = Ck ; W = CN

ADHM equations:

[B1,B2] + IJ = 0;
[
B1,B

†
1

]
+
[
B2,B

†
2

]
+ II † − J†J = ζ

Equivalence relation: (Bi , I , J) ∼ (φBiφ
−1, φI , Jφ−1), φ ∈ U(k)

Global gauge trans. : (Bi , I , J)→ (Bi , Ig , g
−1J), g ∈ U(N)

Rotations of Euclidean space time: (z1, z2)→ (e iε1z1, e
iε1z2)

(Bi , I , J)→ (e iεiBi , I , e
iε1+iε2J),

V W

B1

B2

J

I
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The induced action

R.Flume, R.P., H.Storch ’arXiv:hep-th/0110240

Fk '
∫
M′k

e−dxω,

dx ≡ d + ix is an equivariant exterior derivative, ix denotes
contraction with the vector field x which generates the U(1)
subgroup of global gauge transformations selected by the choice of
”Higgs” expectation values 〈φ〉cl = diag(a1, . . . , aN).
ω is the differential one-form

ω = G (x , •)

G (•, •) is the natural induced metric on moduli space.
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Localization to the zero locus of the vector field x

The coefficient Fk may be deformed into

Fk (t) ≡
∫
M′k

e−
1
t

dxω

Compute

d

dt
Fk (t) = − 1

t2

∫
M′k

dx

(
ωe−

1
t

dxω
)

= − 1

t2

∫
M′k

d
(
ωe−

1
t

dxω
)
.

The saddle point approximation is exact! There are contributions
only from the points where x = 0. Unfortunately they are too
many: in fact union of sub-manifolds of dimensions 2Nk − 4
(c.f. dimM′k = 4Nk − 4)
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Incorporating space-time rotations

A wonderful way out: modify the vector field x incorporating
(Euclidean) space-time rotations (parametrized by ε1, ε2) with the
global gauge transformations (parametrized by the expectations
values a1, . . . , aN)

Zk (au, ε1, ε2) ≡
∫
Mk

e−dx̃ ω̃,

x̃ is the modified vector field and

ω̃ = G (x̃ , •)

Now we are lucky: the vector field x̃ has finitely many zeros!
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Generalized partition function

complete localization!

Zk (au, ε1, ε2) =
∑

i∈fixed points

1

detLx̃

∣∣∣∣∣∣
i

.

How this is related to SW prepotential? Introduce the partition
function Nekrasov ’arXiv:hep-th/0206161

Z (au, ε1, ε2, q) ≡ 1 +
∞∑

k=1

Zk (a, ε1, ε2)qk = e
1

ε1ε2
F(au ,ε1,ε2,q)

1
ε1ε2

is the ”volume factor” and F(au, 0, 0, q) coincides with the
instanton part of SW prepotential.
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N = 2 SYM in Ω bacground
From the point of view of the initial theory above modification
boils down to the consideration of the N = 2 SYM in a specific
background commonly referred as Ω-background. The two
parameters ε1, ε2 specifying the general Ω- background are
introduced in [Moor,Nekrasov,Shatashvili ’arXiv:hep-th/9712241], Losev,Nekrasov,Shatashvili

’arXiv:hep-th/9801061 to regularize the integrals over moduli space of
instantons.

It is clarified in Nekrasov ’arXiv:hep-th/0206161 how the partition function
in this background is related to the Seiberg-Witten
prepotential.
In the same paper:
calculation of the prepotential up to 5 instantons are
performed choosing h = ε1 = −ε2 and it was demonstrated
that at vanishing h one exactly recovers the results extracted
from the Seiberg-Witten curve.
AGT tells us that this case corresponds to c = 1 CFT if gauge
group is SU(2). For SU(N) we get c = N − 1
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Partition function with generic ε1, ε2

In Flume, R.P. ’arXiv:hep-th/0208176 a closed combinatorial formula which
allows to calculate the Nekrasov partition function for generic
ε1, ε2 was found. The partition function is represented as a
sum over arrays of Young diagrams with total number of
boxes equal to the number of instantons.

The partition function with generic ε1, ε2 is essential from
AGT duality point of view relating partition function to the
conformal blocks in 2d Conformal Field Theory Alday,Gaiotto,Tachikawa

’ arXiv:0906.3219 . ε1, ε2 parametrize the Virasoro central charge.
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Partition function with generic ε1 and ε2 = 0

In a parallel very interesting development Nekrasov and
Shatashvily in ’arXiv:0908.4052 show that when ε2 = 0 the
prepotential is related to the quantum integrable many body
systems.
In this case we are lead to the notion of ”quantum”
Seiberg-Witten curve R.P. ’arXiv:1006.4822.
Note one more point which to my opinion makes the
investigation of ε2 = 0 case even more interesting: namely,
due to above mentioned AGT we get relation to the
quasi-classical (c →∞) limit of conformal blocks, hence to
the semiclassical Liouville (or Toda, if rank is greater than 1)
field theory.
There is a link DSW → ODE. The latter coincides with the
one appearing in ODE/IM correspondence for the Liouville
with c = 25 (SU(2) case), A2 -Toda with c = 98 (SU(2)
case),...
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Linear quiver theory and CFT conformal blocks

a0,u

U(n)

a1,u

(a)

U(n)

ar ,u ar+1,u
∞

P0,u P1,u Pr,u Pr+1,u
0

α1ω1

1
α2ω1

z2

αrω1

zr

αr+1ω1

zr+1

(b)

Figure: (a) The quiver diagram for the conformal linear quiver U(n) gauge theory: r circles
stand for gauge multiplets; two squares represent n anti-fundamental (on the left edge) and
n fundamental (the right edge) hypermultiplets; the lines connecting adjacent circles are the
bi-fundamentals. (b) The AGT dual conformal block of the Toda field theory.
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Relation between couplings q and insertion points z

qα =
zα+1

zα
.

The masses of fundamental and anti-fundamental specify initial and final states:

p0u = ar+1,u − ār and pr+1,u = a0,u − ā1

the ”center of mass” quantities:

āi =
1

n

n∑
u=1

ai ,u

the parameters of vertical legs are:

αi = āi+1 − āi .

Toda central charge c = (n − 1)(1 + n(n + 1)Q2) where Q = b + 1/b. Dimensions
of primaries

h~p =
(n3 − n)Q2 − 2~p 2

4
.

special fields Vλω1 :

hλω1 =
λ(n − 1)

2

(
q − λ

n

)
.
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Partition function for pure SU(N) theory
Consider pure SU(N) theory without hypers in Ω-background. The instanton part
of partition function is given by [Nekrasov: arXiv:hep-th/0206161]

Zinst(~a, ε1, ε2, q) =
∑
~Y

Z~Y q|
~Y | ,

where sum runs over all N-tuples of Young diagrams ~Y = (Y1, · · · ,YN) , | ~Y | is the
total number all boxes, ~a = (a1, a2, · · · , aN) are VEV’s of adjoint scalar from N = 2
vector multiplet, ε1, ε2, as already mentioned, parametrize the Ω-background and
the instanton counting parameter q = exp 2πiτ , τ = i

g2 + θ
2π is the (complexified)

coupling constant. The coefficients Z~Y are factorized as

Z~Y =
N∏

i ,j=1

1

P(Yi , ai |Yj , aj )
,

Rubik Poghossian YerPhI, Armenia

Various facets of 2d/4d correspondemce



where the factor P(λ, a, µ, b) for arbitrary pair of Young diagrams λ, µ and
associated VEV parameters a, b explicitly are given by the formula
[FP: hep-th/0208176]

P(λ, a|µ, b) =∏
s∈λ

(a− b + ε1(1 + Lµ(s))− ε2Aλ(s))
∏
s∈µ

(a− b − ε1Lλ(s) + (1 + ε2Aλ(s)))

If one specifies location of a box s by its horizontal and vertical coordinates (i , j), so
that (1, 1) corresponds to the corner box, its leg length Lλ(s) and arm length Aλ(s)
with respect to the diagram λ (s does not necessarily belong to λ) are defined as

Aλ(s) = λi − j ; Lλ(s) = λ′j − i ,

where λi (λ′j ) is i-th column (j-th row) of diagram λ with convention that when i
exceeds the number of columns (j exceeds the number of rows) of λ, one simply
sets λi = 0 (λ′j = 0).
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Demonstration: Arm and Leg lengths
Let λ be the black diagram and µ the red one, (the box s ∈ µ)
Aλ(s) = −1
Aµ(s) = 0
Lλ(s) = −1
Lµ(s) = 1

s
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Bethe ansatz equation for NS limit
Though the total number of boxes →∞, in ε2 → 0 limit the rescaled column

lengths ε2Y
(cr)
u,i , converge to finite values

ξu,i = lim
ε2→0

ε2Y
(cr)
u,i

The rescaled column lengths at small q behave as ξu,i ∼ O(qi )
Up to arbitrary order ∼ O(qL+1) the quantities

xu,i = au + ε1(i − 1) + ξu,i

satisfy the Bethe-ansatz equations (for each u = 1, 2, · · ·N)

−q
N,L∏
v ,j

(xu,i − xv ,j − ε1)(xu,i − x0
v ,j + ε1)

(xu,i − xv ,j + ε1)(xu,i − x0
v ,j − ε1)

=
N∏

v=1

(xu,i − av + ε1)(xu,i − av ) ,

where, by definition
x0

u,i = au + ε1(i − 1)
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Baxter’s difference equation and Deformed SW ”curve”
The BA equations can be transformed into a difference equation

Y (z + ε1) +
q

ε2N
1

Y (z − ε1) = ε−N
1 PN(z + ε1)Y (z) ,

where Y (z) is an entire functions with zeros located at z = xu,i :

Y (z) =
N∏

u=1

e
z
ε1
ψ( au

ε1
)
∞∏

i=1

(
1− z

xu,i

)
ez/x0

u,i ,

and

ψ(x) =
d

dx
log Γ(x)

is the logarithmic derivative of Gauss’ gamma-function. Finally PN(z) is an N-th
order polynomial which parametrizes the Coulomb branch of the theory. Explicit
expressions of coefficients of this polynomial in terms of VEV’s

uJ ≡ 〈trφJ〉

will be presented later for de case of our current interest N = 3. For more general
cases one can see e.g. [RP-1601].
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The difference equation is related to the SW ”curve”.
Introducing function

y(z) = εN
1

Y (z)

Y (z − ε1)

we get

y(z) +
q

y(z − ε1)
= PN(z)

At large z the function y(z) behaves as

y(z) = zN(1 + O(1/z)) .

Notice that setting ε1 = 0 one obtains an equation of hyperelliptic curve, which is just the
Seiberg-Witten curve. When ε1 6= 0, everything goes surprisingly similar to original
Seiberg-Witten theory. For example the role of Seiberg-Witten differential plays the quantity

λSW = z
d

dz
log y(z)

and, as in undeformed theory the expectation values are given by the contour integral

〈trφJ〉 =

∮
C

dz

2πi
zJ∂z log y(z)

where C is a large contour, enclosing all zeros and poles of y(z).
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Details on SU(3) theory
Without any essential loss of generality, from now on we’ll assume
that

u1 ≡ 〈trφ〉 = a1 + a2 + a3 = 0

Representing y(z) as a power series in 1/z

y(z) = z3(1 + c1z
−1 + c2z

−2 + c3z
−3 + · · · )

calculating the contour integral one easily finds the relations

c1 = 0; c2 = −u2

2
; c3 = −u3

3
Now, the difference equation immediately specifies the polynomial
P3(z) (we omit the subscript 3, since only the case N = 3 will be
considered later on)

P(z) = z3 − u2

2
z − u3

3
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The differential equation

To keep expressions simple, from now on we will set ε1 = 1. In
fact, at any stage the ε1 dependence can be easily restored on the
dimensional grounds. Taking the results of previous subsection, the
difference equation for N = 3 case can be rewritten as

Y (z)−
(
z3 − u2

2
z − u3

3

)
Y (z − 1) + q Y (z − 2) = 0 ,

Now by means of an inverse Fourier transform, starting from above
difference equation we’ll derive a third order linear differential
equation for function

f (x) =
∑

z∈a+Z
ex(z+1)Y (z)
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At least when |q| is sufficiently small, it is expected that the series
is convergent for finite x , provided a takes one of the three possible
values a1, a2 or a3. Taking into account the difference relation one
can easily check that f (x) solves the differential equation

−f ′′′(x) +
u2

2
f
′
(x) +

(
e−x + q ex +

u3

3

)
f (x) = 0 .

Denoting
q = Λ6

and shifting the variable

x → x − log Λ3

the differential equation may be cast into a more symmetric form

−f ′′′(x) +
u2

2
f
′
(x) +

(
Λ3(ex + e−x ) +

u3

3

)
f (x) = 0 .
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A-cycles from differential equation
Consider the basis of solutions u1(x), u2(x), u3(x) with standard initial conditions
(n, k = 1, 2, 3)

u
(k−1)
n (x)

∣∣∣
x=0

= δn,k

Since the functions un(x + 2πi) are solutions too, we can define the monodromy
matrix M as

un(x + 2π) =
3∑

k=1

uk (x)Mk,n

Evidently

Mk,n = u
(k−1)
n (2πi)

For any fixed values of parameters Λ, pn it is easy to integrate numerically the diff.
eq. with above boundary conditions and find the matrix M and then its eigenvalues
exp 2πian. Taking into account generalized Matone relation [FFMP-0403], this
opens up a nonperturbative access to deformed prepotential.
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Solutions at x → ±∞ and Q function
It is convenient to introduce parameters p1, p2, p3 satisfying p1 + p3 + p3 = 0 such that

u2 = p2
1 + p2

2 + p2
3 = 2(p2

1 + p2
2 + p1p2); u3 = p3

1 + p3
2 + p3

3 = −3p1p2(p1 + p2)

In the Λ→ 0 limit the parameters pn and ai coincide.
At large positive values x � 0 the term e−x in diff. eq. can be neglected. In this region the
differential equation can be solved in terms of hypergeometric function 0F2(a, b; z) defined by
the power series

0F2(a, b; z) =
∞∑

k=0

zk

(a)k (b)kk!
,

where

(x)k = x(x + 1) · · · (x + k − 1)

is the Pochhammer symbol.
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The three linearly independent solutions can be chosen as

Un(x) ≈ e(x+3θ)pn
0F2(1 + pn − pj ), 1 + pn − pk ; ex+3θ) ,

where by definition exp θ = Λ and the indices (n, k , l) are cyclic
permutations of (1, 2, 3). We used the symbol ≈ to emphasize
that the solutions are valid only asymptotically at x � 3θ.
Wronskian of these tree functions∣∣∣∣∣∣

U1(x) U2(x) U3(x)

U
′
1(x) U

′
2(x) U

′
3(x)

U
′′
1 (x) U

′′
2 (x) U

′′
3 (x)

∣∣∣∣∣∣ = (p1 − p2)(p2 − p3)(p3 − p1)

is nonzero provided the parameters pn are pairwise different. This
confirms that Un(x) are independent and constitute a basis in the
space of all solutions.
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Similarly in region x � −3θ the term Λ3ex of diff. eq. becomes
negligible and one gets solutions

Vn(x) ≈ e(x−3θ)pn
0F2(1− pn + pj ), 1− pn + pk ;−e−x+3θ) ,

For the Wronskian we get the same answer∣∣∣∣∣∣
V1(x) V2(x) V3(x)

V
′
1(x) V

′
2(x) V

′
3(x)

V
′′
1 (x) V

′′
2 (x) V

′′
3 (x)

∣∣∣∣∣∣ = (p1 − p2)(p2 − p3)(p3 − p1)

All three solutions are increasing at x → −∞, but there is a unique
(apart from a trivial rescaling) decreasing combination:

χ(x) =
∑3

n=1
Γ(pnj )Γ(pnk )

4π2 Vn(x)

In terms of v = exp(−x + 3θ),

χ(v) ≈ v−1/3e−3v1/3

2π
√

3
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Since Un(x) are complete one can expand χ(x) as

χ(x , θ) =
3∑

n=1

Qn(θ)Γ(pnj )Γ(pnk )e−3pnθUn(x , θ)

An important property: Wronskian of two solutions solves the ”dual” diff. eq, i.e.
the one obtained by reversing the signs pn → −pn and Λ3 → −Λ3. Exploring this
property we get the relation

Wr

[
χ(x , θ +

iπ

3
), χ(x , θ − iπ

3
)

]
= − i

2π
χ̄(x , θ)

where χ̄(θ) = χ(θ,−p). This is equivalent to the functional relations

sin(πpjk )
2iπ2 Q̄n(θ) = Qj

(
θ + iπ

3

)
Qk

(
θ − iπ

3

)
− Qj

(
θ − iπ

3

)
Qk

(
θ + iπ

3

)
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SU(3) version of T-Q relation
Using above functional relations it is easy to get the SU(3) analog off Baxter’s
T − Q equations (for any pair j 6= k):

T (θ)Qj (θ −
πi

6
)Q̄k (θ +

πi

6
) =

Qj (θ −
5πi

6
)Q̄k (θ +

πi

6
) + Qj (θ +

πi

2
)Q̄k (θ − πi

2
) + Qj (θ −

πi

6
)Q̄k (θ +

5πi

6
)

The functions T (θ), Q(θ) are entire. These functional relations emerge in ODE/IM
context when a 2d CFT with extra spin 3 current (W3 symmetry)
[Dorey,Tateo: hep-th/9910102], [Bazhanov,Hibberd,Khoroshkin: hep-th/0105177].
It should be possible to derive corresponding TBA equations.
Conjecture (the SU(3) analog of Al.Zamolodchikov’s conjecture for Mathieu):

T (θ) =
3∑

n=1

e2πian
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Numerical comparisons with instanton calculus
Instanton counting up to q3 = Λ18 gives

〈trφ2〉 = a2
1 + a2

2 + a2
3 +

6(a2
1 + a2

2 + a2
3 − 2)q

(a2
12 − 1)(a2

13 − 1)(a2
23 − 1)

+
P14(a1, a2, a3)q2

(a2
12 − 4)(a2

13 − 4)(a2
23 − 4)(a2

12 − 1)3(a2
13 − 1)3(a2

23 − 1)3
+ O(q)4

We made numerical integrations of diff. eq. for the choice of parameters
(p1, p2, p3) = (0.12, 0.17,−0.29) and Λ = 0.07 and calculated

The eigenvalues of monodromy matrix

e2πian = {0.48179 + 0.876287i , 0.728948 + 0.684569i ,−0.24868− 0.968586i}
an = {0.169993, 0.120005,−0.289998}

Inserting an in above formula ve get 〈trφ2〉 = 0.127396, while
p2

1 + p2
2 + p2

3 = 0.1274
We calculated the numerical values of Qn, Q̄n, and checked the validity of
functional relations
from T-Q relation we get: T (θ) = 0.9621 + 0.5925i while∑3

n=1 e
2πian = 0.96205 + 0.59227i
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Conclusions

ODE/IM and TBA can be efficiently applied for N = 2 SYM
in NS limit of Ω-background (at least in Nf = 0) case, which
allows to sum up entire instanton series.

Extension of this method for the cases Nf 6= 0 will lead to
better, nonperturbative understanding of semiclassical
conformal blocks.

Alternatively, application of DSW method could lead to new
insights in understanding of integrable structure of CFT

It would be interesting to see if it is possible to generalize this
method for generic Ω-background

Purely mathematical applications: theory of differential
equations, special functions ...
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THANKS

Rubik Poghossian YerPhI, Armenia

Various facets of 2d/4d correspondemce


