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INTRODUCTION

e A major question in string theory/sugra is how to derive lower dimensional effective
actions

e cffective low-dimensional theories in string compactifications
e gravity solutions in the gauge/gravity duality

e Look for 10D solutions of the form

Mg = Xq10—a X My

maximally symmetric < —» compact

e expand the 10d field in harmonics on My

e obtain a 10 — d action with infinite tower of KK modes

e fruncate the theory to a finite set of fields in a consistent way
e no dependence on the internal manifold in the eom and susy variations
e all 10 - d solutions lift to solutions of the higher dimensional ones



e Typically consistent truncations are based on the geometric properties of the internal
manifold

e cohomologies on Calabi-Yau manifolds — massless modes
e symmetries of group-, coset- and G-structure manifolds — invariant modes

and thus they used to be rare and non-trivial

e Things have changed thanks to new formulations of type Il and M-theory

e DFT/EFT: Double and/or Exceptional Field Theories " 2ebach 09; hohm, hul, awiebach 10:

hohm, samtleben 13; ...]

e GCG/EGG: Generalised Complex and/or Exceptional Generalised Geometry
[hitchin 02; gualtieri 04; hull 07; pacheco, waldram 08, ...]

where
e isometries and p-form gauge symmetries have a geometrical interpretation
e role of the U-duality groups in the higher-dimensional theory



e Sphere reductions are a good example
e consistency is not guaranteed by symmetry
e only S, 3, anf S” are parallelisable

e understanding of such reduction requires explicit use of the U-duality symmetry
e reformulation with manifest SU(8) symmetry ide wit and Nicotai 87:..]
e generalised Scherck-Schwarz reductions in EGG or EFT

[lee, strickland-constable, waldram 14;
hohm, samtleben 14, ...]

e In this talk | will focus on Generalised Geometry
e link between G-structures and consistent truncations in ordinary geometry
e summary of the main feature of Generalised Geometry

e generalised structures as a unified framework to study truncations with different
amount of supersymmetry



CONSISTENT TRUNCATIONS AND ORDINARY G-STRUCTURES

e Conventional Scherk-Schwarz reductions
e consider a group manifold M,; = G
e decompose all higher-dimensional fields into representations of GG

e keeping only the singlet representations gives a consistent truncation
e products of singlet representations never source non-singlet representations

e This extends to (G-structure manifolds

e two ingredients: G-structure and intrinsic torsion



e A d-dimensional manifold M ; has a GGg-structure if (equivalently)
e its structure group is reduced to Gs C GL(d)

e 3 (G g-invariant, no-where-vanishing tensors, ='

e Ex: a G5 = O(d) structure defines

a set of orthonormal frames <= an invariant metric ¢

e Intrinsic torsion for a Gg C O(d) structure
e consider the action of the Levi-Civita connection on the G g-invariant tensors

— N1...My _ nT —5 . 4q..Ny .. Ny, — Ni...q
vmuz Pi..-Ps Km q—1 P1..-Ps —I_ —|_ Km q—1 P1..--Ps

_ q = Ni...Nyp L. q = Ni...Nyp
Ky, p1—1 q..ps T Ky, ps—1 P1...Q)

e the tensor K is a section of 7" M @ g+ with A2°T*M ~ so(d) = g ® g+
e the intrinsic torsion is
(Tint)mnp — Knpm — Kmpn

and it decomposes in representations of G g



e Any field theory on a manifold M, with a G-structure with constant, singlet intrinsic
torsion admits a consistent truncation

e decompose all fields into Gg representations
e keep only the G g singlets

e if the intrinsic torsion has only singlet components the derivatives of any field are
expanded only in singlets

e the equations of motion only contain singlets representations

e The (Gs-structure also determines field content and gaugings of the consistent
truncations

e scalar manifold H ¢ gg;ggggg Ca(Gs) — commutant of Gs in G

e vector fields A%k, k. — globally defined vectors on T'M

e gauge group ka, ko] = fS ke fo, — K-singlets of the intrinsic torsion



Examples

e Scherk-Schwarz reductionon. M =G
e )M, admits globally defined left-invariant vector fields {é, }

e the co-frame ¢“ defines an identity structure (parallelisation)
Gs=1C GL(d)

e the fields of the truncated theory are

scalars & hgy € gé—%
d gauge fields < A%,
e the gauge algebra is
Le ey = fpéc f., constant

e the truncation ansatz for the metric is

ds® = g, dz*dz” + hep(e® + AY) (e’ + A



e Reduction on a Sasaki-Einstein manifold M of d = 2n + 1
o VMyadmitsa Gg = SU(n) C GL(d, R) structure

(n, w, Q)
real 1-form < ) — complex n-form

real 2-form

with constant singlet intrinsic torsion

dn = 2w dw =0 dQ=1i(n+1)n A Q

e the fields of the truncated theory are

EZXF =R" xRF

| h -
scalars & ha € T

1 gauge fields < A€

where £ is the Reeb vector £.n = 1.

e the truncation ansatz for the metric is

ds® = g, dztdz” + e*Yds3, +e*Y (n+ A)



EXCEPTIONAL GENERALISED GEOMETRY

[hitchin 02; gualtieri 04; hull 07; pacheco, waldram 08, ...]

e Geometrise the gauge symmetries of RR and NS potentials by enlarging the
tangent space — generalised tangent bundle £

e the transition functions involve RR and NS potentials as generalised

diffeomorphims

e the structure group is the duality group on the internal manifold

e Ex: IIBon X5 X My

Riemannian EGG
tangent b. TM TOT* DA™ ®ANT* D (T* @ AT™)
structure SO(5) Ee(6)
group U-duality




e Generalise ordinary notions
e generallised vectors and

velM —V ek Ez—>Qz

relevant E,;4) groups and representations

D | Egu E |adFCE®E* | NCS°E Hy S

4 Eq(7) 56 133 133 SU(8) 8 8

5 Ege 27 78 27’ USp(8) 8

6 || Spin(5,5) | 16° 45 10 USp(4) x USp(4) | (4,1) & (1,4)
7 | SL(,R) | 10 24 5/ USp(4) 4

e generalised metric
GL(d) Eaa)
g € S0 G e H,

Hg C Eg4(q) maximal compact subgroup (R-symmetry)




e Dorfman derivative

L0 =0"0p0"™ — (9 Xaa v)0™" — Ly V™M =y NoyVv'M (0 Xaq V)MNV/N

e Generalised Levi-Civita connection
DyVA =0, VA4 04, gV VeEE

such that DG = 0 and torsion free

e Exceptional GGg structure
e Ja set of generalised tensors (; that are invariant under G5 C £y
Ex: G defines an H, structure
e with torsion Dy,Q; = X Q;, With 3y, € T'(E* ® adFy,)



CONSISTENT TRUNCATIONS AND EXCEPTIONAL G-STRUCTURES

e Consistent truncations of M-theory or Type Il on

dim M=d M-theory
XD x M
dimM=d -1 Typell

are pretty common

e any exceptional GG g-structure with constant, singlet intrinsic torsion gives a
consistent truncation

e the exceptional GGg-structure does not necessarily reduce to an ordinary
G g-structure

e the geometrical data of the G g-structure and its singlet intrinsic torsion completely
determine the truncated theory



The truncation procedure

e The gen. G - structure is defined by a set of Gg-invariant tensors
Qi ={Kael'(E),Js €'(N)}

such that Dy, Q; = X,Q; only contains singlet torsion

e Arrange the bosonic fields into generalised tensors in representations of

GL(D; R) x Ega)
D-dim scalars: Gun(z,y) € T(S?E*) (gen. metric)
D-dim vectors: A M(z,y) e(T*X @ E)  (gen vector)
D-dim two forms: B, MY € T'(A*T*X @ N)

e Ex: IIBon X5 X Ms

scalars: {gmn7 an7 COv Cmna Cmnpq}
vectors: {hum, B/,an C,Lma C,unpq}

two forms:  {B,., Cuu, Clupg}



e Expand the fields terms of the invariant tensors

Ce,0(Gs) G
scalars: h! € Mgeal = ) = =
() LT O (Gs) T H

vectors: Af(m) Kyael(T'X)®V
two-forms: By (z)Jx € T(A°T*X) @ B

with v c T'(E) — vector space spanned by K 4
B C T'(N) — vector space spanned by Jx

e since the intrinsic torsion has only singlet components, the derivatives of any field
are expanded only in singlets

e the e.0.m are expanded in invariant tensors and only contain singlets
representations

e the truncation is consistent



e The singlet intrinsic torsion gives the embedding tensor of the gauged sugra

[coimbra, strickland-constable, waldram 11, lee, strickland-constable, waldram 14]
Tin: : T(E) = adF
L, Qi = —Tint(Ka) - Q; |
Tint(Ka) Gg singlet

then 77, is the algebra of the commutant group G = Cp, , (Gs)
—Tint = © :V — LieG
e Gauge group and generators

Lx ,Kg=0,4 Kg=0,%ta)s"*Kec = Xas“Kc

generators of LieG actingon V <=

with
[XAaXB] — _X.ABCXC (XA)BC — XXB

Then
e /C4 generate the Lie algebra LieG 4,4 = O(V) C LieG
e X , define adjoint representation
e O gives the embedding of the gauge group in G.



e Scalar covariant derivatives
A AQ G
D,h' = 9,h' — AL ©4%ks"
with k4 Killing vectors on M.,; generating the action of the LieG

e Gauge transformations of the vectors and two-forms
A A A( 4B AC _ =BC
0A; = 0N\ + Xpe (Au A==, )
OB, = 2d.45” (9, ZF + 2Xop  AS, B — AAHE, — A 6 A5)

with =458 = =, Zds4P

7—[ = dA* + Xpe? (AP A A€ + BZJEBC)

e The number of supersymmetries preserved by the truncation is the number of
(G g-singlets in the generalised spinor bundle S



HALF-MAXIMAL SUSY: generalised G-structures

e Compactifications on 1/5: a half-maximal structure is an SO(5) C Eg () structure

[see malek 17, for the EFT version]

e half-maximal susy corresponds to the breaking

USp(4)gr R-symmetr
USp(8) > USp(4)r x USp(4)s p4) R-symmetry
U Sp(4)g structure group

e the half-maximal structure is defined by the singlets of USp(4)s

Ee(e) D SO(1,1) x SO(5,5) D SO(1,1) x SO(5)g x SO(5)s
27 510, B 16_1 B 1_4 — (5,1), ® (1,5), & (4,4)_, ® (1,1)_,



it is defined by six generalised vectors
Ky,K,cT'(E) a=1,...,5

such that
C(Ko, Ko, V) = 0, VV € F(E)

(Ko, Ky, Kp) = d4p vOls
where c(V, V', V") is the Eg ) cubic invariant,

c(V,V', V") = —% (va’ AP+ eapp NN A B 2€0 L,U)\’O‘J"B)—l—symm. perm. .

we also need
K Ky) =1
K()k — _%éan(KaaKba ) * * < O >
eI'(detT"M @ E*) (KX, Kp) = Nab
K; ) C(KO, Ka, )
(K, Kq) =0



e The generalised metric is computed using the SO(5, 5) structure defined by { Ky, K}
SO(5) C SO(5) x SO(5) C SO(5,5) C Eg )
e the SO(5,5) structure gives a decomposition of the generalised tangent bundle

V:VO+‘7+\I} - E:E0+E10—|—E16
27T=1+10+ 16

e the generalised metric on E splits into metrics on Ey, F1g and Ei4

G = Go+ G+ Gig

Ko, V.V
V

where

oA om \ M\ o 1 ~mnp 1 ~mnpqr _«
<Zv V> = UmU " + )‘a )‘m + 31 P Pmnp + 51 O 9 mnpqr



e (7 : projection onto the singlet,

e Gip:an SO(5) x SO(5) C SO(5,5) structure splits £y into positive- and
negative-definite eigenspaces

?7:G_|_—G_

E10:O+@C_ ——
Gip = G_|_ + G_

with (K, form a basis for C'"_)

C(K()a ‘77 ‘7)

vols

77(‘77 ‘7) — G—(Vv V) — 5ab<Kc>Lkv V> <Kl;kv V>

e (715 : inner product between SO(d, d) spinors

(U, TH W) I+t =T ---T'7 chirality matrix

0

<V7K1K5V>



e Generalised SO(5 — n) structures

e the structure is further reduced to SO(5 —n) C SO(5) by n globally-defined
generalised vectors in the 27

C(K(),Ko, V) = 0, YV € F(E),
(Ko, Ka) A=1,....,n+5 (Ko, Ka, Kp) = napvols
C(KAaKB7KC) =0

with ny,n = diag(—1,-1,—-1,—-1,—1,+1,...,+1) flat SO(5,n) metric.

e dual generalised vectors
1

5+ n
Ky =c¢(Ko,Ka,-)

K = nABe(Ka, Kg,-)

with (K7, Ko) = 1, (K%, Kp) = nap and (K7, K,) = 0

e the generalised metric is computed as before

Ky, V.,V
G=(K; V) + 5"’”(K§,V)<K§,V)—I—C( (17’01’ )—4\@<V,K1...K5,V>



e truncation ansatz for the scalars
e the scalar manifold is given by the coset

CE6(6)(SO(5 — n)) SO(5,n)

SO(5) x SO(n)

=0(1,1) x

e the generalised metric is built out of dressed generalised vectors

Ko = X2 Ky. K, =Y"'"V,AK4 Ko =Y"'"V:4Ky
K =YK K=YV, K% K: =Y V:AK

where X € O(1,1), {Va% V4%} € SO(5,n),a=1,...,5,a=1,...,n
NaB = 00y VA"V — 64 VaVE"  Map = 64y Va“VB" + 6.4 Va®Vi

e the generalised metric is
G = Go+ Gio+ Gig

Ko, V.,V
= XTH(VKS)? 457 (2 0"V VP (V, KAV, KF) + el OV’OI’ ))

_45ﬁ E_l EabcdevaAVbBVCCVdDVeE <V, KA . KE ] V>



e Example: Sasaki Einstein reduction in type 11B

® truncation on SquaShed SE manlf0|dS in 5 d [cassani, faedo, dall’agata 10]

e the theory is NV = 4 5d sugra with two vector multiplets and with Heiss x U(1)
gauging and scalars parameterise the coset

SO(5,2)

Micar = SO(L, 1) X SO(5) x SO(2)

e SE geometry

e U(1) fibration over a KE base

5
dsip = dssp +1n° = Z(@i)2 + (eh)? F5 = kvols
i=2

e 5d SE are SU(2) structure manifolds
J=e>Ne® —ed Net O =J +1J

Jo =e2 Net +e3 Ned = w=Js

Js =e? Ned —et Ned — —el



e the SU(2) structure extend to a generalised SU(2) C SO(5) structure

e generalised vectors

Ky = %(nn — rvol)
Kog=¢ K5 = %(—rn — nvol)
Kios= % nAJi2s K¢ = %(nn + rvol)

K7 = - (—rn + nvol)

where n = (1,0) and r = (0, 1).



e scalar ansatz
e the scalar parameterise the coset

SO(5,2)
SO(5) x SO(2)

O(1,1) x

e generalised metric is built using the dressed vectors

Ka _ Ka VaB
~ — 6_(B++B +C) cm - T - e_l . — 2—1
KQ KQ V&BKB
with
B¢ = (no‘bi -+ TQCZ')JQ; C' = —aJs N\ J3
P
ez 0 t AU+ V
ma5: 5 5 : T:diag <€V, 6U7 6U7 €U,€U> | — I'(’F) _ +
e2Cy e 2 3 3

e a lengthy but straightforward computation reproduce the scalars of SE truncation

[cassani, dall'agata, faedo 10]



e Vector ansatz

hy = A) &,
Bl =5 (A + A,

B1=—75 (A, + A,
C,u,3 — %ALJZ /\777
(AZ — AZ) VOI—'—% (Ai +Ag) AT,

p+ _ _ 1
Bu,5 V2

B s =——5 (A, — A3) vol + 75 (A7 + AL) A

e two-form ansatz

Buo+ = % (Buv7 — Buvs)
Buo- = % (Buve — Buva) ,
Cuvo = % B.iji,
By = % (Buva + Buye) voly +% (Buv7 —Buvs) ,

B,uz/,él— — _% (B,ul/5 + B/,u/ 7) V014 +% (B,UJ/G - B,LW4) .



e gauge group — Dorfman derivative

e the embedding tensor of N = 4 sugra (schon, weiner o6

fras® fepie =0

AP fppe =0

_/\

(€a.6aB = &aB), faBc = fapc)) —

e Dorfman derivative

Ly, K= Xas“Kec s



e in this case

K
Xos® = —Xos5' = —Xos" = —Xor* = Xo5° = Xo6” = —Xos' = Xo7° = 5
X34% = = X347 = — X35 = X35% = X36° = —X36" = —X37* = X3,% = V2,
Xu5® = Xy = —X56° = X67° = V2,

e the embedding tensor components are

K

§12 = 3, 5452547:—556256725,

faas = faar = —fase = faer = V2.

e the gauge algebrais Heisz x U(1)



SUMMARY AND OUTLOOK

e Generalised Geometry is a powerful framework to study consistent truncations with
different amount of susy

e the truncation ansatze are associated to generalised structures
e the intrinsic torsion of the G-structure must contains only singlets

e the geometry determines all the features of the lower-dimensional gauged
supergravity
e amount of supersymmetry
e scalar coset manifold
e number of gauge and tensor fields, and the gauging

e Examples
o COﬂSiStency Of Sphere redUCtionS [lee, strickland-constable, waldram 14; hohm, samtleben 14) , ...]
® COﬂSISte nt tru ncations fOI’ maSSive ”A [ ciceri, guarino, inverso 16; cassani, de felice, m.p. strickland constable, waldram 16]

e half-maximal truncations of M-theory on S* and of type [IB on 5-deformed
baCkg I’OU ndS [ cassani, josse, m.p., waldram 19]



e Consistent reductions are not a mathematical curiosity
e establish a map between sugra theories in different dimensions

e insight on the higher dimensional origin of the lower dimensional gauge
symmetries

e powerful tool in AdS/CFT

e embed into string theory AdS vacua, black holes, domain walls, and non-relativistic
backgrounds



