CONSISTENT TRUNCATIONS WITH DIFFERENT AMOUNT OF SUPERSYMMETRY

[D. CASSANI, G. JOSSE, M.P, C., D. WALDRAM, arXiv:1907.06730]

INTRODUCTION

- A major question in string theory/sugra is how to derive lower dimensional effective actions
 - effective low-dimensional theories in string compactifications
 - gravity solutions in the gauge/gravity duality
- Look for 10D solutions of the form

$$M_{10} = X_{10-d} \times M_d$$
 maximally symmetric \longleftrightarrow \hookrightarrow compact

- ullet expand the 10d field in harmonics on M_d
- obtain a 10 d action with infinite tower of KK modes
- truncate the theory to a finite set of fields in a consistent way
 - no dependence on the internal manifold in the eom and susy variations
 - all 10 d solutions lift to solutions of the higher dimensional ones

- Typically consistent truncations are based on the geometric properties of the internal manifold
 - cohomologies on Calabi-Yau manifolds → massless modes
- symmetries of group-, coset- and G-structure manifolds \rightarrow invariant modes and thus they used to be rare and non-trivial
- Things have changed thanks to new formulations of type II and M-theory
 - DFT/EFT: Double and/or Exceptional Field Theories [hull, zwiebach 09; hohm, hull, zwiebach 10; hohm, samtleben 13; ...]
 - GCG/EGG: Generalised Complex and/or Exceptional Generalised Geometry

[hitchin 02; gualtieri 04; hull 07; pacheco, waldram 08, ...]

where

- isometries and p-form gauge symmetries have a geometrical interpretation
- role of the U-duality groups in the higher-dimensional theory

- Sphere reductions are a good example
 - consistency is not guaranteed by symmetry
 - only S^1 , S^3 , anf S^7 are parallelisable
 - understanding of such reduction requires explicit use of the U-duality symmetry
 - reformulation with manifest SU(8) symmetry [de Wit and Nicolai 87;...]
 - generalised Scherck-Schwarz reductions in EGG or EFT

[lee, strickland-constable, waldram 14; hohm, samtleben 14, ...]

- In this talk I will focus on Generalised Geometry
 - link between G-structures and consistent truncations in ordinary geometry
 - summary of the main feature of Generalised Geometry
 - generalised structures as a unified framework to study truncations with different amount of supersymmetry

CONSISTENT TRUNCATIONS AND ORDINARY G-STRUCTURES

- Conventional Scherk-Schwarz reductions
 - consider a group manifold $M_d = G$
 - decompose all higher-dimensional fields into representations of G
 - keeping only the singlet representations gives a consistent truncation
 - products of singlet representations never source non-singlet representations
- This extends to G-structure manifolds
 - two ingredients: G-structure and intrinsic torsion

- A d-dimensional manifold M_d has a G_S -structure if (equivalently)
 - its structure group is reduced to $G_S \subset GL(d)$
 - $\exists G_S$ -invariant, no-where-vanishing tensors, Ξ^i
 - Ex: a $G_S = O(d)$ structure defines a set of orthonormal frames \iff an invariant metric g
- Intrinsic torsion for a $G_S \subset O(d)$ structure
 - consider the action of the Levi-Civita connection on the G_S -invariant tensors

$$\nabla_{m}\Xi_{i}^{n_{1}...n_{r}}{}_{p_{1}...p_{s}} = K_{m}^{n_{1}}{}_{q}\Xi_{i}^{q...n_{r}}{}_{p_{1}...p_{s}} + \dots + K_{m}^{n_{r}}{}_{q}\Xi_{i}^{n_{1}...q}{}_{p_{1}...p_{s}}$$
$$-K_{m}^{q}{}_{p_{1}}\Xi_{i}^{n_{1}...n_{r}}{}_{q...p_{s}} + \dots - K_{m}^{q}{}_{p_{s}}\Xi_{i}^{n_{1}...n_{r}}{}_{p_{1}...q},$$

- the tensor K is a section of $T^*M\otimes \mathfrak{g}^\perp$ with $\Lambda^2T^*M\simeq so(d)=\mathfrak{g}\oplus \mathfrak{g}^\perp$
- the intrinsic torsion is

$$(T_{int})_{mn}^{p} = K_{n}^{p}_{m} - K_{m}^{p}_{n}$$

and it decomposes in representations of G_S

- Any field theory on a manifold M_d with a G-structure with constant, singlet intrinsic torsion admits a consistent truncation
 - decompose all fields into G_S representations
 - keep only the G_S singlets
 - if the intrinsic torsion has only singlet components the derivatives of any field are expanded only in singlets
 - the equations of motion only contain singlets representations
- The G_S -structure also determines field content and gaugings of the consistent truncations
 - scalar manifold $H \in rac{C_{GL(d)}(G_S)}{C_{SO(d)}(G_S)}$ $C_G(G_S) o$ commutant of G_S in G
 - vector fields $A^a k_a$ $k_a o \text{globally defined vectors on } TM$
 - gauge group $[k_a,k_b]=f^c_{ab}k_c$ $f^c_{ab} o$ K-singlets of the intrinsic torsion

Examples

- Scherk-Schwarz reduction on. M=G
 - M_d admits globally defined left-invariant vector fields $\{\hat{e}_a\}$
 - the co-frame e^a defines an identity structure (parallelisation)

$$G_S = \mathbb{I} \subset GL(d)$$

the fields of the truncated theory are

scalars
$$\Leftrightarrow h_{ab} \in \frac{GL(d)}{SO(d)}$$
 d gauge fields $\Leftrightarrow \mathcal{A}^a \hat{e}_a$

the gauge algebra is

$$\mathcal{L}_{\hat{e}_a}\hat{e}_b = f_{ab}^{\ \ c}\hat{e}_c$$
 $f_{ab}^{\ \ c}$ constant

• the truncation ansatz for the metric is

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} + h_{ab}(e^a + \mathcal{A}^a)(e^b + \mathcal{A}^b)$$

- Reduction on a Sasaki-Einstein manifold M of d = 2n + 1
 - M_d admits a $G_S = SU(n) \subset GL(d,R)$ structure

$$(\eta \,,\; \omega \,,\, \Omega)$$
 real 1-form \iff \downarrow \hookrightarrow complex n -form real 2-form

with constant singlet intrinsic torsion

$$d\eta = 2\omega$$
 $d\omega = 0$ $d\Omega = i(n+1)\eta \wedge \Omega$

the fields of the truncated theory are

scalars
$$\Leftrightarrow h_{ab} \in \frac{\mathbb{R}^+ \times \mathbb{C}}{U(1)} = \mathbb{R}^+ \times \mathbb{R}^+$$
 1 gauge fields $\Leftrightarrow \mathcal{A}\xi$

where ξ is the Reeb vector $\xi \rfloor \eta = 1$.

the truncation ansatz for the metric is

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} + e^{2U}ds_{2n}^{2} + e^{2V}(\eta + A)$$

EXCEPTIONAL GENERALISED GEOMETRY

[hitchin 02; gualtieri 04; hull 07; pacheco, waldram 08, ...]

- Geometrise the gauge symmetries of RR and NS potentials by enlarging the tangent space \longrightarrow generalised tangent bundle E
 - the transition functions involve RR and NS potentials as generalised diffeomorphims
 - the structure group is the duality group on the internal manifold
- Ex: IIB on $X_5 \times M_5$

	Riemannian	EGG
tangent b.	TM	$T \oplus T^* \oplus \Lambda^- \oplus \Lambda^5 T^* \oplus (T^* \otimes \Lambda^6 T^*)$
structure	SO(5)	$E_{6(6)}$
group		U-duality

- Generalise ordinary notions
 - generallised vectors and

$$v \in TM \longrightarrow V \in E \qquad \Xi_i \longrightarrow Q_i$$

relevant $E_{d(d)}$ groups and representations

D	$E_{d(d)}$	$\mid E \mid$	$\mid \operatorname{ad} F \subset E \otimes E^*$	$N \subset S^2E$	$ ilde{H}_d$	${\mathcal S}$
$\overline{4}$	$E_{7(7)}$	56	133	133	SU(8)	$oldsymbol{8}\oplusar{oldsymbol{8}}$
5	E_{66}	27	78	27'	USp(8)	8
6	Spin(5,5)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	45	10	$USp(4) \times USp(4)$	$({f 4},{f 1})\oplus ({f 1},{f 4})$
7	$SL(5,\mathbb{R})$	10	24	5 '	USp(4)	4

• generalised metric

$$g \in \frac{GL(d)}{SO(d)} \longrightarrow G \in \frac{E_{d(d)}}{H_d}$$

 $H_d \subset E_{d(d)}$ maximal compact subgroup (R-symmetry)

Dorfman derivative

$$\mathcal{L}_{v}v'^{m} = v^{n}\partial_{n}v'^{m} - (\partial \times_{\mathrm{ad}} v)^{m}{}_{n}v'^{n} \longrightarrow L_{V}V'^{M} = V^{N}\partial_{N}V'^{M} - (\partial \times_{\mathrm{ad}} V)^{M}{}_{N}V'^{N}$$

Generalised Levi-Civita connection

$$D_M V^A = \partial_M V^A + \Omega_{M-B}^A V^B \qquad V \in E$$

such that DG = 0 and torsion free

- Exceptional G_S structure
 - \exists a set of generalised tensors Q_i that are invariant under $G_S \subset E_{d(d)}$ Ex: G defines an H_d structure
 - with torsion $D_M Q_i = \Sigma_M Q_i$, with $\Sigma_M \in \Gamma(E^* \otimes \mathrm{ad} F_{H_d})$

CONSISTENT TRUNCATIONS AND EXCEPTIONAL G-STRUCTURES

Consistent truncations of M-theory or Type II on

$$X_D imes M$$

$$\begin{cases} \dim M = d & \text{M-theory} \\ \dim M = d - 1 & \text{Type II} \end{cases}$$

are pretty common

- any exceptional G_S -structure with constant, singlet intrinsic torsion gives a consistent truncation
- the exceptional G_S -structure does not necessarily reduce to an ordinary G_S -structure
- the geometrical data of the G_S -structure and its singlet intrinsic torsion completely determine the truncated theory

The truncation procedure

• The gen. G_S - structure is defined by a set of G_S -invariant tensors

$$Q_i = \{ \mathcal{K}_A \in \Gamma(E), J_{\Sigma} \in \Gamma(N) \}$$

such that $D_M Q_i = \Sigma_M Q_i$ only contains singlet torsion

• Arrange the bosonic fields into generalised tensors in representations of $GL(D;R) \times E_{d(d)}$

D-dim scalars: $G_{MN}(x,y) \in \Gamma(S^2E^*)$ (gen. metric)

D-dim vectors: $\mathcal{A}_{\mu}{}^{M}(x,y) \in \Gamma(T^{*}X \otimes E)$ (gen vector)

D-dim two forms: $\mathcal{B}_{\mu
u}{}^{MN} \in \Gamma(\Lambda^2 T^* X \otimes N)$

• Ex: IIB on $X_5 \times M_5$

scalars: $\{g_{mn}, B_{mn}, C_0, C_{mn}, C_{mnpq}\}$

vectors: $\{h_{\mu}{}^{m}, B_{\mu n}, C_{\mu n}, C_{\mu n p q}\}$

two forms: $\{B_{\mu\nu},\,C_{\mu\nu},\,C_{\mu\nu pq}\}$

Expand the fields terms of the invariant tensors

scalars:
$$h^I(x) \in \mathcal{M}_{scal} = \frac{C_{E_{d(d)}}(G_S)}{C_{H_d}(G_S)} := \frac{\mathcal{G}}{\mathcal{H}},$$

vectors:
$$\mathcal{A}_{\mu}^{\mathcal{A}}(x) K_{\mathcal{A}} \in \Gamma(T^*X) \otimes \mathcal{V}$$

two-forms:
$$\mathcal{B}^{\Sigma}_{\mu\nu}(x)\,J_{\Sigma}\in\Gamma(\Lambda^2T^*X)\otimes\mathcal{B}$$

with
$$\mathcal{V} \subset \Gamma(E) \to \text{vector space spanned by } \mathcal{K}_A$$

 $\mathcal{B} \subset \Gamma(N) \to \text{vector space spanned by } J_\Sigma$

- since the intrinsic torsion has only singlet components, the derivatives of any field are expanded only in singlets
- the e.o.m are expanded in invariant tensors and only contain singlets representations
- the truncation is consistent

The singlet intrinsic torsion gives the embedding tensor of the gauged sugra

[coimbra, strickland-constable, waldram 11, lee, strickland-constable, waldram 14]

$$L_{\mathcal{K}_A}Q_i = -T_{int}(\mathcal{K}_A) \cdot Q_i$$

$$T_{int} : \Gamma(E) \to \mathrm{ad}F$$
$$T_{int}(\mathcal{K}_A) G_S \text{ singlet}$$

then T_{int} is the algebra of the commutant group $\mathcal{G} = C_{E_{d(d)}}(G_S)$

$$-T_{int} = \Theta: \mathcal{V} \to \text{Lie}\mathcal{G}$$

Gauge group and generators

$$L_{K_{\mathcal{A}}}K_{\mathcal{B}} = \Theta_{\mathcal{A}} \cdot K_{\mathcal{B}} = \Theta_{\mathcal{A}}^{\hat{\alpha}}(t_{\hat{\alpha}})_{\mathcal{B}}^{\mathcal{C}}K_{\mathcal{C}} = X_{\mathcal{A}\mathcal{B}}^{\mathcal{C}}K_{\mathcal{C}}$$
 generators of Lie \mathcal{G} acting on $\mathcal{V} \leftarrow$

with

$$[X_{\mathcal{A}}, X_{\mathcal{B}}] = -X_{\mathcal{A}\mathcal{B}}{}^{\mathcal{C}}X_{\mathcal{C}} \qquad (X_A)_B{}^{\mathcal{C}} = X_{AB}^{\mathcal{C}}$$

Then

- \mathcal{K}_A generate the Lie algebra $\mathrm{Lie}G_{gauge} = \Theta(\mathcal{V}) \subseteq \mathrm{Lie}\mathcal{G}$
- *X_A* define adjoint representation
- Θ gives the embedding of the gauge group in G.

Scalar covariant derivatives

$$\hat{D}_{\mu}h^{I} = \partial_{\mu}h^{I} - \mathcal{A}^{\mathcal{A}}_{\mu}\Theta_{\mathcal{A}}{}^{\hat{\alpha}}k_{\hat{\alpha}}{}^{I}$$

with $k_{\hat{\alpha}}$ Killing vectors on \mathcal{M}_{scal} generating the action of the Lie \mathcal{G}

Gauge transformations of the vectors and two-forms

$$\delta \mathcal{A}_{\mu}^{\mathcal{A}} = \partial_{\mu} \Lambda^{\mathcal{A}} + X_{\mathcal{B}\mathcal{C}}^{\mathcal{A}} \left(\mathcal{A}_{\mu}^{\mathcal{B}} \Lambda^{\mathcal{C}} - \Xi_{\mu}^{\mathcal{B}\mathcal{C}} \right)$$
$$\delta \mathcal{B}_{\mu\nu}^{\Sigma} = 2d_{\mathcal{A}\mathcal{B}}^{\Sigma} \left(\partial_{[\mu} \Xi_{\nu]}^{\mathcal{A}\mathcal{B}} + 2X_{\mathcal{C}\mathcal{D}}^{\mathcal{A}} \mathcal{A}_{[\mu}^{\mathcal{C}} \Xi_{\nu]}^{\mathcal{D}\mathcal{B}} - \Lambda^{\mathcal{A}} \mathcal{H}_{\mu\nu}^{\mathcal{B}} - \mathcal{A}_{[\mu}^{\mathcal{A}} \delta \mathcal{A}_{\nu]}^{\mathcal{B}} \right)$$

with
$$\Xi_{\mu}^{\mathcal{A}\mathcal{B}} = \Xi_{\mu}{}^{\Sigma}\tilde{d}_{\Sigma}{}^{\mathcal{A}\mathcal{B}}$$

$$\mathcal{H}^{\mathcal{A}} = d\mathcal{A}^{\mathcal{A}} + X_{\mathcal{B}\mathcal{C}}{}^{\mathcal{A}}(\mathcal{A}^{\mathcal{B}} \wedge \mathcal{A}^{\mathcal{C}} + \mathcal{B}^{\Sigma}\tilde{d}_{\Sigma}{}^{\mathcal{B}\mathcal{C}})$$

• The number of supersymmetries preserved by the truncation is the number of G_S -singlets in the generalised spinor bundle S

HALF-MAXIMAL SUSY: generalised G-structures

- Compactifications on M_5 : a half-maximal structure is an $SO(5) \subset E_{6(6)}$ structure
 - half-maximal susy corresponds to the breaking

$$USp(8) \supset USp(4)_R \times USp(4)_S \qquad \left\{ \begin{array}{l} USp(4)_R \ {\rm R-symmetry} \\ \\ USp(4)_S \ {\rm structure \ group} \end{array} \right.$$

[see malek 17, for the EFT version]

• the half-maximal structure is defined by the singlets of $USp(4)_S$

$$E_{6(6)} \supset SO(1,1) \times SO(5,5) \supset SO(1,1) \times SO(5)_R \times SO(5)_S$$

 $\mathbf{27} \to \mathbf{10}_2 \oplus \mathbf{16}_{-1} \oplus \mathbf{1}_{-4} \to (\mathbf{5},\mathbf{1})_2 \oplus (\mathbf{1},\mathbf{5})_2 \oplus (\mathbf{4},\mathbf{4})_{-1} \oplus (\mathbf{1},\mathbf{1})_{-4}$

it is defined by six generalised vectors

$$K_0, K_a \in \Gamma(E)$$
 $a = 1, \ldots, 5$

such that

$$c(K_0, K_0, V) = 0,$$
 $\forall V \in \Gamma(E)$
 $c(K_0, K_a, K_b) = \delta_{ab} \operatorname{vol}_5$

where c(V, V', V'') is the $E_{6(6)}$ cubic invariant,

$$c(V,V',V'') = -\frac{1}{2} \left(\iota_v \rho' \wedge \rho'' + \epsilon_{\alpha\beta} \, \rho \wedge \lambda'^\alpha \wedge \lambda''^\beta - 2\epsilon_{\alpha\beta} \, \iota_v \lambda'^\alpha \sigma''^\beta \right) + \text{symm. perm. }.$$

we also need

$$K_0^* = -\frac{1}{5}\delta^{ab}c(K_a, K_b, \cdot)$$

$$K_a^* = c(K_0, K_a, \cdot)$$

$$\begin{cases}
\langle K_0^*, K_0 \rangle = 1 \\
\langle K_a^*, K_b \rangle = \eta_{ab} \\
\langle K_0^*, K_a \rangle = 0
\end{cases}$$

• The generalised metric is computed using the SO(5,5) structure defined by $\{K_0,K_0^*\}$

$$SO(5) \subset SO(5) \times SO(5) \subset SO(5,5) \subset E_{6(6)}$$

• the SO(5,5) structure gives a decomposition of the generalised tangent bundle

$$V = V_0 + \tilde{V} + \Psi \in E = E_0 + E_{10} + E_{16}$$
 $\mathbf{27} = \mathbf{1} + \mathbf{10} + \mathbf{16}$

• the generalised metric on E splits into metrics on E_0 , E_{10} and E_{16}

$$G = G_0 + G_{10} + G_{16}$$

$$= \langle K_0^*, V \rangle^2 + \delta^{ab} \langle K_a^*, V \rangle \langle K_b^*, V \rangle + \frac{c(K_0, V, V)}{\text{vol}} - 4\sqrt{2} \langle V, K_1 \cdots K_5 \cdot V \rangle$$

where

$$\langle Z, V \rangle = \hat{v}_m v^m + \hat{\lambda}_{\alpha}^m \lambda_m^{\alpha} + \frac{1}{3!} \hat{\rho}^{mnp} \rho_{mnp} + \frac{1}{5!} \hat{\sigma}_{\alpha}^{mnpqr} \sigma_{mnpqr}^{\alpha}$$

- *G*₀: projection onto the singlet,
- G_{10} : an $SO(5) \times SO(5) \subset SO(5,5)$ structure splits E_{10} into positive- and negative-definite eigenspaces

$$E_{10} = C_{+} \oplus C_{-}$$
 \Leftrightarrow $\eta = G_{+} - G_{-}$ $G_{10} = G_{+} + G_{-}$

with (K_a form a basis for C_-)

$$\eta(\tilde{V}, \tilde{V}) = \frac{c(K_0, \tilde{V}, \tilde{V})}{\mathbf{vol}_5} \qquad G_-(V, V) = \delta^{ab} \langle K_a^*, V \rangle \langle K_b^*, V \rangle$$

• G_{16} : inner product between SO(d,d) spinors

$$\langle \Psi, \Gamma^{(+)}\Psi
angle$$
 $\Gamma^+=\Gamma_1^+\cdots\Gamma_5^+$ chirality matrix $\langle V, K_1\cdots K_5\cdot V
angle$

- Generalised SO(5-n) structures
 - the structure is further reduced to $SO(5-n) \subset SO(5)$ by n globally-defined generalised vectors in the 27

$$c(K_0, K_0, V) = 0, \quad \forall V \in \Gamma(E),$$
 $(K_0, K_A) \quad A = 1, \dots, n + 5$
 $c(K_0, K_A, K_B) = \eta_{AB} \text{vol}_5$
 $c(K_A, K_B, K_C) = 0$

with $\eta_{MN} = \text{diag}(-1, -1, -1, -1, -1, +1, \dots, +1)$ flat SO(5, n) metric.

dual generalised vectors

$$K_0^* = \frac{1}{5+n} \eta^{AB} c(K_A, K_B, \cdot)$$
$$K_A^* = c(K_0, K_A, \cdot)$$

with
$$\langle K_0^*, K_0 \rangle = 1$$
, $\langle K_A^*, K_B \rangle = \eta_{AB}$ and $\langle K_0^*, K_a \rangle = 0$

• the generalised metric is computed as before

$$G = \langle K_0^*, V \rangle^2 + \delta^{ab} \langle K_a^*, V \rangle \langle K_b^*, V \rangle + \frac{c(K_0, V, V)}{\text{vol}} - 4\sqrt{2} \langle V, K_1 \cdots K_5 \cdot V \rangle$$

- truncation ansatz for the scalars
 - the scalar manifold is given by the coset

$$H \in \frac{C_{E_{6(6)}}(SO(5-n))}{C_{SU(8)}(SO(5-n))} = O(1,1) \times \frac{SO(5,n)}{SO(5) \times SO(n)}$$

the generalised metric is built out of dressed generalised vectors

$$\tilde{K}_0 = \Sigma^2 K_0. \qquad \tilde{K}_a = \Sigma^{-1} \mathcal{V}_a{}^A K_A \qquad \tilde{K}_{\hat{a}} = \Sigma^{-1} \mathcal{V}_{\hat{a}}{}^A K_A$$

$$\tilde{K}_0^* = \Sigma^{-2} K_0^* \qquad \tilde{K}_a^* = \Sigma \mathcal{V}_a{}^A K_A^* \qquad \tilde{K}_{\hat{a}}^* = \Sigma \mathcal{V}_{\hat{a}}{}^A K_A^*$$

$$\tilde{K}_a^* = \Sigma \mathcal{V}_a{}^A K_A^* \qquad \tilde{K}_{\hat{a}}^* = \Sigma \mathcal{V}_{\hat{a}}{}^A K_A^*$$

where
$$\Sigma \in O(1,1)$$
, $\{\mathcal{V}_A{}^a, \mathcal{V}_A{}^{\hat{a}}\} \in SO(5,n)$, $a=1,\ldots,5, \hat{a}=1,\ldots,n$

$$\eta_{AB} = \delta_{ab} \, \mathcal{V}_A{}^a \mathcal{V}_B{}^b - \delta_{\hat{ab}} \, \mathcal{V}_A{}^{\hat{a}} \mathcal{V}_B{}^{\hat{b}} \quad M_{AB} = \delta_{ab} \, \mathcal{V}_A{}^a \mathcal{V}_B{}^b + \delta_{\hat{ab}} \, \mathcal{V}_A{}^{\hat{a}} \mathcal{V}_B{}^{\hat{b}}$$

the generalised metric is

$$G = G_0 + G_{10} + G_{16}$$

$$= \Sigma^{-4} \langle V K_0^* \rangle^2 + \Sigma^2 \left(2 \delta^{ab} \mathcal{V}_a{}^C \mathcal{V}_b{}^D \langle V, K_A^* \rangle \langle V, K_B^* \rangle + \frac{c(K_0, V, V)}{\text{vol}} \right)$$

$$- \frac{4\sqrt{2}}{5!} \Sigma^{-1} \epsilon^{abcde} \mathcal{V}_a{}^A \mathcal{V}_b{}^B \mathcal{V}_c{}^C \mathcal{V}_d{}^D \mathcal{V}_e{}^E \langle V, K_A \cdots K_E^* \cdot V \rangle$$

- Example: Sasaki Einstein reduction in type IIB
 - truncation on squashed SE manifolds in 5 d [cassani, faedo, dall'agata 10]
 - the theory is $\mathcal{N}=4$ 5d sugra with two vector multiplets and with $Heis_3 \times U(1)$ gauging and scalars parameterise the coset

$$\mathcal{M}_{\text{scal}} = SO(1,1) \times \frac{SO(5,2)}{SO(5) \times SO(2)}$$

- SE geometry
 - U(1) fibration over a KE base

$$ds_{SE}^2 = ds_{KE}^2 + \eta^2 = \sum_{i=2}^5 (e^i)^2 + (e^1)^2 \qquad F_5 = \kappa \text{vol}_5$$

• 5d SE are SU(2) structure manifolds

$$J_1 = e^2 \wedge e^5 - e^3 \wedge e^4$$

$$J_2 = e^2 \wedge e^4 + e^3 \wedge e^5$$

$$J_3 = e^2 \wedge e^3 - e^4 \wedge e^5$$

$$\Omega = J_1 + iJ_2$$

$$\omega = J_3$$

$$\eta = -e^1$$

- the SU(2) structure extend to a generalised $SU(2) \subset SO(5)$ structure
 - generalised vectors

$$K_4 = \frac{1}{\sqrt{2}}(n\eta - r\text{vol})$$
 $K_6 = \frac{1}{\sqrt{2}}(-r\eta - n\text{vol})$
 $K_{1,2,3} = \frac{1}{\sqrt{2}}\eta \wedge J_{1,2,3}$
 $K_6 = \frac{1}{\sqrt{2}}(n\eta + r\text{vol})$
 $K_7 = \frac{1}{\sqrt{2}}(-r\eta + n\text{vol})$

where n = (1, 0) and r = (0, 1).

• under the commutant $SO(1,1) \times SO(5,2)$ of SU(2) in $E_{6(6)}$

$$K_0 \in \mathbf{1}_{-1}$$
 $K_A \in \mathbf{7}_{1/2}$

- scalar ansatz
 - the scalar parameterise the coset

$$O(1,1) imes rac{SO(5,2)}{SO(5) imes SO(2)}$$

generalised metric is built using the dressed vectors

$$\begin{pmatrix} \tilde{K}_{a} \\ \tilde{K}_{\underline{a}} \end{pmatrix} = e^{-(B^{+} + B^{-} + C)} \cdot m \cdot r \cdot e^{-l} \cdot \begin{pmatrix} K_{a} \\ K_{\underline{a}} \end{pmatrix} = \Sigma^{-1} \begin{pmatrix} \mathcal{V}_{a}{}^{B} \\ \mathcal{V}_{\underline{a}}{}^{B} K_{B} \end{pmatrix}$$

with

$$B^{\alpha} = (n^{\alpha}b_i + r^{\alpha}c_i)J_i, \qquad C = -aJ_3 \wedge J_3$$

$$m^{\alpha}{}_{\beta} = \begin{pmatrix} e^{\frac{\phi}{2}} & 0 \\ e^{\frac{\phi}{2}}C_0 & e^{-\frac{\phi}{2}} \end{pmatrix}, \quad r = \operatorname{diag}\left(e^{V}, e^{U}, e^{U}, e^{U}, e^{U}, e^{U}\right) \qquad l = \frac{\operatorname{tr}(r)}{3} = \frac{4U + V}{3}$$

a lengthy but straightforward computation reproduce the scalars of SE truncation

vector ansatz

$$h_{\mu} = \mathcal{A}_{\mu}^{0} \, \xi \,,$$

$$B_{\mu,1}^{+} = \frac{1}{\sqrt{2}} \left(\mathcal{A}_{\mu}^{4} + \mathcal{A}_{\mu}^{6} \right) \eta \,,$$

$$B_{\mu,1}^{-} = -\frac{1}{\sqrt{2}} \left(\mathcal{A}_{\mu}^{5} + \mathcal{A}_{\mu}^{7} \right) \eta \,,$$

$$C_{\mu,3} = \frac{1}{\sqrt{2}} \, \mathcal{A}_{\mu}^{i} \, j_{i} \wedge \eta \,,$$

$$\tilde{B}_{\mu,5}^{+} = -\frac{1}{\sqrt{2}} \left(\mathcal{A}_{\mu}^{5} - \mathcal{A}_{\mu}^{7} \right) \operatorname{vol} + \frac{1}{\sqrt{2}} \left(\mathcal{A}_{\mu}^{4} + \mathcal{A}_{\mu}^{6} \right) \wedge \eta \,,$$

$$\tilde{B}_{\mu,5}^{-} = -\frac{1}{\sqrt{2}} \left(\mathcal{A}_{\mu}^{4} - \mathcal{A}_{\mu}^{6} \right) \operatorname{vol} + \frac{1}{\sqrt{2}} \left(\mathcal{A}_{\mu}^{5} + \mathcal{A}_{\mu}^{7} \right) \wedge \eta \,.$$

• two-form ansatz

$$B_{\mu\nu,0+} = \frac{1}{\sqrt{2}} \left(\mathcal{B}_{\mu\nu\,7} - \mathcal{B}_{\mu\nu\,5} \right) ,$$

$$B_{\mu\nu,0-} = \frac{1}{\sqrt{2}} \left(\mathcal{B}_{\mu\nu\,6} - \mathcal{B}_{\mu\nu\,4} \right) ,$$

$$C_{\mu\nu,2} = \frac{1}{\sqrt{2}} \mathcal{B}_{\mu\nu\,i} j_i ,$$

$$\tilde{B}_{\mu\nu,4+} = \frac{1}{\sqrt{2}} \left(\mathcal{B}_{\mu\nu\,4} + \mathcal{B}_{\mu\nu\,6} \right) \text{vol}_4 + \frac{1}{\sqrt{2}} \left(\mathcal{B}_{\mu\nu\,7} - \mathcal{B}_{\mu\nu\,5} \right) ,$$

$$\tilde{B}_{\mu\nu,4-} = -\frac{1}{\sqrt{2}} \left(\mathcal{B}_{\mu\nu\,5} + \mathcal{B}_{\mu\nu\,7} \right) \text{vol}_4 + \frac{1}{\sqrt{2}} \left(\mathcal{B}_{\mu\nu\,6} - \mathcal{B}_{\mu\nu\,4} \right) .$$

- gauge group → Dorfman derivative
 - ullet the embedding tensor of ${\cal N}=4$ sugra [schon, weidner 06]

$$(\xi_A, \xi_{AB} = \xi_{[AB]}, f_{ABC} = f_{ABC]}) \longrightarrow \begin{cases} f_{[AB}{}^E f_{CD]E} = 0 \\ \xi_A{}^D f_{DBC} = 0 \\ \xi_A = 0 \end{cases}$$

Dorfman derivative

$$L_{K_{\mathcal{A}}}K_{\mathcal{B}} = X_{\mathcal{A}\mathcal{B}}{}^{\mathcal{C}}K_{\mathcal{C}} \qquad \Longrightarrow_{\mathcal{A}=(0,A)} \qquad \begin{cases} X_{AB}{}^{\mathcal{C}} = -f_{AB}{}^{\mathcal{C}} \\ X_{0A}{}^{\mathcal{B}} = -\xi_{A}{}^{\mathcal{B}} \end{cases}$$

• in this case

$$X_{01}^{2} = -X_{02}^{1} = 3,$$

$$X_{04}^{5} = -X_{05}^{4} = -X_{04}^{7} = -X_{07}^{4} = X_{05}^{6} = X_{06}^{5} = -X_{06}^{7} = X_{07}^{6} = \frac{\kappa}{2},$$

$$X_{34}^{5} = -X_{34}^{7} = -X_{35}^{4} = X_{35}^{6} = X_{36}^{5} = -X_{36}^{7} = -X_{37}^{4} = X_{37}^{6} = \sqrt{2},$$

$$X_{45}^{3} = X_{47}^{3} = -X_{56}^{3} = X_{67}^{3} = \sqrt{2},$$

• the embedding tensor components are

$$\xi_{12} = 3$$
, $\xi_{45} = \xi_{47} = -\xi_{56} = \xi_{67} = \frac{\kappa}{2}$, $f_{345} = f_{347} = -f_{356} = f_{367} = \sqrt{2}$.

• the gauge algebra is $Heis_3 \times U(1)$

SUMMARY AND OUTLOOK

- Generalised Geometry is a powerful framework to study consistent truncations with different amount of susy
 - the truncation ansatze are associated to generalised structures
 - the intrinsic torsion of the G-structure must contains only singlets
 - the geometry determines all the features of the lower-dimensional gauged supergravity
 - amount of supersymmetry
 - scalar coset manifold
 - number of gauge and tensor fields, and the gauging
- Examples
 - consistency of sphere reductions [lee, strickland-constable, waldram 14; hohm, samtleben 14), ...]
 - CONSISTENT Truncations for massive IIA [ciceri, guarino, inverso 16; cassani, de felice, m.p. strickland constable, waldram 16]
 - half-maximal truncations of M-theory on S^4 and of type IIB on β -deformed backgrounds [cassani, josse, m.p., waldram 19]

- Consistent reductions are not a mathematical curiosity
 - establish a map between sugra theories in different dimensions
 - insight on the higher dimensional origin of the lower dimensional gauge symmetries
 - powerful tool in AdS/CFT
 - embed into string theory AdS vacua, black holes, domain walls, and non-relativistic backgrounds