CONSISTENT TRUNCATIONS WITH DIFFERENT AMOUNT OF SUPERSYMMETRY

[D. CASSANI, G. JOSSE, M.P, C., D. WALDRAM, arXiv:1907.06730]

INTRODUCTION

- A major question in string theory/sugra is how to derive lower dimensional effective actions
- effective low-dimensional theories in string compactifications
- gravity solutions in the gauge/gravity duality
- Look for 10D solutions of the form

$$
\begin{aligned}
M_{10} & =X_{10-d} \times M_{d} \\
\text { maximally symmetric } & \hookleftarrow \quad \hookrightarrow \text { compact }
\end{aligned}
$$

- expand the 10d field in harmonics on M_{d}
- obtain a $10-d$ action with infinite tower of KK modes
- truncate the theory to a finite set of fields in a consistent way
- no dependence on the internal manifold in the eom and susy variations
- all 10-d solutions lift to solutions of the higher dimensional ones
- Typically consistent truncations are based on the geometric properties of the internal manifold
- cohomologies on Calabi-Yau manifolds \rightarrow massless modes
- symmetries of group-, coset- and G-structure manifolds \rightarrow invariant modes and thus they used to be rare and non-trivial
- Things have changed thanks to new formulations of type II and M-theory

- GCG/EGG: Generalised Complex and/or Exceptional Generalised Geometry
where
- isometries and p-form gauge symmetries have a geometrical interpretation
- role of the U-duality groups in the higher-dimensional theory
- Sphere reductions are a good example
- consistency is not guaranteed by symmetry
- only S^{1}, S^{3}, anf S^{7} are parallelisable
- understanding of such reduction requires explicit use of the U-duality symmetry
- reformulation with manifest $S U(8)$ symmetry [de Wit and Nicolia $87 . .$.
- generalised Scherck-Schwarz reductions in EGG or EFT ${ }_{\text {|ee, stricklanadcoonstale, waldram 14; }}$ hohm, samtleben 14, ...]
- In this talk I will focus on Generalised Geometry
- link between G-structures and consistent truncations in ordinary geometry
- summary of the main feature of Generalised Geometry
- generalised structures as a unified framework to study truncations with different amount of supersymmetry

CONSISTENT TRUNCATIONS AND ORDINARY G-STRUCTURES

- Conventional Scherk-Schwarz reductions
- consider a group manifold $M_{d}=G$
- decompose all higher-dimensional fields into representations of G
- keeping only the singlet representations gives a consistent truncation
- products of singlet representations never source non-singlet representations
- This extends to G-structure manifolds
- two ingredients: G-structure and intrinsic torsion
- A d-dimensional manifold M_{d} has a G_{S}-structure if (equivalently)
- its structure group is reduced to $G_{S} \subset G L(d)$
- $\exists G_{S}$-invariant, no-where-vanishing tensors, Ξ^{i}
- Ex: $\mathbf{a} G_{S}=O(d)$ structure defines a set of orthonormal frames \Longleftrightarrow an invariant metric g
- Intrinsic torsion for a $G_{S} \subset O(d)$ structure
- consider the action of the Levi-Civita connection on the G_{S}-invariant tensors

$$
\begin{aligned}
& \nabla_{m} \Xi_{i}{ }^{n_{1} \ldots n_{r}}{ }_{p_{1} \ldots p_{s}}=K_{m}{ }^{n_{1}}{ }_{q} \Xi_{i}{ }^{q \ldots n_{r}}{ }_{p_{1} \ldots p_{s}}+\cdots+K_{m}{ }^{n_{r}}{ }_{q} \Xi_{i}{ }^{n_{1} \ldots q}{ }_{p_{1} \ldots p_{s}} \\
&-K_{m}{ }^{q}{ }_{p_{1}} \Xi_{i}{ }^{n_{1} \ldots n_{r}}{ }_{q \ldots p_{s}}+\cdots-K_{m}{ }^{q}{ }_{p_{s}} \Xi_{i}{ }^{n_{1} \ldots n_{r}}{ }_{p_{1} \ldots q},
\end{aligned}
$$

- the tensor K is a section of $T^{*} M \otimes \mathfrak{g}^{\perp}$ with $\Lambda^{2} T^{*} M \simeq s o(d)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$
- the intrinsic torsion is

$$
\left(T_{i n t}\right)_{m n}{ }^{p}=K_{n}{ }^{p}{ }_{m}-K_{m}{ }^{p}{ }_{n}
$$

and it decomposes in representations of G_{S}

- Any field theory on a manifold M_{d} with a G-structure with constant, singlet intrinsic torsion admits a consistent truncation
- decompose all fields into G_{S} representations
- keep only the G_{S} singlets
- if the intrinsic torsion has only singlet components the derivatives of any field are expanded only in singlets
- the equations of motion only contain singlets representations
- The G_{S}-structure also determines field content and gaugings of the consistent truncations
- scalar manifold $\quad H \in \frac{C_{G L(d)}\left(G_{S}\right)}{C_{\text {So(d) })}\left(G_{S}\right)} \quad C_{G}\left(G_{S}\right) \rightarrow$ commutant of G_{S} in G
- vector fields $\quad A^{a} k_{a} \quad k_{a} \rightarrow$ globally defined vectors on $T M$
- gauge group $\left[k_{a}, k_{b}\right]=f_{a b}^{c} k_{c} \quad f_{a b}^{c} \rightarrow \mathrm{~K}$-singlets of the intrinsic torsion

Examples

- Scherk-Schwarz reduction on. $M=G$
- M_{d} admits globally defined left-invariant vector fields $\left\{\hat{e}_{a}\right\}$
- the co-frame e^{a} defines an identity structure (parallelisation)

$$
G_{S}=\mathbb{I} \subset G L(d)
$$

- the fields of the truncated theory are

$$
\begin{array}{ll}
\text { scalars } & \Leftrightarrow h_{a b} \in \frac{G L(d)}{S O(d)} \\
d \text { gauge fields } & \Leftrightarrow \mathcal{A}^{a} \hat{e}_{a}
\end{array}
$$

- the gauge algebra is

$$
\mathcal{L}_{\hat{e}_{a} a} \hat{e}_{b}=f_{a b}^{c} \hat{e}_{c} \quad f_{a b}^{c} \text { constant }
$$

- the truncation ansatz for the metric is

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+h_{a b}\left(e^{a}+\mathcal{A}^{a}\right)\left(e^{b}+\mathcal{A}^{b}\right)
$$

- Reduction on a Sasaki-Einstein manifold M of $d=2 n+1$
- M_{d} admits a $G_{S}=S U(n) \subset G L(d, R)$ structure

$$
\begin{gathered}
\text { real 1-form } \quad \hookleftarrow, \omega, \Omega) \\
\text { real 2-form }
\end{gathered}
$$

with constant singlet intrinsic torsion

$$
\mathrm{d} \eta=2 \omega \quad \mathrm{~d} \omega=0 \quad \mathrm{~d} \Omega=i(n+1) \eta \wedge \Omega
$$

- the fields of the truncated theory are

$$
\begin{array}{ll}
\text { scalars } & \Leftrightarrow h_{a b} \in \frac{\mathbb{R}^{+} \times \mathbb{C}}{U(1)}=\mathbb{R}^{+} \times \mathbb{R}^{+} \\
1 \text { gauge fields } & \Leftrightarrow \mathcal{A} \xi
\end{array}
$$

where ξ is the Reeb vector $\xi\lrcorner \eta=1$.

- the truncation ansatz for the metric is

$$
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+e^{2 U} \mathrm{~d} s_{2 n}^{2}+e^{2 V}(\eta+\mathcal{A})
$$

EXCEPTIONAL GENERALISED GEOMETRY

- Geometrise the gauge symmetries of RR and NS potentials by enlarging the tangent space \longrightarrow generalised tangent bundle E
- the transition functions involve RR and NS potentials as generalised diffeomorphims
- the structure group is the duality group on the internal manifold
- Ex: IIB on $X_{5} \times M_{5}$

	Riemannian	E G G
tangent b.	$T M$	$T \oplus T^{*} \oplus \Lambda^{-} \oplus \Lambda^{5} T^{*} \oplus\left(T^{*} \otimes \Lambda^{6} T^{*}\right)$
structure	$S O(5)$	$E_{6(6)}$
group		U-duality

- Generalise ordinary notions
- generallised vectors and

$$
v \in T M \longrightarrow V \in E \quad \Xi_{i} \longrightarrow Q_{i}
$$

relevant $E_{d(d)}$ groups and representations

D	$E_{d(d)}$	E	$\operatorname{ad} F \subset E \otimes E^{*}$	$N \subset S^{2} E$	\tilde{H}_{d}	\mathcal{S}
4	$E_{7(7)}$	$\mathbf{5 6}$	$\mathbf{1 3 3}$	$\mathbf{1 3 3}$	$S U(8)$	$\mathbf{8} \oplus \overline{\mathbf{8}}$
5	E_{66}	$\mathbf{2 7}$	$\mathbf{7 8}$	$\mathbf{2 7}^{\prime}$	$U S p(8)$	$\mathbf{8}$
6	$\operatorname{Spin}(5,5)$	$\mathbf{1 6}^{s}$	$\mathbf{4 5}$	$\mathbf{1 0}$	$U S p(4) \times U S p(4)$	$(\mathbf{4}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{4})$
7	$S L(5, \mathbb{R})$	$\mathbf{1 0}$	$\mathbf{2 4}$	$\mathbf{5}^{\prime}$	$U S p(4)$	$\mathbf{4}$

- generalised metric

$$
g \in \frac{G L(d)}{S O(d)} \longrightarrow G \in \frac{E_{d(d)}}{H_{d}}
$$

$H_{d} \subset E_{d(d)}$ maximal compact subgroup (R-symmetry)

- Dorfman derivative

$$
\mathcal{L}_{v} v^{\prime m}=v^{n} \partial_{n} v^{\prime m}-\left(\partial \times_{\mathrm{ad}} v\right)_{n}^{m} v^{\prime n} \longrightarrow L_{V} V^{\prime M}=V^{N} \partial_{N} V^{\prime M}-\left(\partial \times_{\mathrm{ad}} V\right)^{M}{ }_{N} V^{\prime N}
$$

- Generalised Levi-Civita connection

$$
D_{M} V^{A}=\partial_{M} V^{A}+\Omega_{M B}^{A}{ }_{B} V^{B} \quad V \in E
$$

such that $D G=0$ and torsion free

- Exceptional G_{S} structure
- \exists a set of generalised tensors Q_{i} that are invariant under $G_{S} \subset E_{d(d)}$ Ex: G defines an H_{d} structure
- with torsion $D_{M} Q_{i}=\Sigma_{M} Q_{i}$, with $\Sigma_{M} \in \Gamma\left(E^{*} \otimes \operatorname{ad} F_{H_{d}}\right)$

CONSISTENT TRUNCATIONS AND EXCEPTIONAL G-STRUCTURES

- Consistent truncations of M-theory or Type II on

$$
X_{D} \times M \quad \begin{cases}\operatorname{dim} M=d & \text { M-theory } \\ \operatorname{dim} M=d-1 & \text { Type II }\end{cases}
$$

are pretty common

- any exceptional G_{S}-structure with constant, singlet intrinsic torsion gives a consistent truncation
- the exceptional G_{S}-structure does not necessarily reduce to an ordinary G_{S}-structure
- the geometrical data of the G_{S}-structure and its singlet intrinsic torsion completely determine the truncated theory

The truncation procedure

- The gen. G_{S} - structure is defined by a set of G_{S}-invariant tensors

$$
Q_{i}=\left\{\mathcal{K}_{A} \in \Gamma(E), J_{\Sigma} \in \Gamma(N)\right\}
$$

such that $D_{M} Q_{i}=\Sigma_{M} Q_{i}$ only contains singlet torsion

- Arrange the bosonic fields into generalised tensors in representations of $G L(D ; R) \times E_{d(d)}$

$$
\begin{array}{ll}
\text { D-dim scalars: } & G_{M N}(x, y) \in \Gamma\left(S^{2} E^{*}\right) \quad \text { (gen. metric) } \\
\text { D-dim vectors: } & \mathcal{A}_{\mu}{ }^{M}(x, y) \in \Gamma\left(T^{*} X \otimes E\right) \\
\text { (gen vector) } \\
\text { D-dim two forms: } & \mathcal{B}_{\mu \nu}{ }^{M N} \in \Gamma\left(\Lambda^{2} T^{*} X \otimes N\right)
\end{array}
$$

- Ex: IIB on $X_{5} \times M_{5}$

$$
\begin{array}{ll}
\text { scalars: } & \left\{g_{m n}, B_{m n}, C_{0}, C_{m n}, C_{m n p q}\right\} \\
\text { vectors: } & \left\{h_{\mu}{ }^{m}, B_{\mu n}, C_{\mu n}, C_{\mu n p q}\right\} \\
\text { two forms: } & \left\{B_{\mu \nu}, C_{\mu \nu}, C_{\mu \nu p q}\right\}
\end{array}
$$

- Expand the fields terms of the invariant tensors

$$
\begin{aligned}
\text { scalars: } & h^{I}(x) \in \mathcal{M}_{\text {scal }}=\frac{C_{E_{d(d)}}\left(G_{S}\right)}{C_{H_{d}}\left(G_{S}\right)}:=\frac{\mathcal{G}}{\mathcal{H}} \\
\text { vectors: } & \mathcal{A}_{\mu}^{\mathcal{A}}(x) K_{\mathcal{A}} \in \Gamma\left(T^{*} X\right) \otimes \mathcal{V} \\
\text { two-forms: } & \mathcal{B}_{\mu \nu}^{\Sigma}(x) J_{\Sigma} \in \Gamma\left(\Lambda^{2} T^{*} X\right) \otimes \mathcal{B}
\end{aligned}
$$

with $\mathcal{V} \subset \Gamma(E) \rightarrow$ vector space spanned by \mathcal{K}_{A}
$\mathcal{B} \subset \Gamma(N) \rightarrow$ vector space spanned by J_{Σ}

- since the intrinsic torsion has only singlet components, the derivatives of any field are expanded only in singlets
- the e.o.m are expanded in invariant tensors and only contain singlets representations
- the truncation is consistent
- The singlet intrinsic torsion gives the embedding tensor of the gauged sugra
[coimbra, strickland-constable, waldram 11, lee, strickland-constable, waldram 14]

$$
\begin{array}{ll}
L_{\mathcal{K}_{A}} Q_{i}=-T_{\text {int }}\left(\mathcal{K}_{A}\right) \cdot Q_{i} & T_{\text {int }}: \Gamma(E) \rightarrow \operatorname{ad} F \\
& T_{\text {int }}\left(\mathcal{K}_{A}\right) G_{S} \text { singlet }
\end{array}
$$

then $T_{\text {int }}$ is the algebra of the commutant group $\mathcal{G}=C_{E_{d(d)}}\left(G_{S}\right)$

$$
-T_{i n t}=\Theta: \mathcal{V} \rightarrow \operatorname{Lie} \mathcal{G}
$$

- Gauge group and generators

$$
L_{K_{\mathcal{A}}} K_{\mathcal{B}}=\Theta_{\mathcal{A}} \cdot K_{\mathcal{B}}=\Theta_{\mathcal{A}}{ }^{\hat{\alpha}}\left(t_{\hat{\alpha}}\right)_{\mathcal{B}}{ }^{\mathcal{C}} K_{\mathcal{C}}=X_{\mathcal{A B}}{ }^{\mathcal{C}} K_{\mathcal{C}}
$$

generators of LieG acting on $\mathcal{V} \hookleftarrow$
with

$$
\left[X_{\mathcal{A}}, X_{\mathcal{B}}\right]=-X_{\mathcal{A B}}{ }^{\mathcal{C}} X_{\mathcal{C}} \quad\left(X_{A}\right)_{B}^{C}=X_{A B}^{C}
$$

Then

- \mathcal{K}_{A} generate the Lie algebra $\operatorname{Lie} G_{\text {gauge }}=\Theta(\mathcal{V}) \subseteq \operatorname{LieG}$
- X_{A} define adjoint representation
- Θ gives the embedding of the gauge group in \mathcal{G}.
- Scalar covariant derivatives

$$
\hat{D}_{\mu} h^{I}=\partial_{\mu} h^{I}-\mathcal{A}_{\mu}^{\mathcal{A}} \Theta_{\mathcal{A}}{ }^{\hat{\alpha}} k_{\hat{\alpha}}{ }^{I}
$$

with $k_{\hat{\alpha}}$ Killing vectors on $\mathcal{M}_{\text {scal }}$ generating the action of the Lie \mathcal{G}

- Gauge transformations of the vectors and two-forms

$$
\begin{aligned}
& \delta \mathcal{A}_{\mu}^{\mathcal{A}}=\partial_{\mu} \Lambda^{\mathcal{A}}+X_{\mathcal{B C}}{ }^{\mathcal{A}}\left(\mathcal{A}_{\mu}^{\mathcal{B}} \Lambda^{\mathcal{C}}-\Xi_{\mu}^{\mathcal{B C}}\right) \\
& \delta \mathcal{B}_{\mu \nu}^{\Sigma}=2 d_{\mathcal{A B}}{ }^{\Sigma}\left(\partial_{[\mu} \Xi_{\nu]}^{\mathcal{A B}}+2 X_{\mathcal{C D}} \mathcal{A}^{\mathcal{A}} \mathcal{A}_{[\mu}^{\mathcal{C}} \Xi_{\nu]}^{\mathcal{D} \mathcal{B}}-\Lambda^{\mathcal{A}} \mathcal{H}_{\mu \nu}^{\mathcal{B}}-\mathcal{A}_{[\mu}^{\mathcal{A}} \delta \mathcal{A}_{\nu]}^{\mathcal{B}}\right)
\end{aligned}
$$

with $\Xi_{\mu}^{\mathcal{A B}}=\Xi_{\mu}{ }^{\Sigma} \tilde{d}_{\Sigma}{ }^{\mathcal{A B}}$

$$
\mathcal{H}^{\mathcal{A}}=\mathrm{d} \mathcal{A}^{\mathcal{A}}+X_{\mathcal{B C}}{ }^{\mathcal{A}}\left(\mathcal{A}^{\mathcal{B}} \wedge \mathcal{A}^{\mathcal{C}}+\mathcal{B}^{\Sigma} \tilde{d}_{\Sigma}{ }^{\mathcal{B C}}\right)
$$

- The number of supersymmetries preserved by the truncation is the number of G_{S}-singlets in the generalised spinor bundle \mathcal{S}

HALF-MAXIMAL SUSY: generalised G-structures

- Compactifications on M_{5} : a half-maximal structure is an $S O(5) \subset E_{6(6)}$ structure
- half-maximal susy corresponds to the breaking

$$
U S p(8) \supset U S p(4)_{R} \times U S p(4)_{S} \quad\left\{\begin{array}{l}
U S p(4)_{R} \mathrm{R} \text {-symmetry } \\
U S p(4)_{S} \text { structure group }
\end{array}\right.
$$

- the half-maximal structure is defined by the singlets of $U S p(4)_{S}$

$$
\begin{aligned}
& E_{6(6)} \supset S O(1,1) \times S O(5,5) \supset S O(1,1) \times S O(5)_{R} \times S O(5)_{S} \\
& \mathbf{2 7} \rightarrow \mathbf{1 0}_{2} \oplus \mathbf{1 6}_{-1} \oplus \mathbf{1}_{-4} \rightarrow(\mathbf{5}, \mathbf{1})_{2} \oplus(\mathbf{1}, \mathbf{5})_{2} \oplus(\mathbf{4}, \mathbf{4})_{-1} \oplus(\mathbf{1}, \mathbf{1})_{-4}
\end{aligned}
$$

- it is defined by six generalised vectors

$$
K_{0}, K_{a} \in \Gamma(E) \quad a=1, \ldots, 5
$$

such that

$$
\begin{aligned}
& c\left(K_{0}, K_{0}, V\right)=0, \quad \forall V \in \Gamma(E) \\
& c\left(K_{0}, K_{a}, K_{b}\right)=\delta_{a b} \mathrm{vol}_{5}
\end{aligned}
$$

where $c\left(V, V^{\prime}, V^{\prime \prime}\right)$ is the $E_{6(6)}$ cubic invariant, $c\left(V, V^{\prime}, V^{\prime \prime}\right)=-\frac{1}{2}\left(\iota_{v} \rho^{\prime} \wedge \rho^{\prime \prime}+\epsilon_{\alpha \beta} \rho \wedge \lambda^{\prime \alpha} \wedge \lambda^{\prime \prime \beta}-2 \epsilon_{\alpha \beta} \iota_{v} \lambda^{\prime \alpha} \sigma^{\prime \prime \beta}\right)+$ symm. perm..

- we also need

$$
\left.\begin{array}{l}
K_{0}^{*}=-\frac{1}{5} \delta^{a b} c\left(K_{a}, K_{b}, \cdot\right) \\
K_{a}^{*}=c\left(K_{0}, K_{a}, \cdot\right)
\end{array}\right\} \in \Gamma\left(\operatorname{det} T^{*} M \otimes E^{*}\right) \quad \begin{aligned}
& \left\langle K_{0}^{*}, K_{0}\right\rangle=1 \\
& \left\langle K_{a}^{*}, K_{b}\right\rangle=\eta_{a b} \\
& \\
& \left\langle K_{0}^{*}, K_{a}\right\rangle=0
\end{aligned}
$$

- The generalised metric is computed using the $S O(5,5)$ structure defined by $\left\{K_{0}, K_{0}^{*}\right\}$

$$
S O(5) \subset S O(5) \times S O(5) \subset S O(5,5) \subset E_{6(6)}
$$

- the $S O(5,5)$ structure gives a decomposition of the generalised tangent bundle

$$
\begin{aligned}
V=V_{0}+\tilde{V}+\Psi \in & E=E_{0}+E_{10}+E_{16} \\
& \mathbf{2 7}=\mathbf{1}+\mathbf{1 0}+\mathbf{1 6}
\end{aligned}
$$

- the generalised metric on E splits into metrics on E_{0}, E_{10} and E_{16}

$$
\begin{aligned}
G & =G_{0}+G_{10}+G_{16} \\
& =\left\langle K_{0}^{*}, V\right\rangle^{2}+\delta^{a b}\left\langle K_{a}^{*}, V\right\rangle\left\langle K_{b}^{*}, V\right\rangle+\frac{c\left(K_{0}, V, V\right)}{\operatorname{vol}}-4 \sqrt{2}\left\langle V, K_{1} \cdots K_{5} \cdot V\right\rangle
\end{aligned}
$$

where

$$
\langle Z, V\rangle=\hat{v}_{m} v^{m}+\hat{\lambda}_{\alpha}^{m} \lambda_{m}^{\alpha}+\frac{1}{3!} \hat{\rho}^{m n p} \rho_{m n p}+\frac{1}{5!} \hat{\sigma}_{\alpha}^{m n p q r} \sigma_{m n p q r}^{\alpha}
$$

- G_{0} : projection onto the singlet,
- G_{10} : an $S O(5) \times S O(5) \subset S O(5,5)$ structure splits E_{10} into positive- and negative-definite eigenspaces

$$
\begin{array}{lll}
E_{10}=C_{+} \oplus C_{-} & \Leftrightarrow & \eta=G_{+}-G_{-} \\
G_{10}=G_{+}+G_{-}
\end{array}
$$

with (K_{a} form a basis for C_{-})

$$
\eta(\tilde{V}, \tilde{V})=\frac{c\left(K_{0}, \tilde{V}, \tilde{V}\right)}{\operatorname{vol}_{5}} \quad G_{-}(V, V)=\delta^{a b}\left\langle K_{a}^{*}, V\right\rangle\left\langle K_{b}^{*}, V\right\rangle
$$

- G_{16} : inner product between $S O(d, d)$ spinors

$$
\begin{array}{cc}
\left\langle\Psi, \Gamma^{(+)} \Psi\right\rangle & \Gamma^{+}=\Gamma_{1}^{+} \cdots \Gamma_{5}^{+} \text {chirality matrix } \\
\hat{\Downarrow} & \\
\left\langle V, K_{1} \cdots K_{5} \cdot V\right\rangle &
\end{array}
$$

- Generalised $S O(5-n)$ structures
- the structure is further reduced to $S O(5-n) \subset S O(5)$ by n globally-defined generalised vectors in the $\mathbf{2 7}$

$$
\begin{array}{cl}
& c\left(K_{0}, K_{0}, V\right)=0, \quad \forall V \in \Gamma(E), \\
\left(K_{0}, K_{A}\right) \quad A=1, \ldots, n+5 \quad c\left(K_{0}, K_{A}, K_{B}\right)=\eta_{A B} \mathrm{vol}_{5} \\
& c\left(K_{A}, K_{B}, K_{C}\right)=0
\end{array}
$$

with $\eta_{M N}=\operatorname{diag}(-1,-1,-1,-1,-1,+1, \ldots,+1)$ flat $S O(5, n)$ metric.

- dual generalised vectors

$$
\begin{aligned}
& K_{0}^{*}=\frac{1}{5+n} \eta^{A B} c\left(K_{A}, K_{B}, \cdot\right) \\
& K_{A}^{*}=c\left(K_{0}, K_{A}, \cdot\right)
\end{aligned}
$$

with $\left\langle K_{0}^{*}, K_{0}\right\rangle=1,\left\langle K_{A}^{*}, K_{B}\right\rangle=\eta_{A B}$ and $\left\langle K_{0}^{*}, K_{a}\right\rangle=0$

- the generalised metric is computed as before

$$
G=\left\langle K_{0}^{*}, V\right\rangle^{2}+\delta^{a b}\left\langle K_{a}^{*}, V\right\rangle\left\langle K_{b}^{*}, V\right\rangle+\frac{c\left(K_{0}, V, V\right)}{\operatorname{vol}}-4 \sqrt{2}\left\langle V, K_{1} \cdots K_{5} \cdot V\right\rangle
$$

- truncation ansatz for the scalars
- the scalar manifold is given by the coset

$$
H \in \frac{C_{E_{6(6)}}(S O(5-n))}{C_{S U(8)}(S O(5-n))}=O(1,1) \times \frac{S O(5, n)}{S O(5) \times S O(n)}
$$

- the generalised metric is built out of dressed generalised vectors

$$
\begin{array}{lll}
\tilde{K}_{0}=\Sigma^{2} K_{0} . & \tilde{K}_{a}=\Sigma^{-1} \mathcal{V}_{a}^{A} K_{A} & \tilde{K}_{\hat{a}}=\Sigma^{-1} \mathcal{V}_{\hat{a}}^{A} K_{A} \\
\tilde{K}_{0}^{*}=\Sigma^{-2} K_{0}^{*} & \tilde{K}_{a}^{*}=\Sigma \mathcal{V}_{a}^{A} K_{A}^{*} & \tilde{K}_{\hat{a}}^{*}=\Sigma \mathcal{V}_{\hat{a}}^{A} K_{A}^{*}
\end{array}
$$

where $\Sigma \in O(1,1),\left\{\mathcal{V}_{A}{ }^{a}, \mathcal{V}_{A}{ }^{\hat{a}}\right\} \in S O(5, n), a=1, \ldots, 5, \hat{a}=1, \ldots, n$

$$
\eta_{A B}=\delta_{a b} \mathcal{V}_{A}^{a} \mathcal{V}_{B}^{b}-\delta_{\hat{a b}} \mathcal{V}_{A}^{\hat{a}} \mathcal{V}_{B}{ }^{\hat{b}} \quad M_{A B}=\delta_{a b} \mathcal{V}_{A}^{a} \mathcal{V}_{B}^{b}+\delta_{a b} \mathcal{V}_{A}{ }^{\hat{a}} \mathcal{V}_{B}^{\hat{b}}
$$

- the generalised metric is

$$
\begin{aligned}
G= & G_{0}+G_{10}+G_{16} \\
= & \Sigma^{-4}\left\langle V K_{0}^{*}\right\rangle^{2}+\Sigma^{2}\left(2 \delta^{a b} \mathcal{V}_{a}^{C} \mathcal{V}_{b}^{D}\left\langle V, K_{A}^{*}\right\rangle\left\langle V, K_{B}^{*}\right\rangle+\frac{c\left(K_{0}, V, V\right)}{\mathrm{vol}}\right) \\
& -\frac{4 \sqrt{2}}{5!} \Sigma^{-1} \epsilon^{a b c d e} \mathcal{V}_{a}{ }^{A} \mathcal{V}_{b}{ }^{B} \mathcal{V}_{c}{ }^{C} \mathcal{V}_{d}{ }^{D} \mathcal{V}_{e}{ }^{E}\left\langle V, K_{A} \cdots K_{E}^{*} \cdot V\right\rangle
\end{aligned}
$$

- Example: Sasaki Einstein reduction in type IIB
- truncation on squashed SE manifolds in 5 d [cassani, faedo, dallagata 10]
- the theory is $\mathcal{N}=45 \mathrm{~d}$ sugra with two vector multiplets and with $\mathrm{Heis}_{3} \times U(1)$ gauging and scalars parameterise the coset

$$
\mathcal{M}_{\mathrm{scal}}=S O(1,1) \times \frac{S O(5,2)}{S O(5) \times S O(2)}
$$

- SE geometry
- $U(1)$ fibration over a KE base

$$
\mathrm{d} s_{S E}^{2}=\mathrm{d} s_{K E}^{2}+\eta^{2}=\sum_{i=2}^{5}\left(e^{i}\right)^{2}+\left(e^{1}\right)^{2} \quad F_{5}=\kappa \mathrm{vol}_{5}
$$

- 5d SE are $S U(2)$ structure manifolds

$$
\begin{aligned}
& J_{1}=e^{2} \wedge e^{5}-e^{3} \wedge e^{4} \quad \Omega=J_{1}+i J_{2} \\
& J_{2}=e^{2} \wedge e^{4}+e^{3} \wedge e^{5} \quad \Longleftrightarrow \quad \omega=J_{3} \\
& J_{3}=e^{2} \wedge e^{3}-e^{4} \wedge e^{5} \quad \eta=-e^{1}
\end{aligned}
$$

- the $S U(2)$ structure extend to a generalised $S U(2) \subset S O(5)$ structure
- generalised vectors

$$
\begin{array}{ll}
& K_{4}=\frac{1}{\sqrt{2}}(n \eta-r \mathrm{vol}) \\
K_{0}=\xi & K_{5}=\frac{1}{\sqrt{2}}(-r \eta-n \mathrm{vol}) \\
K_{1,2,3}=\frac{1}{\sqrt{2}} \eta \wedge J_{1,2,3} & K_{6}=\frac{1}{\sqrt{2}}(n \eta+r \mathrm{vol}) \\
& K_{7}=\frac{1}{\sqrt{2}}(-r \eta+n \mathrm{vol})
\end{array}
$$

where $n=(1,0)$ and $r=(0,1)$.

- under the commutant $S O(1,1) \times S O(5,2)$ of $S U(2)$ in $E_{6(6)}$

$$
K_{0} \in \mathbf{1}_{-1} \quad K_{A} \in \mathbf{7}_{1 / 2}
$$

- scalar ansatz
- the scalar parameterise the coset

$$
O(1,1) \times \frac{S O(5,2)}{S O(5) \times S O(2)}
$$

- generalised metric is built using the dressed vectors

$$
\binom{\tilde{K}_{a}}{\tilde{K}_{\underline{a}}}=e^{-\left(B^{+}+B^{-}+C\right)} \cdot m \cdot r \cdot e^{-l} \cdot\binom{K_{a}}{K_{\underline{a}}}=\Sigma^{-1}\binom{\mathcal{V}_{a}^{B}}{\mathcal{V}_{\underline{a}}^{B} K_{B}}
$$

with

$$
B^{\alpha}=\left(n^{\alpha} b_{i}+r^{\alpha} c_{i}\right) J_{i}, \quad C=-a J_{3} \wedge J_{3}
$$

$$
m^{\alpha}{ }_{\beta}=\left(\begin{array}{cc}
e^{\frac{\phi}{2}} & 0 \\
e^{\frac{\phi}{2}} C_{0} & e^{-\frac{\phi}{2}}
\end{array}\right), \quad r=\operatorname{diag}\left(e^{V}, e^{U}, e^{U}, e^{U}, e^{U}\right) \quad l=\frac{\operatorname{tr}(r)}{3}=\frac{4 U+V}{3}
$$

- a lengthy but straightforward computation reproduce the scalars of SE truncation
- vector ansatz

$$
\begin{aligned}
h_{\mu} & =\mathcal{A}_{\mu}^{0} \xi \\
B_{\mu, 1}^{+} & =\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{4}+\mathcal{A}_{\mu}^{6}\right) \eta \\
B_{\mu, 1}^{-} & =-\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{5}+\mathcal{A}_{\mu}^{7}\right) \eta \\
C_{\mu, 3} & =\frac{1}{\sqrt{2}} \mathcal{A}_{\mu}^{i} j_{i} \wedge \eta \\
\tilde{B}_{\mu, 5}^{+} & =-\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{5}-\mathcal{A}_{\mu}^{7}\right) \operatorname{vol}+\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{4}+\mathcal{A}_{\mu}^{6}\right) \wedge \eta \\
\tilde{B}_{\mu, 5}^{-} & =-\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{4}-\mathcal{A}_{\mu}^{6}\right) \operatorname{vol}+\frac{1}{\sqrt{2}}\left(\mathcal{A}_{\mu}^{5}+\mathcal{A}_{\mu}^{7}\right) \wedge \eta
\end{aligned}
$$

- two-form ansatz

$$
\begin{aligned}
B_{\mu \nu, 0+} & =\frac{1}{\sqrt{2}}\left(\mathcal{B}_{\mu \nu 7}-\mathcal{B}_{\mu \nu 5}\right) \\
B_{\mu \nu, 0-} & =\frac{1}{\sqrt{2}}\left(\mathcal{B}_{\mu \nu 6}-\mathcal{B}_{\mu \nu 4}\right) \\
C_{\mu \nu, 2} & =\frac{1}{\sqrt{2}} \mathcal{B}_{\mu \nu i} j_{i} \\
\tilde{B}_{\mu \nu, 4+} & =\frac{1}{\sqrt{2}}\left(\mathcal{B}_{\mu \nu 4}+\mathcal{B}_{\mu \nu 6}\right) \operatorname{vol}_{4}+\frac{1}{\sqrt{2}}\left(\mathcal{B}_{\mu \nu 7}-\mathcal{B}_{\mu \nu 5}\right) \\
\tilde{B}_{\mu \nu, 4-} & =-\frac{1}{\sqrt{2}}\left(\mathcal{B}_{\mu \nu 5}+\mathcal{B}_{\mu \nu 7}\right) \operatorname{vol}_{4}+\frac{1}{\sqrt{2}}\left(\mathcal{B}_{\mu \nu 6}-\mathcal{B}_{\mu \nu 4}\right)
\end{aligned}
$$

- gauge group \rightarrow Dorfman derivative
- the embedding tensor of $\mathcal{N}=4$ sugra [schon, weidner 06]

$$
\left(\xi_{A}, \xi_{A B}=\xi_{[A B]}, f_{A B C}=f_{A B C])} \quad \longrightarrow\left\{\begin{array}{l}
f_{[A B}^{E} f_{C D] E}=0 \\
\xi_{A}^{D} f_{D B C}=0 \\
\xi_{A}=0
\end{array}\right.\right.
$$

- Dorfman derivative

$$
L_{K_{\mathcal{A}}} K_{\mathcal{B}}=X_{\mathcal{A B}}{ }^{\mathcal{C}} K_{\mathcal{C}} \underset{\mathcal{A}=(0, A)}{\Longrightarrow} \quad\left\{\begin{array}{l}
X_{A B}{ }^{C}=-f_{A B}{ }^{C} \\
X_{0 A}{ }^{B}=-\xi_{A}{ }^{B}
\end{array}\right.
$$

- in this case

$$
\begin{aligned}
& X_{01}{ }^{2}=-X_{02}{ }^{1}=3, \\
& X_{04}^{5}=-X_{05}^{4}=-X_{04}^{7}=-X_{07}^{4}=X_{05}^{6}=X_{06}^{5}=-X_{06}{ }^{7}=X_{07}^{6}=\frac{\kappa}{2}, \\
& X_{34}^{5}=-X_{34}{ }^{7}=-X_{35}{ }^{4}=X_{35}^{6}=X_{36}{ }^{5}=-X_{36}{ }^{7}=-X_{37}^{4}=X_{37}{ }^{6}=\sqrt{2}, \\
& X_{45}{ }^{3}=X_{47}{ }^{3}=-X_{56}^{3}=X_{67}{ }^{3}=\sqrt{2},
\end{aligned}
$$

- the embedding tensor components are

$$
\begin{aligned}
& \xi_{12}=3, \quad \xi_{45}=\xi_{47}=-\xi_{56}=\xi_{67}=\frac{\kappa}{2} \\
& f_{345}=f_{347}=-f_{356}=f_{367}=\sqrt{2}
\end{aligned}
$$

- the gauge algebra is $\mathrm{Heis}_{3} \times U(1)$

SUMMARY AND OUTLOOK

- Generalised Geometry is a powerful framework to study consistent truncations with different amount of susy
- the truncation ansatze are associated to generalised structures
- the intrinsic torsion of the G-structure must contains only singlets
- the geometry determines all the features of the lower-dimensional gauged supergravity
- amount of supersymmetry
- scalar coset manifold
- number of gauge and tensor fields, and the gauging
- Examples
- consistency of sphere reductions $[$ [ee, strickland.constable, wadram 14; hoomm, sammebeen 14), ...]
- consistent truncations for massive IIA [ciecei, suarino, iverso 16; cassani, de eficice, mp. s. strickland constalole, waldram 16]
- half-maximal truncations of M-theory on S^{4} and of type IIB on β-deformed backgrounds [cassani, josse, m.p., wadram 19]
- Consistent reductions are not a mathematical curiosity
- establish a map between sugra theories in different dimensions
- insight on the higher dimensional origin of the lower dimensional gauge symmetries
- powerful tool in AdS/CFT
- embed into string theory AdS vacua, black holes, domain walls, and non-relativistic backgrounds

