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o Noncommutative Geometry <> Quantum geometry:
Continuum differential geometry cannot be the geometry
when both quantum and gravitational effects are present.

On a curved space one must use the methods of Riemannian
geometry but in their quantum version.

o The formalism of noncommutative differential geometry does
not require functions and differentials to commute, so is more
general even when the algebra is classical.



Plan of the talk:
@ Quantum Riemannian Geometry ingredients
@ What is the digital quantum geometry?
@ Digital quantum geometries in n < 3

@ Conclusions



Differential Geometry vs NC Differential Geometry

M - manifold and

C*°(M) - functions on a manifold — ‘coordinate algebra® A

and
Q! space of 1-forms, e.g. — noncommutative differential
differentials: structure:
of differential bimodule (Q!,d) of
df = : @dxu 1-forms with d - obeying the
! Leibniz rule and
fdg = (dg)f — fdg # (dg)f

Bimodule - to associatively multiply such 1-forms by elements of A
from the left and the right.



Quantum Riemannian Geometry
Ingredients of noncommutative Riemannian geometry as quantum
geometry:
o quantum differentials
o quantum metrics
o quantum-Levi Civita connections
o quantum curvature

Ricci and Einstein tensors

©



Quantum differentials

Differential calculus on an algebra A
o Ais a ‘coordinate’ algebra over field k (noncommutative or
commutative)
Definition
A first order differential calculus (Q',d) over A means:
@ Q! is an A-bimodule
@ A linear map d : A — Q! such that

d(ab) = (da)b+adb ,Va,bec A

@ Q! = span{adb}
@ (optional) ker d = k.1 - connectedness condition



Differential graded algebra -DGA

Definition

DGA on an algebra A is:
@ A graded algebra Q = ©,50Q", Q° = A
@ d:Q"— Q"1 st. d2 =0 and

d(wp) = (dw) A p+ (—1)"w Adp

Yw,pe Q, we".

@ A, dA generate Q2
(optional surjectivity condition - if it holds we say it is an
exterior algebra on A)



Quantum metrics
When working with algebraic differential forms by metric we mean

an element
g€ Q' @4 Q1
which is:
o 'quantum symmetric': A(g) =0,
o invertible
in the sense that there exists ( , ): Q'®aQ' - A

(w, )Rid)g=w=(d®( ,w))g YweQ
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Quantum metrics
When working with algebraic differential forms by metric we mean

an element
g€ Q' @4 Q1
which is:
o 'quantum symmetric': A(g) =0,
o invertible
in the sense that there exists ( , ): Q'®aQ' - A

(w, )@idg=w=(do( ,w)g YweQ
o central in the 'coordinate algebra’ A > x*:
[ga Xu] =0

o For a quantum metric with inverse one has a natural
‘quantum dimension’

dim = (', )(g) € k.

The general form of the quantum metric:

g = g,uvdxu ®a dx”



Quantum connections

[Quillen, Karoubi, Michor, Mourad, Dubois-Violette, . . .

o Bimodule connection: V : Q! — Q! @4 Q1
o Qe - Qles 0L,
forac A,we Q!

V(aw) = aVw +da®@ w

V(wa) = (Vw)a+ o(w ® da)



Quantum connections

[Quillen, Karoubi, Michor, Mourad, Dubois-Violette, . . . |

o Bimodule connection: V : Q! — Q! @4 Q1
o Qe - Qles 0L,
forac A,we Q!

V(aw) = aVw +da®@ w

V(wa) = (Vw)a+ o(w ® da)

o Such connections extend to tensor products:

V(w®n) = (Vw)@n+(ooid)(weVn),  wene Qo 0t



Metric compatibility, torsion and curvature
Metric compatible connection:
V(g)=0
Torsion of a connection on Q! is

Tyw=AVw-—dw : Ty : Q' — Q2

We define a quantum Levi-Civita connection (QLC
connection) as metric compatible and torsion free connection.



Metric compatibility, torsion and curvature

Metric compatible connection:
V(g)=0
Torsion of a connection on Q! is
Tyw=AVw-—dw : Ty : Q' — Q2
We define a quantum Levi-Civita connection (QLC
connection) as metric compatible and torsion free connection.
Curvature:

Ryw=([d®id —A(id®V))lVw Ry: Q= Q?e,Q!



Ricci & Einstein tensors
o Ricci tensor:
Ricci = ((, )®id)(id ® i ® id)Ry

with respect to a 'lifting' bimodule map i : Q2 — Q! @4 Q1
such that Ao/ = id.
o Then Ricci scalar is S = (, )Ricci.

[Beggs, Majid, Class. Quantum. Grav.31(2014)]
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Ricci & Einstein tensors

o Ricci tensor:
Ricci = ((, )®id)(id ® i ® id)Ry

with respect to a 'lifting' bimodule map i : Q2 — Q! @4 Q1
such that Ao/ = id.
o Then Ricci scalar is S = (, )Ricci.

o For Einstein tensor one can consider the usual definition
Eins = Ricci — %Sg
but field independent option would be:
Eins = Ricci — aSg, o€k
o one could take Eins = Ricci — ﬁSg

[Beggs, Majid, Class. Quantum. Grav.31(2014)]



Aim

o to study bimodule quantum Riemannian geometries over the
field Fo = {0, 1} of two elements ("digital’ (quantum)
geometries)

o to classify all (parallelisable) such geometries for coordinate
algebras up to dimension n < 3



Aim

o to study bimodule quantum Riemannian geometries over the
field Fo = {0, 1} of two elements ("digital’ (quantum)
geometries)

o to classify all (parallelisable) such geometries for coordinate
algebras up to dimension n < 3

Preview of results:

A rich moduli of examples for n = 3, including 9 that are Ricci
flat but not flat

(with commutative coordinate algebras but with noncommuting
differentials x#x" = x¥x",  xtdxP £ dxPxH,

xt x¥ € A dxP € Q).



Why digital?

Finite field F, = {0,1}
o The choice of the finite field leads to a new kind of
"discretisation scheme’, which adds 'digital’ to quantum
geometry.

o A standard technique in physics and engineering is to replace
geometric backgrounds by discrete approximations such as a
lattice or graph, thereby rendering systems more calculable.

o A repertoire of digital quantum geometries = to test ideas
and conjectures in the general theory if we expect them to
hold for any field, even if we are mainly interested in the
theory over C.



Digital Geometry set up
’Coordinate algebra’ A (unital associative algebra) over F; -
the field of two elements 0, 1.
{x"} - basis of A where x° =1 the unitand p=0,---,n— 1.

Structure constants V¥, ¢ [,

xtx¥ = VI xP.



Digital Geometry set up
’Coordinate algebra’ A (unital associative algebra) over F; -
the field of two elements 0, 1.
{x"} - basis of A where x° =1 the unitand p=0,---,n— 1.

Structure constants V¥, ¢ [,

xtx¥ = VI xP.

We have classified all possible such algebras over IF; up to n < 4.
[S.Majid,A.P.,J.Math.Phys.59 (2018)]



'Coordinate algebras’ over 5 in low dim

{x*} is a basis of A where x° =1 the unitand 4 =0,--- ,n—1
For n =1 There is only one unital algebra of dimension 1
(XOXO — XO)

For n =2 There are 3* inequivalent (commutative) algebras A, B,
C:

A: xIx! =0

B: xIx! = x!

Cxixt=x0 4 xt =14 X1

For n = 3 There are 6* inequivalent (commutative) algebras: A,
B, C, D, E, F and one noncommutative G.

For n = 4 There are 16" inequivalent (commutative) algebras:
A - P and 9 noncommutative ones.

* up to isomorphisms



Differential calculus for coordinate algebra A over [,

o Q! - space of 1-forms with a basis {w'}, i =1,---, m over A
(m < n—1is the dimension of the calculus over A).

o The case m = n — 1 is the ‘universal calculus’.



Differential calculus for coordinate algebra A over [,

Q! - space of 1-forms with a basis {w'}, i =1,---, m over A
(m < n—1is the dimension of the calculus over A).

©

o The case m = n — 1 is the ‘universal calculus’.

Q! = A{w'} (free left module by the product in A)
We require a right action of A specified by structure constants

©

W oxt = ai“l,jx”.u)j, ai",,j € F,.
o the structure constants for the exterior differential d : A — Q1!
dxt = d" ix" W', d*,;i € Fa.

Such calculus is called ‘left parallelisable’.



Differential calculus for coordinate algebra A over [,

o Q! - space of 1-forms with a basis {w'}, i =1,---, m over A
(m < n—1is the dimension of the calculus over A).

o The case m = n — 1 is the ‘universal calculus’.

o Q' = A{w'} (free left module by the product in A)
We require a right action of A specified by structure constants

W oxt = ai“l,jx”.u)j, ai",,j € F,.
o the structure constants for the exterior differential d : A — Q1!
dxt = d" ix" W', d*,;i € Fa.

Such calculus is called ‘left parallelisable’.

o Q! also needs to satisfy the surjectivity condition and
optionally to be connected.



Classification of quantum digital geometries for n = 3

o We have considered each of the 6 commutative (A-F) and one
noncommutative (G) algebras with two dimensional Q! (the
universal calculus) and with 1 dimensional Q1.

o To keep things simple, for the universal calculus, we
considered geometries with basis w! = dx!, w? = dx? for Q!
and we take 1 dimensional Q2



Digital quantum geometries - one algebra example

o From the 6 algebras (A - F) let's choose algebra D (an
example of 3-dimensional unital commutative algebra with the
basis 1, x1, x?).

o Relations: x'x! = x2, x%2x% =x!, x!x?=x14x%=xx!

o Universal differential calculus with relations:
dxl.x? = xtdx® + dxt + dx?, dx®xt = x%dxt + dx! + dx?

[dx!, x!] = dx?, [dx?, x°] = dx!

o This algebra (D) is isomorphic to F2Z3 the group algebra on
the group Z3 since z = 1 + x! obeys (z)?> = 1 + x? and
(z)3=1.



Quantum metric on FyZ3

We define a metric as an invertible element of g € Q! ®p QL.

g =gjw ®w =g ©w, gD, gu€F,

o Quantum metric (central and quantum symm.) on D = FyZs3:
gp = 2w @ w! + Bz(w! ® W? + w? ® W) + fuw? ® W?
with 8 - a functional parameter.

o We take special cases for § =1, z, z?

o For these there are 12 QLC connections (11 of them not flat!
Ry # 0 - purely 'quantum’ phenomenon.)



Digital quantum connection and curvature

must also have the structure constants in F:
Vo' =T mx’wf @ w™, o (wi ® wf) = aijukmx“wk Qw™.
For curvature Ry : Q! — Q% @p Q! we require the same:
Ry =(d®id —id A V)V

Ryw' = pij#X“VOI Quw = pijVOI R w!



Q2

Differential graded or ‘exterior algebra’ Q = @;Q' (with D = Q°
and Q1)

Qo

For Q2 = D.Vol we take 1-dimensional free module over D,
with basis Vol.

If Vol exists we define
w' AW = € x"Vol = €¥Vol, €, €Ty, €/ € D.

and require it to be central in D.

wedge product A - associative

(including the action by elements of D, centrality of the
volume form — certain commutation relations between
w' A W)

we extend d to general 1-forms by the Leibniz rule



Once we have specified at least Q2, we can:

o ask for our metric to be ‘quantum symmetric’' in the sense

Ng) =0

o Look for a quantum Levi-Civita connection (QLC):
Vg=Tu=0



QLC connectlons and curvature on ]F2Z
Recall: = B22w! ®@ w! 4 Bz(w! ® w? + w? ®w)+5w2®w2.
For 8 = 1 one of QLC's looks like this:

Voiw' =220 @ w' + (14 2)(w' ® W’ + 0’ ® w') + '’ ® W
Voiiw’ = 22w @ w' + z0' @ w? + 220’ @w' + W’ ® W’
RvD_“o.):l = Vol ®w' + 2°Vol ® W’ Rlel_lwz = 2’Vol ® w';



QLC connectlons and curvature on ]F2Z
Recall: gp = fZ%w! @ w! + Bz(w! ® w? + w? ®w)+ﬁw2®w2.
For 8 = 1 one of QLC's looks like this:
Vpiiw' = 220t @ wt + 1+ z)(w1 QW+ ® wl) +wl®w?
Vpiiw? = 22w @ w' 4 2w’ @ ' + 220 @ W' + W ® W

'=Vol®uw' + 2*Vol®w’, Ry, ,,w’ =2z"Vol®w';

Rvp. 1w

There are 3 more for this choice of 3 (none flat):
VD_szl = 2w @ w! -%—z(w1 Ruwlt+w?® ul) + w? @ w?

VD_LZL/JZ = 2w? ® w?

1 2 2 1 2
RYp 1w =Ryup ,w" = (1+z )Vol@(w + w’);

VD'1_3u1 =(z+ z2)u.)1 ® wh + 1+ z)u.)1 ® w? + 2? ) w! + (1 + z2) w? ® w?
Vpisw’ = 2w @w + (z+ zz) PR+’ g’

RVD>1_3w1 = Vol ® w? + 22Vol ® wz, RVD>1_3“’2 = 2*Vol ® wl;
Vpraw' =+ @w! 20! @ W + (1 + 2 @ W' + (1 + zz) w? @ w?

VD.1_4w2 = zw! ® w? + (z +12) w? ® w?

RVD,1_4“)1 = Vol ® wl + 22V01 ® w2, RVD,1_4“)2 = 12V01 ® wlA

There are further 8 QLCs for 8 = z, 8 =.z2 {only-1 flat).



The Ricci tensor

Ricci = ((, )®id)(id ® i @ id)Ry

o ‘lifting’ bimodule map i : Q% — Q! ®4 Q! such that Ao/ =id.
o When Q2 is 1-dim (with central basis Vol) then:

i(Vol) = ljw' @/, ;€A

for some central element of Q! ®4 Q! such that A(/) = Vol.
o | - not unique (we can add any functional multiple ~vg for
v € A if g is central and quantum symmetric)
Then
Ricci = gj((w', ) ®1d)(i ® id)Ryw’ = gjj(w', o/ k lmnw™)w" @ wk.



o We are interested in the choices for v when
V - Ricci =0

where V- means to apply V in the element of Q! ®p Q1
(same as for the metric) and then contract the first two
factors with (, ).



o We are interested in the choices for v when
V - Ricci =0

where V- means to apply V in the element of Q! ®p Q1
(same as for the metric) and then contract the first two
factors with (, ).

For D = F»7Z3 we take
i(Vol) = 22w? @ w! + zw? @ w? + g

where y € D, v =71+ Yz +7322-



Ricci tensor and scalar for F,Z5

Metric QLC Ricci (central for all ;) S = (,)(Ricci) q. symmetric
(gg-lz 1 Vb.12 Ricci = 0 sS=0 —
el — 2\ 1 1 v =0,y =1:
Ricci = ('\/3 + Y2z ) W RQw Ricci —
gg-;; + (727 +132%) ! ® w2 e (1 +p2)w! @ wl
VD14 +(ntztm?)? @wt 1+ ysz)aw @ W
+(1+v3z+ 22)w2®w2 +(1+’Y3Z)Z‘§ ®L§
77+ m +(1+ 7132)e? @ w
fg-i 2 Vp.oa Ricci = 0 sS=0 —
Ricci = (1 t vz + wlzz) Y2 =0=13:
v ! ® st Ricci =
D.2.1
Vp.2o2 + ’73+’71Z+22)w1®w2 1+ O + )% ®wz
Vo3 A 1 tmz ot Z)Zw ©w
-2. + 71z+(1+’72)z)w ®w (71+Z)Zw ®W1
+(n+ (L+72)2) w? ® w? o +2)w’ ® w?
(ggi zz) Vpi3ai Ricci = 0 (flat connection) S=0 —
Ricci = (’Yl +(1+72)z)
v wl [ w
D.3.2 2 1
VD33 } + (1 2tz ) w Qw ++ ;/%Z never gsymm
VD34 +(v2 + 132) w2 @ Wt "
+ (’73 + ’ygzz w? ® w?

For each metric one connection is Ricci flat.

dimp; =dimp, = 1,dimp 3 =0.



The Einstein tensor

Eins = Ricci + Sg
= (Ricciyj + Spgpij V77 u)xHw' @ o

Note: the usual definition Eins = Ricci — %Sg makes no sense
over [Fs.

In F> we actually have only two choices, 0,1, for the coefficient of
Sg.



We are interested in the values of Eins and if this is not zero (as it
would be classically for a 2D manifold) then we look when

V- -Eins =0

V - Eins = V- Ricci+ ((, ) ®id)(dS ® g) = V - Ricci 4 dS

given the properties of a connection, the inverse metric and
Vg =0 for a QLC.



The Einstein tensor on [F»7Z;3

Metric QLC Eins = Ricci + Sg Ricci gsymm V - Eins =0
&p.1 Vp.1.2 Eins =0 — —
Vpia Eins = (71 + 2(1 + 72)) w? ® w? v =0:
Vp.i3 4 (f[ i i 2 ))w2 & w? Eins =0 Eins = (1 + ’yz)zwz ® w!
Vb.1.4 e +1+m)w’®w?
&p.2 V.24 Eins = 0 — p—
i =0:
gD'z‘l Eins = (v2 + 132)) ! ® w' Bine — 0 %3 O
D.2.2 + (45 + szz) wl ® w2 ins = ins = '\/220.)1 ® L;JZ
V.23 3 +Y2z°w” Q@ w
&D.3 Vb3 Eins = 0 (flat connection) — —
Eins = ("/22 + W3Zz) w' @ w! M =0="3 | .
Vp.3.2 + (72 + 732) w! ® w? Eins = 'yzlzw @;w
VD33 (140 + 22) W @ wh never gsymm +rw' @ w
VD34 72T R +(1+72)w® ®w
+(mz+ 1+ )z )w ® w +(1 + 72)2%w? @ W?

Metrics where dim = 1 have zero Einstein tensor when Ricci is
lifted to be quantum symmetric.
The metric gp 3 where dim = 0 has two lifts for the non-flat

connections with V - Eins =0 and § = 1.



Digital Quantum Geometries on D = [F»Zs:
o for each metric one connection is Ricci flat for all lifts (and
only actually flat for gp 3)
o and the other three connections all have the same Ricci
curvature
o when Ricci is quantum symmetric (choice of «;) then Eins = 0
o we can chose the lift so that V - Eins =0
gp1i: m=7v3=0,7%=1 Ricci=gp1, S=1, V-Ricci=0, Eins=0
gp2: Mm=7=7v=0, Ricci=gpo, S=1, V-Ricci=0, Eins=0
gn3: mMm=173=0, S=1, V-Ricci=V-Eins=0, Eins#0
where the last case is unusual in that classically the Einstein tensor in 2D would

vanish , but this is also the ‘unphysical’ case where dim = 0.



Similar results were obtained for two other (commutative)
algebras B = F»(Z3) and F = Fg.

We have also investigated the properties of the geometric
Laplacians:
A=(,)Vd: A—A

For algebras A, C, E, G there are no invertible central metrics
for the universal calculus.

All results - see S.Majid, A.P., J.Phys. A 2019 (in press)
[arXiv:1807.08492].



Quantum symmetries

[work in progress]

o In 3 dimensions we are currently classifying all the Hopf
algebras on associative algebras (A-G) over F.

o Only B =T(Z3) and D = F»Z3 admit a Hopf algebra
structure (namely the unique one indicated by the notation as
group algebra or function algebra on a group).

o The algebras B,C,D,G admit many bialgebras (but no further
Hopf algebras) and the algebras AE,F admit no bialgebra
structures.



If we make a graph where A—B means that algebra A admits
bialgebra structure with coalgebra isomorphic to the dual of B then
we can graph our results as

{} 3
N\

De— B3 G
NG/

In the Hopf algebra (as opposed to bialgebra) version we have only

B+ D



Summary

o we have mapped out the landscape of all reasonable up to 2D
quantum geometries over the field F» on unital algebras of
dimension n < 3

o the interesting ones up to this dimension have commutative
coordinate algebras

o even under this restricted set of assumptions there are a lot of
such ‘digital’ finite quantum geometries

o In n = 3 with 2-dim Q! we find that only three of the six
algebras, namely B= Fy(Z3), D= F2Z3, F= Fg, meet our full
requirements on the calculus including Q2 as top form and
existence of a quantum symmetric metric.



Conclusions

o For each of them we find an essentially unique calculus and
a unique quantum metric up to an invertible functional
factor

o When these quantum metrics admit QLC, each pair produces
‘digital quantum Riemannian geometry’ of which some are flat
in the sense of zero Riemann curvature Ry

o For the Ricci tensor and scalar S: we have found 2, 2, 5 (for
alg. B, D, F resp.) - a total of 9 interesting Ricci flat but
not flat quantum geometries over Fs.

o These deserve more study in view of the important role of
Ricci flat metrics in classical GR (as vacuum solutions of
Einstein's equations).



Perspectives

o Finite field setting allows one to test definitions and
conjectures - full classification possible.

o Quantum gravity is normally seen as a weighted 'sum’ over all
possible metrics

o once we have a good handle on the moduli of classes of small
F,s quantum Riemannian geometries, we could consider
quantum gravity, for example as a weighted sum over the
moduli space of them much as in lattice approximations, but
now finite.



Perspectives

o Finite field setting allows one to test definitions and
conjectures - full classification possible.

o Quantum gravity is normally seen as a weighted 'sum’ over all
possible metrics

o once we have a good handle on the moduli of classes of small
F,s quantum Riemannian geometries, we could consider
quantum gravity, for example as a weighted sum over the
moduli space of them much as in lattice approximations, but
now finite.

Thank you for your attention!



