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Noncommutative Geometry ↔ Quantum geometry:
Continuum differential geometry cannot be the geometry
when both quantum and gravitational effects are present.

On a curved space one must use the methods of Riemannian
geometry but in their quantum version.

The formalism of noncommutative differential geometry does
not require functions and differentials to commute, so is more
general even when the algebra is classical.
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Plan of the talk:

1 Quantum Riemannian Geometry ingredients

2 What is the digital quantum geometry?

3 Digital quantum geometries in n ≤ 3

4 Conclusions
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Differential Geometry vs NC Differential Geometry

M - manifold and
C∞(M) - functions on a manifold

→ ’coordinate algebra’ A

and

Ω1 space of 1-forms, e.g.
differentials:

df =
∑
i

∂f

∂xµ
dxµ

f dg = (dg)f

→ noncommutative differential
structure:
differential bimodule (Ω1, d) of
1-forms with d - obeying the
Leibniz rule and
→ f dg 6= (dg)f

Bimodule - to associatively multiply such 1-forms by elements of A
from the left and the right.
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Quantum Riemannian Geometry

Ingredients of noncommutative Riemannian geometry as quantum
geometry:

quantum differentials

quantum metrics

quantum-Levi Civita connections

quantum curvature

Ricci and Einstein tensors
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Quantum differentials

Differential calculus on an algebra A

A is a ‘coordinate’ algebra over field k (noncommutative or
commutative)

Definition
A first order differential calculus (Ω1, d) over A means:

1 Ω1 is an A-bimodule

2 A linear map d : A→ Ω1 such that

d(ab) = (da)b + adb , ∀a, b ∈ A

3 Ω1 = span{adb}
4 (optional) ker d = k .1 - connectedness condition
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Differential graded algebra -DGA

Definition
DGA on an algebra A is:

1 A graded algebra Ω = ⊕n≥0Ωn, Ω0 = A

2 d : Ωn → Ωn+1, s.t. d2 = 0 and

d(ωρ) = (dω) ∧ ρ+ (−1)nω ∧ dρ

∀ω, ρ ∈ Ω, ω ∈ Ωn.

3 A,dA generate Ω
(optional surjectivity condition - if it holds we say it is an
exterior algebra on A)
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Quantum metrics
When working with algebraic differential forms by metric we mean
an element

g ∈ Ω1 ⊗A Ω1

which is:

’quantum symmetric’: ∧(g) = 0,
invertible
in the sense that there exists ( , ) : Ω1 ⊗A Ω1 � A

((ω, )⊗ id)g = ω = (id ⊗ ( , ω))g ∀ω ∈ Ω1

central in the ’coordinate algebra’ A 3 xµ:

[g , xµ] = 0

For a quantum metric with inverse one has a natural
‘quantum dimension’

dim = ( , )(g) ∈ k .

The general form of the quantum metric:

g = gµνdx
µ ⊗A dxν

[Madore,....,Beggs,Majid]

8/36



Quantum metrics
When working with algebraic differential forms by metric we mean
an element

g ∈ Ω1 ⊗A Ω1

which is:

’quantum symmetric’: ∧(g) = 0,
invertible
in the sense that there exists ( , ) : Ω1 ⊗A Ω1 � A

((ω, )⊗ id)g = ω = (id ⊗ ( , ω))g ∀ω ∈ Ω1

central in the ’coordinate algebra’ A 3 xµ:

[g , xµ] = 0

For a quantum metric with inverse one has a natural
‘quantum dimension’

dim = ( , )(g) ∈ k .

The general form of the quantum metric:

g = gµνdx
µ ⊗A dxν

[Madore,....,Beggs,Majid]

8/36



Quantum metrics
When working with algebraic differential forms by metric we mean
an element

g ∈ Ω1 ⊗A Ω1

which is:

’quantum symmetric’: ∧(g) = 0,
invertible
in the sense that there exists ( , ) : Ω1 ⊗A Ω1 � A

((ω, )⊗ id)g = ω = (id ⊗ ( , ω))g ∀ω ∈ Ω1

central in the ’coordinate algebra’ A 3 xµ:

[g , xµ] = 0

For a quantum metric with inverse one has a natural
‘quantum dimension’

dim = ( , )(g) ∈ k .

The general form of the quantum metric:

g = gµνdx
µ ⊗A dxν

[Madore,....,Beggs,Majid]

8/36



Quantum metrics
When working with algebraic differential forms by metric we mean
an element

g ∈ Ω1 ⊗A Ω1

which is:

’quantum symmetric’: ∧(g) = 0,
invertible
in the sense that there exists ( , ) : Ω1 ⊗A Ω1 � A

((ω, )⊗ id)g = ω = (id ⊗ ( , ω))g ∀ω ∈ Ω1

central in the ’coordinate algebra’ A 3 xµ:

[g , xµ] = 0

For a quantum metric with inverse one has a natural
‘quantum dimension’

dim = ( , )(g) ∈ k .

The general form of the quantum metric:

g = gµνdx
µ ⊗A dxν

[Madore,....,Beggs,Majid]

8/36



Quantum connections

[Quillen, Karoubi, Michor, Mourad, Dubois-Violette, . . . ]

Bimodule connection: ∇ : Ω1 → Ω1 ⊗A Ω1,
σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1,
for a ∈ A, ω ∈ Ω1

∇(aω) = a∇ω + da⊗ ω

∇(ωa) = (∇ω)a + σ(ω ⊗ da)

Such connections extend to tensor products:

∇(ω⊗η) = (∇ω)⊗η+(σ⊗id)(ω⊗∇η), ω⊗η ∈ Ω1⊗AΩ1
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Metric compatibility, torsion and curvature

Metric compatible connection:

∇(g) = 0

Torsion of a connection on Ω1 is

T∇ω = ∧∇ω − dω : T∇ : Ω1 → Ω2

We define a quantum Levi-Civita connection (QLC
connection) as metric compatible and torsion free connection.

Curvature:

R∇ω = (d⊗ id − ∧(id ⊗∇))∇ω R∇ : Ω1 → Ω2 ⊗A Ω1
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Ricci & Einstein tensors

Ricci tensor:

Ricci = (( , )⊗ id)(id⊗ i ⊗ id)R∇

with respect to a ’lifting’ bimodule map i : Ω2 → Ω1 ⊗A Ω1

such that ∧ ◦ i = id.

Then Ricci scalar is S = ( , )Ricci.

For Einstein tensor one can consider the usual definition

Eins = Ricci− 1

2
Sg

but field independent option would be:

Eins = Ricci− αSg , α ∈ k

one could take Eins = Ricci− 1
dimSg

[Beggs,Majid,Class.Quantum.Grav.31(2014)]
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Aim

to study bimodule quantum Riemannian geometries over the
field F2 = {0, 1} of two elements (’digital’ (quantum)
geometries)

to classify all (parallelisable) such geometries for coordinate
algebras up to dimension n ≤ 3

Preview of results:
A rich moduli of examples for n = 3, including 9 that are Ricci
flat but not flat
(with commutative coordinate algebras but with noncommuting
differentials xµxν = xνxµ, xµdxρ 6= dxρxµ,
xµ, xν ∈ A, dxρ ∈ Ω1 ).



12/36

Aim

to study bimodule quantum Riemannian geometries over the
field F2 = {0, 1} of two elements (’digital’ (quantum)
geometries)

to classify all (parallelisable) such geometries for coordinate
algebras up to dimension n ≤ 3

Preview of results:
A rich moduli of examples for n = 3, including 9 that are Ricci
flat but not flat
(with commutative coordinate algebras but with noncommuting
differentials xµxν = xνxµ, xµdxρ 6= dxρxµ,
xµ, xν ∈ A, dxρ ∈ Ω1 ).



13/36

Why digital?

Finite field F2 = {0, 1}
The choice of the finite field leads to a new kind of
’discretisation scheme’, which adds ’digital’ to quantum
geometry.

A standard technique in physics and engineering is to replace
geometric backgrounds by discrete approximations such as a
lattice or graph, thereby rendering systems more calculable.

A repertoire of digital quantum geometries ⇒ to test ideas
and conjectures in the general theory if we expect them to
hold for any field, even if we are mainly interested in the
theory over C.



Digital Geometry set up

’Coordinate algebra’ A (unital associative algebra) over F2 -
the field of two elements 0, 1.

{xµ} - basis of A where x0 = 1 the unit and µ = 0, · · · , n − 1.

Structure constants V µν
ρ ∈ F2

xµxν = V µν
ρx
ρ.

We have classified all possible such algebras over F2 up to n ≤ 4.
[S.Majid,A.P.,J.Math.Phys.59 (2018)]
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’Coordinate algebras’ over F2 in low dim

{xµ} is a basis of A where x0 = 1 the unit and µ = 0, · · · , n − 1

For n = 1 There is only one unital algebra of dimension 1
(x0x0 = x0)

For n = 2 There are 3∗ inequivalent (commutative) algebras A, B,
C:
A: x1x1 = 0
B: x1x1 = x1

C: x1x1 = x0 + x1 = 1 + x1.

For n = 3 There are 6∗ inequivalent (commutative) algebras: A,
B, C, D, E, F and one noncommutative G.

For n = 4 There are 16∗ inequivalent (commutative) algebras:
A - P and 9 noncommutative ones.

∗ up to isomorphisms
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Differential calculus for coordinate algebra A over F2

Ω1 - space of 1-forms with a basis {ωi}, i = 1, · · · ,m over A
(m ≤ n − 1 is the dimension of the calculus over A).

The case m = n − 1 is the ‘universal calculus’.

Ω1 = A.{ωi} (free left module by the product in A)
We require a right action of A specified by structure constants

ωi .xµ = aiµνjx
ν .ωj , aiµνj ∈ F2.

the structure constants for the exterior differential d : A→ Ω1

dxµ = dµνix
ν .ωi , dµνi ∈ F2.

Such calculus is called ‘left parallelisable’.

Ω1 also needs to satisfy the surjectivity condition and
optionally to be connected.
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Classification of quantum digital geometries for n = 3

We have considered each of the 6 commutative (A-F) and one
noncommutative (G) algebras with two dimensional Ω1 (the
universal calculus) and with 1 dimensional Ω1.

To keep things simple, for the universal calculus, we
considered geometries with basis ω1 = dx1, ω2 = dx2 for Ω1

and we take 1 dimensional Ω2
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Digital quantum geometries - one algebra example

From the 6 algebras (A - F) let’s choose algebra D (an
example of 3-dimensional unital commutative algebra with the
basis 1, x1, x2).

Relations: x1x1 = x2, x2x2 = x1, x1x2 = x1 + x2 = x2x1

Universal differential calculus with relations:

dx1.x2 = x1dx2 + dx1 + dx2, dx2.x1 = x2dx1 + dx1 + dx2

[dx1, x1] = dx2, [dx2, x2] = dx1

This algebra (D) is isomorphic to F2Z3 the group algebra on
the group Z3 since z = 1 + x1 obeys (z)2 = 1 + x2 and
(z)3 = 1.
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Quantum metric on F2Z3

We define a metric as an invertible element of g ∈ Ω1 ⊗D Ω1.

g = gijω
i ⊗ ωj = gµijx

µωi ⊗ ωj , gij ∈ D, gµij ∈ F2

Quantum metric (central and quantum symm.) on D = F2Z3:

gD = βz2ω1 ⊗ ω1 + βz(ω1 ⊗ ω2 + ω2 ⊗ ω1) + βω2 ⊗ ω2

with β - a functional parameter.

We take special cases for β = 1, z , z2

For these there are 12 QLC connections (11 of them not flat!
R∇ 6= 0 - purely ’quantum’ phenomenon.)
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Digital quantum connection and curvature

must also have the structure constants in F2:

∇ωi = Γi
νkmx

νωk ⊗ ωm, σ
(
ωi ⊗ ωj

)
= σijµkmx

µωk ⊗ ωm.

For curvature R∇ : Ω1 → Ω2 ⊗D Ω1 we require the same:

R∇ = (d⊗ id− id ∧∇)∇

R∇ω
i = ρi jµx

µVol⊗ ωj = ρi jVol⊗ ωj
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Ω2

Differential graded or ‘exterior algebra’ Ω = ⊕iΩ
i (with D = Ω0

and Ω1)

For Ω2 = D.Vol we take 1-dimensional free module over D,
with basis Vol.

If Vol exists we define

ωi ∧ ωj = εijµx
µVol = εijVol, εijµ ∈ F2, ε

ij ∈ D.

and require it to be central in D.

wedge product ∧ - associative
(including the action by elements of D, centrality of the
volume form −→ certain commutation relations between
ωi ∧ ωj)

we extend d to general 1-forms by the Leibniz rule
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Once we have specified at least Ω2, we can:

ask for our metric to be ‘quantum symmetric’ in the sense

∧(g) = 0

Look for a quantum Levi-Civita connection (QLC):
∇g = T∇ = 0



QLC connections and curvature on F2Z3
Recall: gD = βz2ω1 ⊗ ω1 + βz(ω1 ⊗ ω2 + ω2 ⊗ ω1) + βω2 ⊗ ω2.
For β = 1 one of QLC’s looks like this:

∇D.1.1ω
1 = z2ω1 ⊗ ω1 + (1 + z)(ω1 ⊗ ω2 + ω2 ⊗ ω1) + ω2 ⊗ ω2

∇D.1.1ω
2 = z2ω1 ⊗ ω1 + zω1 ⊗ ω2 + z2ω2 ⊗ ω1 + ω2 ⊗ ω2

R∇D.1.1ω
1 = Vol⊗ ω1 + z2Vol⊗ ω2, R∇D.1.1ω

2 = z2Vol⊗ ω1;

There are 3 more for this choice of β (none flat):

∇D.1.2ω
1 = z2

ω
1 ⊗ ω1 + z(ω1 ⊗ ω2 + ω

2 ⊗ ω1) + ω
2 ⊗ ω2

∇D.1.2ω
2 = z2

ω
2 ⊗ ω1

R∇D.1.2
ω

1 = R∇D.1.2
ω

2 =
(

1 + z2
)
Vol⊗ (ω1 + ω

2);

∇D.1.3ω
1 = (z + z2)ω1 ⊗ ω1 + (1 + z)ω1 ⊗ ω2 + zω2 ⊗ ω1 +

(
1 + z2

)
ω

2 ⊗ ω2

∇D.1.3ω
2 = z2

ω
1 ⊗ ω1 +

(
z + z2

)
ω

2 ⊗ ω1 + ω
2 ⊗ ω2

R∇D.1.3
ω

1 = Vol⊗ ω1 + z2
Vol⊗ ω2

, R∇D.1.3
ω

2 = z2
Vol⊗ ω1;

∇D.1.4ω
1 = (z + z2)ω1 ⊗ ω1 + zω1 ⊗ ω2 + (1 + z)ω2 ⊗ ω1 +

(
1 + z2

)
ω

2 ⊗ ω2

∇D.1.4ω
2 = zω1 ⊗ ω2 +

(
z + z2

)
ω

2 ⊗ ω1

R∇D.1.4
ω

1 = Vol⊗ ω1 + z2
Vol⊗ ω2

, R∇D.1.4
ω

2 = z2
Vol⊗ ω1

.

There are further 8 QLCs for β = z , β = z2 (only 1 flat).
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The Ricci tensor

Ricci = (( , )⊗ id)(id⊗ i ⊗ id)R∇

‘lifting’ bimodule map i : Ω2 → Ω1⊗A Ω1 such that ∧◦ i = id.

When Ω2 is 1-dim (with central basis Vol) then:

i(Vol) = Iijω
i ⊗ ωj , Iij ∈ A

for some central element of Ω1 ⊗A Ω1 such that ∧(I ) = Vol.

I - not unique (we can add any functional multiple γg for
γ ∈ A if g is central and quantum symmetric)

Then
Ricci = gij((ωi , )⊗ id)(i ⊗ id)R∇ω

j = gij(ω
i , ρj k Imnω

m)ωn ⊗ ωk .
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We are interested in the choices for γ when

∇ · Ricci = 0

where ∇· means to apply ∇ in the element of Ω1 ⊗D Ω1

(same as for the metric) and then contract the first two
factors with ( , ).

For D = F2Z3 we take

i(Vol) = z2ω2 ⊗ ω1 + zω2 ⊗ ω2 + γg

where γ ∈ D, γ = γ1 + γ2z + γ3z
2.
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Ricci tensor and scalar for F2Z3

Metric QLC Ricci (central for all γi ) S = (, )(Ricci) q. symmetric ∇ · Ricci = 0
gD.1
(β = 1)

∇D.1.2 Ricci = 0 S = 0 — —

∇D.1.1
∇D.1.3
∇D.1.4


Ricci =

(
γ3 + γ2z

2
)
ω1 ⊗ ω1

+
(
γ2z + γ3z

2
)
ω1 ⊗ ω2

+
(
γ1 + z + γ3z

2
)
ω2 ⊗ ω1

+
(

1 + γ3z + γ1z
2
)
ω2 ⊗ ω2

γ2 + γ3z

γ1 = 0, γ2 = 1 :
Ricci =

(1 + γ3z)z2ω1 ⊗ ω1

+(1 + γ3z)zω1 ⊗ ω2

+(1 + γ3z)zω2 ⊗ ω1

+(1 + γ3z)ω2 ⊗ ω2

γ1 = 0 = γ3 :
Ricci

= γ2z
2ω1 ⊗ ω1

+γ2zω
1 ⊗ ω2

+zω2 ⊗ ω1 + ω2 ⊗ ω2

gD.2
(β = z)

∇D.2.4 Ricci = 0 S = 0 — —

∇D.2.1
∇D.2.2
∇D.2.3


Ricci =

(
1 + γ3z + γ1z

2
)

ω1 ⊗ ω1

+
(
γ3 + γ1z + z2

)
ω1 ⊗ ω2

+
(
γ1z + (1 + γ2)z2

)
ω2 ⊗ ω1

+ (γ1 + (1 + γ2)z)ω2 ⊗ ω2

1 + γ2

+γ1z
2

γ2 = 0 = γ3 :
Ricci =

(γ1 + z)z2ω1 ⊗ ω1

+(γ1 + z)zω1 ⊗ ω2

+(γ1 + z)zω2 ⊗ ω1

+(γ1 + z)ω2 ⊗ ω2

γ1 = 0 = γ3 :
Ricci

= ω1 ⊗ ω1 + z2ω1 ⊗ ω2

+ (1 + γ2) z2ω2 ⊗ ω1

+ (1 + γ2) zω2 ⊗ ω2

gD.3

(β = z2)
∇D.3.1 Ricci = 0 (flat connection) S = 0 — —

∇D.3.2
∇D.3.3
∇D.3.4


Ricci = (γ1 + (1 + γ2)z)

ω1 ⊗ ω1

+
(

1 + γ2 + γ1z
2
)
ω1 ⊗ ω2

+ (γ2 + γ3z)ω2 ⊗ ω1

+
(
γ3 + γ2z

2
)
ω2 ⊗ ω2

1 + γ3z

+γ1z
2 never qsymm

γ1 = 0 = γ3 :
Ricci

= (1 + γ2) zω1 ⊗ ω1

+ (1 + γ2)ω1 ⊗ ω2

+γ2ω
2 ⊗ ω1

+γ2z
2ω2 ⊗ ω2

For each metric one connection is Ricci flat.
dimD.1 = dimD.2 = 1,dimD.3 = 0.
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The Einstein tensor

Eins = Ricci + Sg

= (Ricciµij + SνgρijV
νρ
µ)xµωi ⊗ ωj

Note: the usual definition Eins = Ricci− 1
2Sg makes no sense

over F2.
In F2 we actually have only two choices, 0, 1, for the coefficient of
Sg .
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We are interested in the values of Eins and if this is not zero (as it
would be classically for a 2D manifold) then we look when

∇ · Eins = 0

∇ · Eins = ∇ · Ricci + (( , )⊗ id)(dS ⊗ g) = ∇ · Ricci + dS

given the properties of a connection, the inverse metric and
∇g = 0 for a QLC.
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The Einstein tensor on F2Z3

Metric QLC Eins = Ricci + Sg Ricci qsymm ∇ · Eins = 0
gD.1 ∇D.1.2 Eins = 0 — —

∇D.1.1
∇D.1.3
∇D.1.4

 Eins = (γ1 + z(1 + γ2))ω2 ⊗ ω1

+
(

1 + γ2 + γ1z
2
)
ω2 ⊗ ω2 Eins = 0

γ1 = 0 :

Eins = (1 + γ2) zω2 ⊗ ω1

+ (1 + γ2)ω2 ⊗ ω2

gD.2 ∇D.2.4 Eins = 0 — —

∇D.2.1
∇D.2.2
∇D.2.3

 Eins = (γ2 + γ3z))ω1 ⊗ ω1

+
(
γ3 + γ2z

2
)
ω1 ⊗ ω2 Eins = 0

γ3 = 0 :

Eins = γ2ω
1 ⊗ ω1

+γ2z
2ω1 ⊗ ω2

gD.3 ∇D.3.1 Eins = 0 (flat connection) — —

∇D.3.2
∇D.3.3
∇D.3.4


Eins =

(
γ2z + γ3z

2
)
ω1 ⊗ ω1

+ (γ2 + γ3z)ω1 ⊗ ω2

+
(

1 + γ2 + γ1z
2
)
ω2 ⊗ ω1

+
(
γ1z + (1 + γ2)z2

)
ω2 ⊗ ω2

never qsymm

γ1 = 0 = γ3 :

Eins = γ2zω
1 ⊗ ω1

+γ2ω
1 ⊗ ω2

+ (1 + γ2)ω2 ⊗ ω1

+(1 + γ2)z2ω2 ⊗ ω2

Metrics where dim = 1 have zero Einstein tensor when Ricci is
lifted to be quantum symmetric.
The metric gD.3 where dim = 0 has two lifts for the non-flat
connections with ∇ · Eins = 0 and S = 1.



Digital Quantum Geometries on D = F2Z3:

for each metric one connection is Ricci flat for all lifts (and
only actually flat for gD.3)

and the other three connections all have the same Ricci
curvature

when Ricci is quantum symmetric (choice of γi ) then Eins = 0

we can chose the lift so that ∇ · Eins = 0

gD.1 : γ1 = γ3 = 0, γ2 = 1, Ricci = gD.1, S = 1, ∇·Ricci = 0, Eins = 0

gD.2 : γ1 = γ2 = γ3 = 0, Ricci = gD.2, S = 1, ∇·Ricci = 0, Eins = 0

gD.3 : γ1 = γ3 = 0, S = 1, ∇ · Ricci = ∇ · Eins = 0, Eins 6= 0

where the last case is unusual in that classically the Einstein tensor in 2D would

vanish , but this is also the ‘unphysical’ case where dim = 0.
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Similar results were obtained for two other (commutative)
algebras B = F2(Z3) and F = F8.

We have also investigated the properties of the geometric
Laplacians:

∆ = ( , )∇d : A→ A

For algebras A,C ,E ,G there are no invertible central metrics
for the universal calculus.

All results - see S.Majid, A.P., J.Phys. A 2019 (in press)
[arXiv:1807.08492].



Quantum symmetries

[work in progress]

In 3 dimensions we are currently classifying all the Hopf
algebras on associative algebras (A-G) over F2.

Only B = F2(Z3) and D = F2Z3 admit a Hopf algebra
structure (namely the unique one indicated by the notation as
group algebra or function algebra on a group).

The algebras B,C,D,G admit many bialgebras (but no further
Hopf algebras) and the algebras A,E,F admit no bialgebra
structures.
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If we make a graph where A→B means that algebra A admits
bialgebra structure with coalgebra isomorphic to the dual of B then
we can graph our results as

B

C

D G

3

2

In the Hopf algebra (as opposed to bialgebra) version we have only

B↔ D
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Summary

we have mapped out the landscape of all reasonable up to 2D
quantum geometries over the field F2 on unital algebras of
dimension n ≤ 3

the interesting ones up to this dimension have commutative
coordinate algebras

even under this restricted set of assumptions there are a lot of
such ‘digital’ finite quantum geometries

In n = 3 with 2-dim Ω1 we find that only three of the six
algebras, namely B= F2(Z3), D= F2Z3, F= F8, meet our full
requirements on the calculus including Ω2 as top form and
existence of a quantum symmetric metric.
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Conclusions

For each of them we find an essentially unique calculus and
a unique quantum metric up to an invertible functional
factor

When these quantum metrics admit QLC, each pair produces
‘digital quantum Riemannian geometry’ of which some are flat
in the sense of zero Riemann curvature R∇

For the Ricci tensor and scalar S : we have found 2, 2, 5 (for
alg. B, D, F resp.) - a total of 9 interesting Ricci flat but
not flat quantum geometries over F2.

These deserve more study in view of the important role of
Ricci flat metrics in classical GR (as vacuum solutions of
Einstein’s equations).

35/36



36/36

Perspectives

Finite field setting allows one to test definitions and
conjectures - full classification possible.

Quantum gravity is normally seen as a weighted ’sum’ over all
possible metrics

once we have a good handle on the moduli of classes of small
Fpd quantum Riemannian geometries, we could consider
quantum gravity, for example as a weighted sum over the
moduli space of them much as in lattice approximations, but
now finite.

Thank you for your attention!
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