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Extremal configurations of solids and the Morse theory of distance functions

I will talk about a circle of questions inspired by an old discussion (1694)
between Isaac Newton and David Gregory about the number of
non-intersecting unit spheres touching the central unit sphere.

Newton (draft for a second edition of the Principia) :

There are 13 stars of the first magnitude and roughly the same number of
equal spheres can be arranged about a central sphere equal to them.

(The right answer is 12, K. Schutte and B. L. van der Waerden, 1953)

We will discuss moduli spaces C of configurations (clusters) of collections of
solid bodies Λ̄1, . . . , Λ̄k ⊂ R3, touching the central unit ball B ⊂ R3. That is,
the point G of our manifold C is a configuration of non-intersecting solid
bodies, G = {Λ1, . . . ,Λk}, where each Λi is congruent to the corresponding
shape Λ̄i and is touching the unit ball B. It is allowed that some distances
between bodies of G are zero.

The group SO (3) acts on each C. So it is natural to study these manifolds
mod SO (3).
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A simplest (Newton–Gregory) type : arrangements of balls Λi of equal radius
r , around B.

Wlodek Kuperberg (1990) asked a question, similar to the Newton–Gregory
one, but about infinite objects :

How many non-intersecting unit cylinders can touch the unit ball ?

The examples and illustrations in this talk will mostly concern this type :
arrangements of (infinite, right, circular) congruent cylinders around B.
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Six cylinders can touch a unit ball :

Figure – Cluster C6

Figure – Cluster O6 of cylinders

It is known that 8 cylinders can not do it (P. Brass and C. Wenk, 2000).
For 7 cylinders this is an open question.
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Balls :

Let Pn be the manifold of n-tuples of points on S2. To every cluster of n balls
we associate a point in Pn : it is the cluster of n points at which the balls of
the cluster are touching the central ball. Consider the function D on Pn :

D (p) = min
i 6=j

dist (xi , xj) where p = {x1, ..., xn} ∈ Pn.

A cluster of balls, some of which touch each other, can be reconstructed from
the corresponding cluster of points (giving the maximal common diameter
D̃(p) of balls touching B at p).

The Newton–Gregory question can be reformulated in the form : for n = 13,
is the maximal value of the function D̃ (on P13) smaller than 2 ?
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Cylinders :
A cylinder touching the unit sphere B has a unique generator tangent to B.
The manifold of tangent lines to B we denote by M. So to every cluster of n
cylinders we associate a point in Mn.
Again, a cluster of cylinders, some of which touch each other, can be
reconstructed from the corresponding cluster of tangent to B lines.
As for balls, the Kuperberg question can be reformulated as the question
about the maximal value of the function D (m) = min1≤i<j≤n dui uj on Mn.
Here duv is the distance between the tangent lines u and v . The difference
with the clusters of balls is that the function duv does not have a limit when
u and v become parallel.
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By a deformation of the cluster G we mean a continuous curve G (t) in the
space of clusters, with G (0) = G . That means that each Λi touches the
central ball B during the process of the deformation.

We call a cluster G rigid, if any deformation G (t) of G has a form

G (t) = g (t)G ,

where g (t) ∈ SO (3) is a curve of rotations of R3, g (0) = e. In other words,
the only deformation of G available is the global rotation of G as a solid body.

We say that G can be unlocked, if there exists a continuous deformation
G (t) of G , such that for any t > 0 all the distances between the members Λi
in the cluster G (t) are positive (while each Λi always touches the central ball
during the move).
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Finally, we call a cluster G critical, if for any smooth deformation G (t) of G
all the distances dist (Λi (t) ,Λj (t)) between the solids Λi which were zero at
t = 0 – i.e. dist (Λi (0) ,Λj (0)) = 0 – obey the estimate

dist (Λi (t) ,Λj (t)) = o (t) as t → 0 . (1)
If a critical cluster G can be unlocked, then it is called a saddle cluster. Other
critical clusters are called (local) maxima, for obvious reasons. If a cluster G
is a point of a sharp local maximum of the function D, that is, for any point
m in a vicinity of G we have

D (m) < D (G) ,
then G is rigid and thus not unlockable.
Example. The icosahedral cluster I12 of 12 equal balls gives an example of a
maximal cluster. In 1943 Fejes-Tóth has shown that
(1) The maximum radius of 12 equal spheres touching a central sphere of
radius 1 is

rmax (12) = 1√
5+
√

5
2 −1

≈ 1.1085085 .

(2) An extremal cluster achieving this radius is formed by the balls centered
at 12 vertices of a regular icosahedron.
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Examples of saddle clusters of balls

Figure – FCC cluster (left) and its layers (right)

Figure – HCP cluster (left) and its layers (right)
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The clusters FCC and HCP are saddle clusters, both of them can be unlocked
and be deformed to the icosahedral cluster. For FCC the unlocking move was
constructed by Coxeter. About HCP Fejes-Tóth writes : “Dagegen ist die
andere doppelwabenartige Anordnung stabil" but it can be unlocked.

Questions about 6 cylinders

I Can 6 non-intersecting cylinders of radius r > 1 touch the unit ball ?
The maximal value of r is unknown.

I Can the configurations C6 and O6 be unlocked ?
I Is the configuration space of six unit cylinders touching the unit ball

connected ?
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We have shown that the configuration C6 is indeed unlockable. Namely, we
have constructed its continuous deformation C6 (t), along which quite a
spacing opens between the cylinders, and at some value of t it becomes
possible to arrange 6 non-intersecting cylinders of radius

rm = 1
8

(
3 +
√
33
)
≈ 1.093070331.

The intermediate formulas are humongous and the fact that our minimax
problem can be solved explicitly hints at a kind of integrability.
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Figure – Two configurations of cylinders : the configuration C6 of six parallel
cylinders of radius 1 (on the left) and the configuration Cm of six cylinders of radius
≈1.0931 (on the right)

We believe that our configuration of 6 cylinders with radius rm is in fact
optimal. Here is the supporting argument.
Theorem. [O–S] Our cylinder arrangement, corresponding to the value rm, is
locally maximal, i.e. any small perturbation of our configuration decreases the
corresponding radius.
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Theorem. [O–S] The configuration O6 is locally maximal : for any small
perturbation of O6 the corresponding radius is smaller than 1.

Corollary. The configuration space of six unit cylinders touching a unit ball is
not connected.
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In both situations, C6 and O6 one can check that the function D decreases
along any direction. However this does not imply the maximality claim, as the
following example shows.

Let f be a function of two variables defined by

f := min{u1, u2} where u1 = −y + 3x2, u2 = y − x2 .

The function f equals 0 at the origin. Consider an arbitrary ray l starting at
the origin. Clearly, for some time this ray evades the ‘horns’ – the region
between the parabolas y = 3x2 and y = x2. But outside the horns the
function f is negative. Indeed, inside the the narrow parabola y = 3x2 we
have u1 < 0, u2 > 0 so f is negative there ; outside the wide parabola y = x2
we have u1 > 0, u2 < 0 so f is negative there as well. Therefore the origin is a
local maximum of f restricted to l , for any l . Yet the origin is not a local
maximum of the function f on the plane, because inside the horns the
functions u1 and u2 are positive so f there is positive as well.
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Let F1 (x) , . . . ,Fm (x) be analytic functions in a neighborhood of 0 ∈ Rn s.t.
Fu(0) = 0, u = 1, . . . ,m, and let F (x) := min {F1 (x) , . . . ,Fm (x)}. Let us
consider the differentials lu and second differentials qu of the functions Fu at
0 ∈ Rn : Fu(x) = lu (x) + qu (x) + o(2) ; o(2) stands for higher order terms.

We call the function ∆ (x) := min {l1 (x) , . . . , lm (x)} the PL-differential of
F. If some differentials do not vanish then the range of the differential ∆ can
be either a whole line R1, or the negative half-line. In the second case we say
that 0 ∈ Rn is a critical point of F, and that 0 ∈ R1 is a critical value.

Lemma. Let l1, ..., lm be linear functionals on Rn. The two conditions are
equivalent :
1. The function ∆ (x) = mini li (x) is non-positive on Rn.
2. There is a convex linear relation between li , i.e. for some λ1, ..., λr > 0 and
some 1 ≤ i1 < i2 < ... < ir ≤ m we have λ1li1 + ...+ λr lir = 0.
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We assume that the family {F1 (x) , . . . ,Fm (x)} of m analytic functions in n
variables, m ≤ n, possesses the following properties.
(A) The linear space, generated by the linear forms l1, . . . , lm, is (m − k)

dimensional, with k positive.
(B) The collection {l1, . . . , lm} of linear forms can be split into k

subcollections {l1, . . . , lm1} , {lm1+1, . . . , lm2} , . . . ,
{
lmk−1+1, . . . , lm

}
with non-intersecting spans, with exactly one linear relation between
the functionals in each subcollection.

(C) For each p = 1, . . . , k the linear relation, from the property (B), between
the functionals

{
lmp−1+1, . . . , lmp+1

}
is strictly convex :

λ1p lmp−1+1 + . . .+ λ
mp
p lmp = 0 , (2)

with λs
p > 0 , mp−1 + 1 ≤ s ≤ mp, 1 ≤ p ≤ k.
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(D) For

Ep =
mp⋂

u=mp−1+1
ker lu , E =

k⋂
p=1

Ep ,

and k quadratic forms Qp, 1 ≤ p ≤ k, defined by

Qp = λ1pqmp−1+1 + . . .+ λ
mp
p qmp , (3)

the inequality
min {Q1(ξ), ...,Qk(ξ)} |

ξ∈E ≥ 0 (4)

admits only the trivial solution ξ = 0.

Question : Classification, properties ?
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Theorem. [O–S] Under the conditions (A) – (D), the origin 0 ∈ Rn is a
strict local maximum of the function F(x).

Note. If m = 1 we have the situation of a Morse function F1. Indeed, k must
be equal to 1 so the linear functional l1 vanishes.

Both configurations, Cm and O6 fall into the above scenario and thus provide
local maxima of the distance function.
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Platonic configurations

Initially the configuration O6 was called octahedral (wherefrom the capital O
in the name), since the tangency points lie at the vertices of the regular
octahedron :

Figure – Octahedral configuration of tangent lines

But it should be rather called the tetrahedral configuration !
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We start with the configuration of the tangent to the unit sphere lines which
are continuations of the edges of the regular tetrahedron. The points of the
sphere at which tangent lines pass are the edge middles of the regular
tetrahedron. The initial position of the edges of the tetrahedron (in blue) :

Figure – Sphere tangent to tetrahedron edges
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Then each edge is rotated around the diameter of the unit sphere, passing
through the middle of the edge, by an angle δ. When δ changes from 0 to
π/2, the value of D2 increases, achieves the maximal value 1 for δ0 = π/4,
and afterwards decreases to 0. The point δ0 = π/4 is exactly the
configuration O6.

A similar construction can be performed for each pair of dual Platonic bodies.
Namely, let a unit sphere touch the edge middles of a Platonic body P. We
can rotate all the edges of P around the axes passing through the center of
the sphere and tangency points by the angle δ. When δ reaches the value
π/2, the edges form the Platonic body dual to P.
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Figure – Graph of the square of the minimal distance for the pair octahedron-cube
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Figure – Octahedron/cube maximal configuration of cylinders, view from a vertex
of the cube
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Figure – Maximal cluster, view from the tip of a 5-fold axis
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Figure – Octahedron/cube minimum
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Figure – Octahedron/cube minimum, convex hull
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Figure – First minimum
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Figure – Icosidodecahedron
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Figure – Second minimum
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Figure – Third minimum
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Let C be a cluster of solid bodies Γ1, . . . , ΓL, touching the unit sphere
Sn−1 ⊂ Rn. Then the solid bodies Γj × R, j = 1, . . . , L, touch the unit sphere
Sn ⊂ Rn+1. We denote the so defined cluster by K(C) ; this construction is
due to Kuperberg, hence our notation. For example, if C is a cluster of six
unit discs touching the central unit disc, then K(C) is the cluster C6 of unit
cylinders touching the unit sphere S2 ⊂ R3.

Twelve unit spheres S2 can touch the central unit sphere in R3. Motivated by
the fact that the configuration C6 can be unlocked we believe that more and
more space opens when we iterate the operation K. Therefore the following
question arises : what is the minimal j such that thirteen bodies S2 × Rj can
touch the central unit sphere S2+j ? Plausibly, j = 1.
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We call a cluster G flexible, if it is not rigid, but during each deformation
G (t) some distances dist (Λi ,Λj) which were zero at t = 0 remain zero at
later moments t (at least up to a moment t0 > 0 which might depend on the
deformation G (∗)).
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Example of a flexible cluster : the configuration of four parallel
non-intersecting cylinders of radius r = 1 +

√
2 touching the unit ball is not

rigid.

Figure – Initial position

Figure – Motion of four cylinders

Open question. We believe that these are all possible positions of four
cylinders of radius r = 1 +

√
2 touching the unit ball.


