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Another approach towards describing
supersymmetry

Supersymmetry appears in many guises. While most of the
effort has been devoted towards trying to understand how it
doesn’t appear within the Standard Model, and to describe
its effects in terms of particles, that are distinct from the
“known” particles, it has escaped notice that it has much
broader implications for physical systems at “mesoscopic”
scales.
The starting point was the work of Parisi and Sourlas (1982)
and of Nicolai (1980).
The bottom line: A non–relativistic particle, in equilibrium
with a bath, realizes worldline supersymmetry. This means
that the correlation functions of the position of the particle
satisfy the identities that describe the fact that the system
particle+bath is closed–and, moreover, that how the particle
is “picked out” from within the bath, doesn’t matter.
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The superpartners hide among the partners
The superpartners of xI (t), (ψI (t), χI (t)), come along for
the ride. The trajectory becomes a component of a
superfield, but the superpartners aren’t distinct particles.
Revealing their existence is done indirectly, through the
identities, that certain composite fields, of the position,
xI (t), satisfy.
This is true, also, for the relativistic particle, where the
superpartners of the position are identified with the spin
degrees of freedom (classically; fluctuations implicate three
supersymmetries!)
So it is these identities that reveal the relevance of
supersymmetry.
Indeed, a subtle point is that it is not possible to write an
interaction between a fixed number of particles, in a way
consistent with (global) target space Poincaré
invariance.(Leutwyler 1965). Fields can be used, however, as
the study of the 2-dimensional WZ model shows, where
global SO(2) symmetry can be recovered.
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The two cases of interest

Now there are two distinct possibilities:

I The (classical) dynamics of the particle is described by
a scalar potential.

I The (classical) dynamics of the particle isn’t described,
solely, by a scalar potential.

The second case, in particular, includes that, where the
classical motion is deterministically chaotic. So it’s useful to
understand what insights supersymmetry can provide,
regarding the description of the fluctuations.
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A particle in a bath, subject to a scalar potential
Everything about the properties of a particle, in equilibrium
with a bath, are described by the “canonical” partition
function

Z =

∫
[DxI ] e

−
∫

dt ( 1
2
ẋ2+V (x))

where I = 1, 2, . . . , d .
For this expression to make any sense, V (x) ≥ Vmin > −∞
and lim|x |→∞ V (x) = +∞. Otherwise the description is
incomplete, anyway.
One class of potentials, that do satisfy these conditions, can
be written as

V (x) =
1

2

d∑
I=1

(
∂W

∂xI

)2

The function W (x) is known as the “superpotential”.
If it is globally defined, V (x) can be found. The converse
entails solving the above differential equation–known as the
“eikonal equation”, for W (x)–which isn’t that
straightforward.
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Upon imposing periodic boundary conditions, the (Euclidian)
action takes the form

S [x ] =

∫
dt

(
1

2
ẋ2 +

(
∂W (x)

∂xI

)2
)

=∫
dt

(
1

2
ẋ +

∂W (x)

∂xI

)2

+ boundary terms
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The consistent closure

This implies that the fluctuations, described by the canonical
partition function can be repackaged as follows:

Z =

∫
[DxI ] e

−S[x ]

∣∣∣∣det δηIδxJ

∣∣∣∣ = 1

where

ηI ≡
∂xI
∂t

+
∂W

∂xI

are the “noise fields”. This relation defines the “Nicolai
map”. It’s not a differential equation to be solved–rather it
defines a change of variables in the functional integral.
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To trust is good; to check is better

The only reason the partition function wouldn’t be equal to
1, would be that the zero modes of the Jacobian would be of
non–zero measure. If tunneling can occur, however, it’s not
necessary to worry about them. And this can be checked by
computing the identities, the noise fields are expected to
satisfy:

〈ηI (t)〉 = 0〈
ηI (t)ηJ(t ′)

〉
= δIJδ(t − t ′)

〈ηI1(t1)ηI2(t2) · · · ηI2n(t2n)〉 =∑
π

〈
ηIπ(1)

(tπ(1))ηπ(2)(tπ(2))
〉
· · ·
〈
ηπ(2n−1)(tπ(2n−1))ηπ(2n)(tπ(2n))

〉
where the averages are taken with the weight e−S[x ]/Z .
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The linear term of the superpotential

We note that it isn’t possible to distinguish, in an invariant
way, whether 〈η〉 6= 0 from 〈∂W 〉 6= 0, assuming periodic
boundary conditions, so that 〈ẋI 〉 = 0. So it is possible to
absorb the value of 〈η〉 into a contribution cI xI to the
superpotential–that’s a boundary term.
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Where SUSY is hidden

We may write Z as follows:

Z =
∫

[DxI ] e
−S[x ]

∣∣∣det δηIδxJ

∣∣∣ =∫
[DxI ] e

−S[x ] e iθdet det
(
δIJ

d
dt + ∂W

∂xI∂xJ

)
=∫

[DxI ][DψI ][DχI ] e
iθdet e

−S[x ]+
∫

dt ψI

(
δIJ

d
dt

+ ∂W
∂xI ∂xJ

)
χJ ?

=〈
e iθdet

〉
SUSY

ZSUSY =
〈
e iθdet

〉
SUSY

since ZSUSY = 1 (?) It’s this factorization that breaks down
when the classical potential has multiple minima. But we
don’t need this factorization–we, just, need to check that the
noise fields satisfy Wick’s theorem.
This can be done using Monte Carlo simulations of the
measure e−S[x ]/Z , that’s perfectly well behaved.
Things get more subtle, however, when the equations
∂IW = 0 don’t have real solutions. This leads to SUSY
breaking à la Fayet–O’Raifeartaigh. Could it be restored?
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From point attractors to extended structures

One way to evade this conclusion is to realize that the action
expresses the “BPS bound” S [x ] ≥ 0, that’s saturated when
the system of differential equations

dxI
dt

+
∂W

∂xI
= 0

is satisfied–and this need not have, only, constant solutions!
Non–constant solutions describe extended objects, not
points! Another context when this can occur is for
deterministically chaotic motion.
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No superpotential–no problem

So let us consider the general situation where

dxI
dt

= FI (x)

where I = 1, 2, . . . , d .
These equations can be identified with the equations of
motion of a particle, whose (Euclidian) action is given by the
expression

S [x ] =

∫
dt

1

2

d∑
I=1

(ẋI − FI )
2 =

∫
dt

(
1

2

(
ẋ2 + F 2

I

)
−

d∑
I=1

ẋIFI (x)

)

Since FI 6= ∂IW , the last term isn’t a total derivative!
If ∇ · F < 0, the motion is “dissipative” and, if ∇× F 6= 0,
“mixing” may occur and the stable solution can be a strange
attractor:
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Classical and “quantum” attractors: The Lorenz
butterflies
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How supersymmetry can provide insight into the
fluctuations

Even though FI 6= ∂IW , the Euclidian action is perfectly
suited for sampling the configurations of the particle’s
motion. It’s, just, that the attractor isn’t a point, but an
extended structure. If we do impose periodic boundary
conditions, we can check, whether the system is consistently
closed by monitoring

〈ηI (t)〉 = 0〈
ηI (t)ηJ(t ′)

〉
= δIJδ(t − t ′)

〈ηI1(t1)ηI2(t2) · · · ηI2n(t2n)〉 =∑
π

〈
ηIπ(1)

(tπ(1))ηπ(2)(tπ(2))
〉
· · ·
〈
ηπ(2n−1)(tπ(2n−1))ηπ(2n)(tπ(2n))

〉
where ηI (t) = ẋI + ∂IW . Even when 〈ηI (t)〉 6= 0, it is useful
to check that ηI (t)− 〈ηI (t)〉 does satisfy the other
identities. In particular, if the 2–point function isn’t
ultra–local, this means that the system isn’t consistently
closed; there exist additional degrees of freedom.
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Bloch–Bloembergen

The reason it’s of “practical” interest to study the Lorenz
equations is that they can describe the motion of a magnetic
moment, in a medium, described by Bloch and Bloembergen:

dm1

dt
= (η2 − η3)m2m3 − β2m3 + β3m2 −

m1

τ1
dm2

dt
= (η3 − η1)m3m1 − β3m1 + β1m3 −

m2

τ2
dm3

dt
= (η1 − η2)m1m2 − β1m2 + β2m1 −

m3

τ3
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It looks like Bloch–Bloombergen; it’s Lorenz

η = (2, 1, 1) β = (0, 0, σ) τ = (1/σ, 1, 1/b)
d = −b(r + σ)

change variables:

m = (x , y , z − r − σ)

The Bloch–Bloembergen equations take the form:

dx

dt
= σ(y − x)

dy

dt
= x(r − z)− y

dz

dt
= xy − bz

Attention: There are constants that have been set to 1–so
the lattice action requires some care (work in progress).
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Conclusions and outlook

I Supersymmetry is relevant for describing the consistent
closure (or not!) of systems that display deterministic
chaos. The reason is that such systems are, typically,
defined by ordinary differential equations, ẋ = F (x) and
these can be repackaged as the equations of motion
deduced from the classical action

S [x ] =

∫
dt

1

2

d∑
I=1

(ẋI − FI (x))2

The fluctuations are, in turn described by the partition
function

Z =

∫
[DxI ] e

−S[x ]

whose complete description is provided by the insertion
of ∣∣∣∣det(δIJ d

dt
− ∂FI
∂xJ

)∣∣∣∣
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Conclusions and outlook

I and whose presence can be revealed by computing the
correlation functions of

ηI (t) = ẋI + FI (x)

I By Helmholtz/Clebsch-Monge/Hodge decomposition,
it’s possible to identify a part of the FI as ∂IW .

I In the non–chaotic phase, the Lorenz equations are
known to describe knots (cf. Birman and Williams).

I Imposing open boundary conditions means exploring the
manifold the “end” of the Lorenz attractor can explore.
Could be a toy model for D-branes.

I When deterministic chaos is relevant, the attractors are
extended objects, not points.
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Another way of describing the fluctuations of the magnetic
moment of nanomagnets is through the
Landau–Lifshitz–Gilbert equation

dm
dt

= ω ×m + λ(m ×Ω(t))×m

where Ω(t) ≡ ω +ϕ(t), with ϕ(t) drawn from a “colored”
noise, viz.

〈ϕ(t)〉 = 0

〈ϕI (t)ϕJ(t ′)〉 = δIJD
τ e−

|t−t′|
τ

which leads to an action of a particle on a quite intricate
target space geometry–in particular, the dreibeine aren’t
invertible. (cf. arXiv:1610.01622 for a discussion of this
point).
Cf. also, 1404.7774, 1504.06161. For an overview, cf.
1405.0820v2.
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How about gauge theories?

The gauge group defines a curved manifold, so the
appropriate description requires multiplicative, not additive,
noise. Perturbative approaches probe the tangent space, not
the full group manifold.
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Conclusions and outlook

Supersymmetry is hiding in plain sight–however its probes
aren’t easy to find; once found, however, they’re easy to
compute (at least, numerically) and, hopefully, will be
measured in real experiments with quantum matter, that can
measure non–linear susceptibilities and the identities that
relate them, by expressing consistent closure of the physical
system.
For target space supersymmetry, for instance, in four
dimensions, the corresponding Nicolai map reads

ηI = γµIJ
∂φJ
∂xµ

+
∂W

∂φI

where {γµ, γν} = 2δµν (In Euclidian signature). So it’s
necessary to have, at the very least, four scalars–which are
present in the Standard Model, incidentally–they’re, just,
repackaged differently. Some of the consequences were
worked out, for the 2d WZ model, in arXiv:1712.07045
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