Cubic Interaction for Higher Spins in AdS in the
explicit covariant form

M. Karapetyan, Ruben Manvelyan, R. Poghossian

Yerevan Physics Institute

Yerevan, SQS19, 29.08.2019

M. Karapetyan, R.M., R. Poghossian,arXiv:1908.07901

R. M., R. Mkrtchyan, W. Ruehl, N.P.B 872 (2013) 265;arXiv:1210.7227

R.M. (YerPhl) Cubic AdS August 29, 2019 1/33



@ Short Description
@ Setup for Radial Pullback
© Cubic Self-Interaction and Noncommutative algebra

@ Pullback of the main term of cubic self-interaction

© Conclusion

R.M. (YerPhl) Cubic AdS August 29, 2019 2/33



Short Description

We present a slightly modified prescription of the radial pullback formalism
proposed previously by R. Manvelyan, R. Mkrtchyan and W. Riihl in 2012,
where authors investigated possibility to connect the main term of higher
spin interaction in flat d + 2 dimensional space to the main term of
interaction in AdS4+1 space ignoring all trace and divergent terms but
expressed directly through the AdS covariant derivatives and including
some curvature corrections. In this paper we succeeded to solve all
necessary recurrence relations to finalize full radial pullback of the main
term of cubic self-interaction for higher spin gauge fields in Fronsdal’s
formulation from flat to one dimension less AdSy11 space. Nontrivial
solutions of recurrence relations lead to the possibility to obtain the full set
of AdS44+1 dimensional interacting terms with all curvature corrections
including trace and divergence terms from any interaction term in d + 2
dimensional flat space.
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Notations and Setup: Coordinate Transformations

1 1 -
X2 = et + = (L + x'xIny)], - .
i { The restriction e = 1 leads instead of
X9t = Ee“[r = ;(L2 — xxdny)], coordinate transformations to the usual
p o X embedding of the Euclidian AdS411
X' =e'L— . .
<t hypersphere with local coordinates

_e2uL2 — _(Xd+2)2 + (Xd+1)2 +X"Xj77£,', xH = (XO,X") — (I’,Xi) into d + 2

ds? = 122 [—du® + %(dﬂ + dx dxlmy)]- dimensional flat space.
r
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Notations and Setup: Coordinate Transformations

1 1 .
X2 = Zel[r+ = (L2 + x'xny)], . .
2 r The restriction e = 1 leads instead of

1 1 -
Xt = el = ;(L2 = x"xn;)], coordinate transformations to the usual
p o X embedding of the Euclidian AdS411
X =ell . .
S hypersphere with local coordinates

_e2uy2 _(Xd+2)2 + (Xd+1)2 +Xin77;J', xH = (XO,X") _ (r’xi) into d + 2

ds® = [2e®[—di? + %(dﬂ + dx dxlmy)]- dimensional flat space.
r

Jacobian Matrix; Embedding and Frenet Basis

where the d + 1 tangent vectors {eﬁ(x)}ﬁ,o and one normal

axA
E::(u, X)) = o e”eﬁ(x"), vector n”(x)
axA A B
Efux") =~ = XA x) = L (), ()l (x)nag = 0
Ary B
" g " (x)n” (x)nap = —1
Ealu, ) = ———ma(x)

w LUk
Ep(u,x) = e ey (x), for embedded AdSy.;1 space define the standard induced metric

guv(x) and extrinsic curvature Ky, (x) for our AdSy, 1 space:

4
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Induced Metric and Extrinsic Curvature

L\2
g,“,(x) = eS(X)EE(X)TMB = <X70) 5;“4

Therefor to restrict our flat theory to AdS hypersphere we
should first formulate d + 2 dimensional field theory in the
curvilinear coordinates with flat e2”(Ad$d+1 X Ry) metric

and
A A A A
ey, (x) =T, (8)e, (x) + Kuw (x)n"(x)
. ds? = U[—LPdu® + g, (x)dxM dx”]
where
= G,_,,,(u)du2 + Gy (u, x)dxt dx”,
1 A B A 22
rﬁu(g) = Eg/\p (Ougz/p + Ougvp — apguu) s Guu(u) = E, (U:XV)Eu (uxxy)nAB =X"Xpa=—L" “
A B 2
e 2w () Guv = EMwx")EE(ux ) = e ()
v X = =0
L
.
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Induced Metric and Extrinsic Curvature

L\2
guv(x) = eﬁ(x)ef(x)nAB = <—0) Spv Therefor to restrict our flat theory to AdS hypersphere we
N should first formulate d + 2 dimensional field theory in the
and curvilinear coordinates with flat e2”(Ad5d+1 X Ry) metric
A A A A
e, (x) =T, (g)e, (x) + Kuw (x)n”(x)
ds? U[—L2du? + gy (x)dxH dx” ]
where
= Guu(u)du2 + Gy (u, x)dxt dx”,
1 A B A 22
rﬁu(g) = Eg/\p (Bugvp + Bugvp — 8pgur) , Guu(u) = Ep(u,x")E; (u,x"Inap = X" Xq = =L
A B 2
o) Guv = EMwx")EE (s, X" nag = g (x)
Kuv(x) = ——
L
V.

Frenet Basis and AdSy.1 Riemann Curvature

A p A _ p A
[V, Vol = R, Lep = Kap K€,
Differentiation rules for Frenet basis:
we get the standard expression for AdSy; Riemann curvature

and Ricci tensors

A g;u/(x) A
Ve, (x) = T" (x)
1 R { = ——=(gundf —grdl)
aun(x) = zeﬁ(x), B, A (2 CHATY VAT
d N d(d + 1)
Rux = —zeuw, R=g" Rux=-—p—

and then taking commutator :
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Turning to higher spins in flat ambient space we should introduce first the following
conventions. As usual, we utilize instead of symmetric tensors such as hA1A2 (X)

polynomials homogeneous in the vector a* of degree s at the base point X

h9(X; a) = ZHa ) p a, (X).

Then we can write the symmetrized gradient, trace, and divergence

Grad : h¥)(X; a) = Gradh®*™(X; a) = a”94h"°)(X; a),
_1
s(s—1)

Div - h9(X; a) = Divh V(X; ) = %nABaAath“)(x; a).

Tr: h9(X; a) = Tr™2(X; a) = 0,h)(X; a),

Moreover, we introduce the notation *,,*p,... for a contraction in the symmetric
spaces of indices a or b
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So we should fix two important points to perform correct pullback of higher spin theory from
flat ambient to one dimensional less AdS space:

o We should fix the ansatz for d + 2 dimensional HS field in a way to get from one spin s
field exactly one spin s field in AdSy+1. The natural condition here send to zero all
components normal to the embedded hypersphere

WAL 4 (0 x”) ~ XA(u, xRS, 4 (u,x") = 0 (1)
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So we should fix two important points to perform correct pullback of higher spin theory from
flat ambient to one dimensional less AdS space:

o We should fix the ansatz for d + 2 dimensional HS field in a way to get from one spin s
field exactly one spin s field in AdSy+1. The natural condition here send to zero all
components normal to the embedded hypersphere

WAL (U x7) ~ XA x)BSEL 4 (ux”) =0 (1)

o Our auxiliary vector a” is constant in flat space
Mu,x)a ( X") + Ef(u, x)a (u, x")

(LnA (u,x) + ¢ A(x )a“(u7x)> (2)
dpa” =0, ®3)

but in curve AdS4+1 space there is no possibility to get covariantly constant vectors.
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So we should fix two important points to perform correct pullback of higher spin theory from
flat ambient to one dimensional less AdS space:

o We should fix the ansatz for d + 2 dimensional HS field in a way to get from one spin s
field exactly one spin s field in AdSy+1. The natural condition here send to zero all
components normal to the embedded hypersphere

WAL (U x7) ~ XA x)BSEL 4 (ux”) =0 (1)

o Our auxiliary vector a” is constant in flat space
=EMNu,x)a ( x") + E M(u, x)at (u, x")
=e (LnA (u X)+e (x )a“(u7x)> (2)
=0, ®3)

but in curve AdS4+1 space there is no possibility to get covariantly constant vectors.
e from (3) we obtain the following four relations for derivatives of components
a“(u, x), a*(u, x):

Oya"(u,x) + a"(u,x) =0 (4)
Oua*(u, x) + a“(u,x) =0 (5)
Opa"(u,x) + e au(u x)=0 (6)
Vya(u,x) +6,a"(u,x) =0 (7)
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@ First two equations we can solve directly:

a'(u,x) = e "a"(x)

at(u,x) = e "a"(x)

—_~ o~
© 00
— —
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@ First two equations we can solve directly:

a'(u,x) = e "a"(x)

at(u,x) = e "a"(x)

—_~ o~
© 00
— —

(s)

o Substituting these solutions in a”(a", a*) and using restriction nAhA ’ =0 we see that in
curvilinear coordinates our ansatz leads to the following relation:

P 3%) = W, A (X0 P e g

= b, (0.3)@ ()2 (x) .. @ (x) = K (u, x, #(x)) (10)
where:
B () = BG4 (1, x)ef (x)ef2(x) ... efio(x) (11)
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@ First two equations we can solve directly:

a'(u,x) = e "a"(x)

at(u,x) = e "a"(x)

—_~ o~
© 00
— —

(s)

o Substituting these solutions in a”(a", a*) and using restriction nAhA ’ =0 we see that in
curvilinear coordinates our ansatz leads to the following relation:

P 3%) = W, A (X0 P e g

= b, (0.3)@ ()2 (x) .. @ (x) = K (u, x, #(x)) (10)
where:
B () = BG4 (1, x)ef (x)ef2(x) ... efio(x) (11)

@ This is correct pullback of spin s tensor field from d + 2 dimensional flat space to
AdSy+1 space. The only reminder about flat space we have here is u-dependance of
d + 1 dimensional field components in (11)
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@ First two equations we can solve directly:

a“(u,x) = e™"a"(x) (8)

at(u,x) = e "a"(x)

—
©
~

(s)

o Substituting these solutions in a”(a", a*) and using restriction nAhA ’ =0 we see that in
curvilinear coordinates our ansatz leads to the following relation:
s By _ p(s) A1 LA As
WX, aP) = h)y, g, (X)aMa™ | XA (uximhs) o
= (X)) (x) . @ (x) = ) x, () (10)
where:

B () = BG4 (1, x)ef (x)ef2(x) ... efio(x) (11)

@ This is correct pullback of spin s tensor field from d + 2 dimensional flat space to
AdSy+1 space. The only reminder about flat space we have here is u-dependance of
d + 1 dimensional field components in (11)

@ Expand auxiliary vectors a” using Frenet basis for embedded AdS space we have finally,
the following embedding rule

a* => Ln\(x)a" + ef,‘(x)a”' (12)
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The initial gauge variation of order zero for the spin s field is
Sh® (XA &%) = s(a"0a)e D (XA ), (13)

with the traceless gauge parameter for the double traceless gauge field

O D(XA; 24 =0, (14)
2, (XA a") = 0 (15)

Then we obtain
A0pel (XA a%) = e (a9 (x)Du + 2 (x) D) €7D (u, x; @ (%)) (16)

where parameter (51 (X#; a*) obeys to the same type ansatz rule as the h($)(X*; a%)

(XA, 24) = oD (u, x; 2(x)) (17)
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The next important observation is about derivatives dx« = 0, in respect to AdSg1
coordinates x*:

o First note that we mapped scalar object in flat space constructed from X - dependent
tensor contracted with constant vectors a? to the scalar object in curve space
constructed from x-dependent tensor contracted with x-dependent vectors a#(x). So as
a result we obtain for scalars ordinary derivative Jyu

To see appearance of the AdS411 covariant derivatives we should use Leibnitz rule in
curve space:

O (To(x)3"(x)) = VyuTu(x)a"(x) + Tu(x)V,a"(x)
= (VuTu(x))a"(x) = Tu(x)a"(x) = (Vu Tu(x))a"(x) — a“(X)a%(Tu(X)a”) (18)

From this example we see that we should replace the usual derivative with the following
operators in Frenet basis:

o4 => (e7"Dy, e "0,), (19)

a
8“ => D‘L = VM - a“(?au — L—Z(?au7 (20)

where V, is AdS covariant derivative constructed from the AdSq;1 Christoffel symbols
with the following action rule:

YV, h(u,x;8) = Vb s (U, x) a1 a2 2t (21)

So from now on we have instead of usual differential operator and coordinate dependent
auxiliary vector components " constant” objects a¥ and a* and covariant derivative
operator working on rank s symmetric tensors as operators working in both x and a
spaces.
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Then we can write:

POaD(XA ) = e (340, + a"Dy) D (u, x; a*)

=e Y[a"(0u—s+1)+a"V,] D (u, x; a*) (22)

Using this and restricting the dependence on additional " u" coordinates for all fields and
gauge parameters in the following (exponential) way

A (u, x; ) = eBrup() (xi; att), (23)

6(571)(u7 xt; al') = eA*”e(sfl)(x“; at), (24)
we obtain for Ap, A, the following relation:
eBrtghS) (xi: gty = B DUs [ (A, — s+ 1) + a"V,] G (x; ). (25)

So we see that for getting from gauge transformation in d + 2 dimensional flat space (13) the
correct AdS441 gauge transformation

ShE) (x#; o) = 52"V, eV (x; o) (26)
we should fix the last freedom in our ansatz in unique form

A=s—1 (27)
A=A —1=5-2 (28)

which is in agreement with other consideration.
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After all, we can formulate our final prescription for radial pullback in the massless AdS case
slightly differs from our reduction formulated in arXiv:1210.7227 and can be summarized by
the following three points.

@ Expand auxiliary vectors a” using Frenet basis for embedded AdS space
a* => L' (x)a" + e;\(x)a” (29)

@ Replace all derivatives in the following way:

94 => e <_ nAEX)au n e‘Af(X)D#) (30)
where D, is
u a
DH = VM — a Ogn — fgaau (31)

© Restrict the dependence on additional " u” coordinates for all fields to preserve gauge

invariants during pullback.

h(S)(u7X/L; ) = e(s—2)uh(s)(Xu; ahy, (32)
(33)

© Write very simple form of the pullback of star contractions:

1 s s 71 n
0= oy I1(- D i T + ‘5%33”,.) => ( (s)) )k (34)
i=1 n=0 n
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After some straightforward calculation using our reduction rules we can prove that d + 2

dimensional gauge invariant Fronsdal tensor
FOXA ") = Og2h(X4;a%) — 304(050,6h) (X4, 27)
7%(8383)D3Ah(5)(XA; aA>,
reduces to the AdS,.1 gauge invariant Fronsdal tensor
f(s)(x; ") =Ug11 h(s)(x”; at)

—(a"V,.) [(V”@su)h(s)(x; @) — Z(aV,)) o h9(x; a“)]

1
2

1
f%[sz +s(d — 5) — 2(d — 2)]A) (x#; &) — L—a“a,,,ljau A (xH; o).

2

in the following way

f(s)(XA; aA) = e(5_4)”]-'(5)(x; a"),

R.M. (YerPhl) Cubic AdS August 29, 2019
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Supplementing this with the reductions for field and for integration volume:
/ dit2X = / dud?tixv/=G =L / dud?tix,/geldt2)u (38)
we obtain the following reduction rule for Fronsdal actions :
SolH (XA )] = [L / due<d+25—4)“} X Solh)(x*; 2], (39)

The overall infinite factor

[L/due(dﬁs_“)“}, (40)

here the same as in arXiv:1210.7227 , where we described prescription to get correct

additional AdS correction terms from the full " u” derivative part of interaction terms. This

additional terms can be found with insertion of the dimensionless delta function in measure
(38)

/df’+2x5 (VL)@ - 1) (41)

then full derivative terms will survive only for normal u derivatives:

v/ — X2 /X2 A
/dd+2x5 <LX - 1) ep = / d?+2xsW (LX - 1) %E;{Eu

1) (v —
:/dudd+1x\/§e(d+2)”LLl)2u (42)
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Cubic Self-Interaction

We look at the main term in the case of a cubic self-interaction in flat space

main  _ s d+2
e = X (a-ﬂ,w>/d+x

a,By
atBty=s

1% 0p0)(a"08) " (X; bO)
a+f’(bDa 0)*(bEAE)P O (X; cF)
F(cC,6) (o) H(X; ), (43)
and see that the main object of cubic interaction above is the bitensorial function

G)(Q, m; a*, b, X) = (a%0,4)?(a%0B)" ) (X; bC). (44)

This term should generate all AdS curvature corrections coming from main term. For that we
study these operators in a representation that act on pullback HS field

B (X b2) xmx (o) = O (u, x5 ) = eE=2UhE) (xh; ). (45)

Then we can obtain these AdS corrections expanding all flat d + 2 dimensional objects in
Frenet basis or in other words in term of d + 1 dimensional AdS space derivatives and vectors
and normal components surviving after applying our ansatz rules:

(a%08)"x—x(ux) = [e7"(a"0u + 2"Dy)]" (40)
"D, = (a,D) = (a,V) — a“(a,8,) — b"(a, 0p) — a*0av — (a, b)pu (47)
where a* = (a,a) = 3"a"gu(x)

and contracting over all a¥, b, cV.

R.M. (YerPhl) Cubic AdS August 29, 2019



Noncommutative algebra and a“ stripping

So we must deal with the d + 1 dimensional expansion for the n'th power of d + 2
dimensional derivatives (46), where the operator

a"dy +a'D, = a'V,(g) - R, (48)
Vi = Vyu— b"Opu — bups, (49)
R = a“[(ads) — 8u] + 8*Da, (50)

act on ground states (45). These ground states can be characterized by the total symmetry in
the argument and by the fact that they are annihilated by the following operators:

| 0 >= els=2upls)(xr pr (51)
Oar |0 >= 020 | 0 >=0pw | 0 >=0, (52)
R|0>=(2—5s)a"|0>. (53)
The operator of interest is
[e’”(a, V) - e’”R} , (54)

where in the sequel it is advantageous to write the operator R in the following way
R = a“[(ad.) + a“ — D] + (a° — (a)?)Du (55)

with the following important algebraic relations:

[(20,) + a“0u, R] = R, (56)
[(30,) + 8“0, (3, V)] = (3, V), (57)
[R,e74(a, V)] = 2e7a"(a, V). (58)
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we obtain

[(a,e7%) — e “RI" [0 >= els727 M4} " (—1)P(a, V)P
p=0

> Gipiy s - - S b K (X1 ), (59)

n—p>ip>ip—1>ip—2...2i1 >0
where we have ¢;, as a very simple " creation” operators
b1, = a"[2(ik + k) — ] + [a® — (a“)?]0av. (60)

Now we show how to perform summation in (59) and obtain wanted expansion on the power
of a" to contract after. Introducing notation

Vp+1(,'p+1)h(5)(xﬂ; bﬂ) = Z ¢ip¢ip71 cee ¢i2¢i1h(5)(xu; bu)v (61)

o125 ip 120p 22020

and performing summation over the labels {ik}\Zzl we should obtain a polynomial in a" and
(a®) of the form

VP (ips1) = ZE”“(IPH )(a%)(a")P%. (62)
k=0

Considering the last expression as an ansatz for equation

Ip+1

VP (ip1) = Y 63, VP(ip) (63)
iro
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we obtain the following recurrence relation for 2p — k order polynomials coefficients
+1 /- : 2p—k
k (ip41) ~ (ip+1)?P75 + ...

P 20(2: +p+ 142k —s)EP(i) + X;(p +1-2k)eP_, (V) (64)

This equation is easier to consider in "differential” form

GO -1 =@+ p+1+2k=9)G0) +(p+1- 2605 ,() (65
Investigating solutions of latter equation obtained by direct calculation of VP*+1 for
p=1,23,4,..., we arrive to the following important ansatz for fpﬂ( )

1. 1 . . .
£+ (I) = m(l+1)p(2k+2+l —S)p_2kPk(l) (66)
where Py(i) ~ i* 4-... is now p- independent polynomial of order k and we introduced

Pochhammer symbols

M(a+n)
r(a)

Inserting (66) in equation (65) we obtain equation for Pj(/):

(a)n = =a(a+1)...(a+n—-1) (67)

(i + 2K) Py (i) — iPi(i — 1) = (i + 2k — 5)Py_1(i) (68)
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Then after more convenient normalization of our polynomials with additional 2k order factor:

Pr(i) = (i + 12k Pic(i)
we arrive to the following simple equation with boundary condition:
Pi(i) = Pi(i = 1) = (i + 2k — 1)(i + 2k — 5)Py_1(i)
Po(i) = Po(i) =1
This we can solve in two way: first in the form of multiple sums:

k

Pruli) = > [1Gn+2n=1)(in+2n—s)

i>ik>ik—1>ik—2...>1 >0 n=1

R.M. (YerPhl) Cubic AdS August 29, 2019
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or solving differential equation for generating function

)
Pely) =Y Peli)y’ (73)
i=0
where we introduced formal variable y with |y| < 1 for production of the boundary condition:
o 1
’PO()’):;}":E (74)
For this generation function, we obtain from recurrence relation the equation

(1— y)Pely) = (ydi'y Lok 1)(y 2% P) (75)

Solving recursively and using (74) we can write the solution in the form:

4 d d k 2
_ (2I<+1) s —s y
Pi(y) 71 —a ) | 1oy (76)
Finally, we can write €27 (7) in term of Py (i)
1
§p+1( ) = m(zk + i+ 1)p_ok(2k + 2+ i — 5)p—2kPi(i) (77)
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Noncommutative algebra and b stripping

To extract exact dependence from b and obtain final expressions written directly through the
AdSy41 covariant derivatives V we have to evaluate the remaining factors

(3, V)P =[(a, V) — b“(a, 0p) — (a, b)Ops]"P

n—p (n—p ; }
=Z(f1)f’( ; )(a,V)"-P-P(LwL-)P, (78)
=0

where LT, L~ generate a Lie algebra

LY =bY(a,dp), L~ =(a,b)dpu, (79)
[LT,L7] = H = a®b"0pu — (a, b)(a, Op), (80)
[H, L[] = 22421 %, (81)

Representations of this Lie algebra are created from an (s + 1)-dimensional vector space of
"null vectors” {®,(a; b)}|5_q of "level” n

On(aib) = hiE),, a2 g b [T dy(a; b) = 0, (82)
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for any fixed tensor function h®. From our algebra follows that starting from ®g(a; b) all
®,(a; b) can be produced by application of H

Hdg(a; b) = —s(a, b)®1(a, b), (83)
H2dg(a; b) = [s]a(a, b)2®2(a; b) + sa*(a, b)d1(a; b), (84)
H3®g(a; b) = —{[s]3(a, b)3®3(a; b) + 3[s]2a°(a, b)*>®a(a; b) + s(a?)?(a, b)d1(a; b)}. (85)
The ansatz .
H®o(a; b) = (~1)" > A[s],(a*)" " (a, b) @, (a; b), (86)
r=1
leads to the recurrence relation
A Al = Al (87)
A =0 for r>n. (88)

The boundary conditions A(fl) =0 and Ago) =1 are assumed. Multiplying by x" and
introducing

Pa(x) = Y Ax (89)
r=0
we obtain simple differential equation
d X X
X (e*Pn(x)) = € Pryi1(x). (90)

which we can easily solve since Py(x) = 1.
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Iterating n times we find
d n
XPn _ el X , 91
P = (x5 ) e (o1)
or

Py(x)=e"* (xd%)n e (92)

Evidently, P,(x) is a polynomial of order n, which means that AS”) =0 for r > n.
Finally, we can find a "double” generating function. Introducing

o0 t”
=2 Palx) (93)
n=0
we see that .
Q(x, 1) = e Xe¥aeX = eX(e'-1) (94)

d .
where we have explored the fact that the operator e rescales the variable x by the factor
e'. Expanding (94) in x and t we get

ik;
x(et,l) _ H Z kx' It' (95)

i=1 kj=0
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It is not difficult to get a simple combinatorial formula for A Let us denote by P(n, r) the
set of partitions of n into r nonzero parts. The partitions are in one to one correspondence
with Young diagrams with n boxes and r rows. An arbitrary partition A may be represented as

X = 1k2k3ks ... where the nonnegative integer k; indicates the number of rows with length
i. For example the partition 8 = 1 4+ 1 4+ 3 + 3 is represented as 122932, hence
{ki, ko, k3} = {2,0,2} and kg = ks = --- = 0. The corresponding Young diagram consists of

two rows of length 3 and two rows of length 1. For a diagram X € P(n, r) let us arbitrarily
distribute the integers 1,2,---n among boxes. Let us identify two configurations which differ
from each other by permutations of numbers along rows or by permutation of entire rows of
same lengths. Evidently, the number of non-equivalent distributions is given by

n!
[Tis1 kil(it)ki
Now comparing with expansion of the solution of differential equation one easily gets

AV =% s (97)

AEP(n,r)

S(\) = (96)
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With the help of the basis {®,(a; b)};_, of null vectors the representation of the Lie algebra can be
constructed as follows.
(2] B
(LY + L7)Pdg(b) = Z(b“ 2k(_1Yk(a, 0,)P 2K Wk (22, H)®o(b) (98)

Here we recognize that the whole basis {®,(a; b)} of null vectors is produced from ®g(b) by the action of
H. With the shorthand

Vi = iH + [i]2 8%, (99)
the result is
WH(a®, H, i1 )o(b) = > Uik —ke2¥i s Va-10i Po(b).
22 2y 2> >1

(100)

The sum is a homogeneous polynomial of H and a? of degree k, :

~ ; ~
W @ H, i) = Y nf (i) (@) "HET (101)
m=0
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Using this ansatz and doing in the way similar to previous case we derive from

~ ik+2 ~
Wk+1(32’ Ha il~(+2 Z (/}Ik l~< k ’ H’ i/~<+l) (102)
fp=
the following recurrence relation
J
() = Y0 [ = R+ (= R = k=102 (103)

i=1
or without summation:
nf () = (= 1) = (i = K (i) + (i = k)i = k= D)~ (i) (104)

From the other hand we have already extracted b” dependence and can calculate coefficients
7 (igy1) directly. We see that it is possible to write

nf (B — k) =nP(ir,,)l;

k=P~

i (105)

in the following form:
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(6~ k) = > >

p—k>ig>ip_ g, >i>i>1 k>nm>nm_1>nm_2..>n>m>1
k nm—1
I Gu= 4 Dling —m+12 [ Gy = It + Dlingy — 1mo1 + 112
Im=nm+1 Im—1=nm-1+1
n3—1 np—1 nm—1
o ] Gp = b+ Dl —me+12 [[ Gh—h+Dlim —m+102 [ G —1+1)
h=ny+1 h=n1+1 1=1

(106)
This formula means that we should inside of expression for 172(;3 —k):
k
n2(p—k) = > [IG-1+1) (107)
p—k>ip>ip >ip ,.>ip>i>11=1

replace m brackets (i, — n, + 1)|"_; with the m Pochhammers {[in, — n, + 1]}/ in all
possible ways and then take sums.
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Pullback of the main term of cubic self-interaction

Now we can write expression for the whole main interaction term

o [BLa—pul2] aB[216-p 2] Br[Bla—psl2]

. -~ s
ﬁ;nam:/due(d+2s 4)udd+lx\/§ E < s )
a, B,y s e .
Qfﬂ‘:ﬁ m1,p1,K1,P1 sk m2,p2,k2, P2,k m3,p3,Kk3,P3,k3
Yta,a+8,8+y n+m+n
ED)™TES oy aem atBom s

(~/+a)(a+/3)(ﬁ+7) at Tpu Tt Takt a et

ny,n2,n3=0 n n n3

(BU)PI*ZI(I‘HT’I(bu)ﬁI*Q‘;l*ml(a’ 5b)~f+p‘1—21<'1—n11(3T V)afprﬁe[% o, my, pu, ki, p, k1, a2, Hl]h(S)(bM)

(brypem2hatma(ctypm2hemme p, g Yotk (b, )RR 0, B, ma, pa, ko, P, Ko, B, Hal W ()

(ctypom2hstms (gqu)Bs=2ks=ms (¢, p,)BPs=2ka=ms (o 7YI=PBQ[B, y, ms, ps, ks, 3, ks, 2, Ha] W) (")
(108)

Now we can contract all non AdSy;1 components a¥, b¥, c” using corresponding " u"-stars from second
line of (108). This leads to the following constraints for summation indices:

p1— 2k +my =p3—2ks —m3 = (109)
p272k2+m2:;5172k~17m1:n2 (110)
p3—2ks+mg = —2ky —my =n3 (111)

So we can take summation over m;,i = 1,2, 3 with remaining constraints on other variables :

pL+pL=m+m+2(k + k) (112)

P2+ P2 =m+n3+2(ks + ko) (113)

ps+ B3 = 3+ ny +2(ks + k3) (114)
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Then to understand better the structure of the derivativesof interaction we can take into
account constraints latter constraints and rearrange the summations in the following way

DIDIDICECEEDNCHLD D (115)

n3>0n2>0n1 >0 N>0 n1,12:"3

>nj=N
(i Y ic1.2.3 K>0 (PjKi}iz123  {pjki-biKi}iz1,2,3
- ~ P:=n;+n:, 1+2K: 5. . k.
pi+Bi=ni+njq+2(ki+K;) i "'Z;:JQK T pitPi=Piiki+ki=Ki

where in last equation {n;} = n1, np, n3 with cyclic property ng = n; After that we should
introduce instead of «, 8, new summation variables

a = afn17n272K1:a7P1, (117)
B = B—nm—n—2K=3— Py, (118)
¥ = vy—n—m—-2K3=v—Ps. (119)

with corresponding summation limits and constraints

0<@,fB,5<s—2(N+K), (120)
G4 B+5=s-2(N+K), (121)
N=>"n; K=Y K=> (ki+k). (122)

These transformations lead to the following formula:
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Result

These transformations lead to the following formula:

main _ s—4)u Ts—2(N+ KM AL
L7 */due“’+2 VT D N+K)) Z ( g )

N>0 K>0 ]

&t Bims—2(N+K)
F+a+N+2(Ks+K1) | a+A+N+2(Ki+Ka) | B+5+N+2(Ka+Ks)
*an *pi *on

Z Z Z ('7+&+N+2(K3+K1)+n1) (&+5+N+2(K1+K2)+n2) (§+%+N+2(K2+K3)+n3)
tnitizi23 APiKiYiz123  {ppkibikitizi o n m n3
Tm=N - Pi=ni 142K s Pkt k=K

K=K

(a,0p)THN25 (2, V)3 22K (5, &, g, pu, k1, B, K1, 2, H ]S (b7)
(b, 0N H2K (b, )P =22, 5 13, pa, ko, B, o, b, HaJH ()
(c,8,)° N2 (¢ VYV =253, 5, my, ps, ks, s, ks, 2, Hs]h(S) (a#)

(123)
where
=205, &, mp, Py, pu, ku, B, ki, @2, Hi)
NN 5 ok .
= M <p1 1)55‘“(@ + B)WH (%, Hy), (124)
(5 4 P3— p1+ 2ky + m)! n !
=22(&, B, n3, Py, pa. ko, o, ko, b7, Ho]
B+ p)I(2)k 5, — 2k; P
R (P B pw R ), (125)
(& + P1— P2+ 2ky + n3)! n3 2
=25(3,5, m, Pa, ps, ks, B3, ks, 2, Hs]
5+ p3)!(a%)ks 53 — 2k: ek
S )L G, (,;3 3)5;’;”(7 + p)WR(2, Hy). (126)
(B+ P2 — B3+ 2ks + )} m
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Finalizing our consideration we can write direct (a%), (b)?, (c)? expansion of corresponding =2/ terms
using second recurrence relation

B ky ki—t 3 B
(@) wh (@ H)AO(b) = (1) D (A — kAR [s](a%) (2, ) @ (ab)  (127)
t1=0 n=1
. kot
()W (b, Ho)h)(c) = Z D2y (s - ko) AL~ s],, (b)<2 (b, )2 (b,c)  (128)
tr=0 n=1
) ks—t3
(2)o W (2%, Hy)h)(c) = Z( DB Y 02 (B — k) JABB[s],, ()73 (c, )7 (c,8)  (129)
t3=0 r3=1
So we see that =2Ki really behave like a®/1, b?%2, 23 as they should for correct contractions of indices.
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Conclusion

@ We have constructed all AdS corrections including trace and divergence terms to the
main term of the cubic self-interaction by a slightly modified method of radial pullback
(reduction) proposed in arXiv:1210.7227 where all quantum fields are carried by a real
AdS space and corresponding interaction terms expressed through the covariant AdS

derivatives.
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Conclusion

@ We have constructed all AdS corrections including trace and divergence terms to the
main term of the cubic self-interaction by a slightly modified method of radial pullback
(reduction) proposed in arXiv:1210.7227 where all quantum fields are carried by a real
AdS space and corresponding interaction terms expressed through the covariant AdS
derivatives.

@ For given spin s and Ap,, = s we derived all curvature correction terms (123) in the
form of series of terms with numbers s — 2(N + K) of derivatives, where 0 < N4+ K < 5.
The latter is the number of seized pair of derivatives replaced by corresponding power of
1/L2 and K is the sum of power of a?, b?, c® terms connected with trace and divergent
correction terms produced from the main term of interaction after pullback.
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form of series of terms with numbers s — 2(N + K) of derivatives, where 0 < N4+ K < 5.
The latter is the number of seized pair of derivatives replaced by corresponding power of
1/L2 and K is the sum of power of a?, b?, c® terms connected with trace and divergent
correction terms produced from the main term of interaction after pullback.

@ Correction terms appear with coefficients that are polynomials in the dimension d + 1
and spin number s with rational coefficients.
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Conclusion

@ We have constructed all AdS corrections including trace and divergence terms to the
main term of the cubic self-interaction by a slightly modified method of radial pullback
(reduction) proposed in arXiv:1210.7227 where all quantum fields are carried by a real
AdS space and corresponding interaction terms expressed through the covariant AdS
derivatives.

@ For given spin s and Ap,, = s we derived all curvature correction terms (123) in the
form of series of terms with numbers s — 2(N + K) of derivatives, where 0 < N4+ K < 5.
The latter is the number of seized pair of derivatives replaced by corresponding power of
1/L2 and K is the sum of power of a?, b?, c® terms connected with trace and divergent
correction terms produced from the main term of interaction after pullback.

@ Correction terms appear with coefficients that are polynomials in the dimension d + 1
and spin number s with rational coefficients.

@ Now we can expect that the same method can be used for the derivation of the AdS
corrections to traces and deDonder terms connected with the main term by Noether's
procedure derived for the flat case in R. M,. K. Mkrtchyan and W. Riihl arXiv:1003.2877.
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Thank you for your attention
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