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Short Description

We present a slightly modified prescription of the radial pullback formalism
proposed previously by R. Manvelyan, R. Mkrtchyan and W. Rühl in 2012,
where authors investigated possibility to connect the main term of higher
spin interaction in flat d + 2 dimensional space to the main term of
interaction in AdSd+1 space ignoring all trace and divergent terms but
expressed directly through the AdS covariant derivatives and including
some curvature corrections. In this paper we succeeded to solve all
necessary recurrence relations to finalize full radial pullback of the main
term of cubic self-interaction for higher spin gauge fields in Fronsdal’s
formulation from flat to one dimension less AdSd+1 space. Nontrivial
solutions of recurrence relations lead to the possibility to obtain the full set
of AdSd+1 dimensional interacting terms with all curvature corrections
including trace and divergence terms from any interaction term in d + 2
dimensional flat space.
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Notations and Setup: Coordinate Transformations

X d+2 =
1

2
eu [r +

1

r
(L2 + x ix jηij )],

X d+1 =
1

2
eu [r −

1

r
(L2 − x ix jηij )],

X i = euL
x i

r
,

−e2uL2 = −(X d+2)2 + (X d+1)2 + X iX jηij ,

ds2 = L2e2u [−du2 +
1

r2
(dr2 + dx idx jηij )].

The restriction eu = 1 leads instead of

coordinate transformations to the usual

embedding of the Euclidian AdSd+1

hypersphere with local coordinates

xµ = (x0, x i ) = (r , x i ) into d + 2

dimensional flat space.

Jacobian Matrix; Embedding and Frenet Basis

EA
µ(u, xν ) =

∂XA

∂xµ
= eueAµ(xν ),

EA
u (u, xν ) =

∂XA

∂u
= XA(u, xν ) = euLnA(xν ),

Eu
A(u, x) = −

e−u

L
nA(x)

E
µ
A

(u, x) = e−ue
µ
A

(x),

where the d + 1 tangent vectors {eAµ(x)}dµ=0 and one normal

vector nA(x)

nA(x)eBµ(x)ηAB = 0

nA(x)nB (x)ηAB = −1

for embedded AdSd+1 space define the standard induced metric

gµν (x) and extrinsic curvature Kµν (x) for our AdSd+1 space:
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Induced Metric and Extrinsic Curvature

gµν (x) = eAµ(x)eBν (x)ηAB =

(
L

x0

)2

δµν

and
∂µe

A
ν (x) = Γλµν (g)eAν (x) + Kµν (x)nA(x)

where

Γλµν (g) =
1

2
gλρ

(
∂µgνρ + ∂µgνρ − ∂ρgµν

)
,

Kµν (x) =
gµν (x)

L

Therefor to restrict our flat theory to AdS hypersphere we
should first formulate d + 2 dimensional field theory in the
curvilinear coordinates with flat e2u(AdSd+1 ×Ru) metric

ds2 = e2u [−L2du2 + gµν (x)dxµdxν ]

= Guu(u)du2 + Gµν (u, x)dxµdxν ,

Guu(u) = EA
u (u, xν )EB

u (u, xν )ηAB = XAXA = −L2e2u

Gµν = EA
µ(u, xν )EB

ν (u, xν )ηAB = e2ugµν (x)

Frenet Basis and AdSd+1 Riemann Curvature

Differentiation rules for Frenet basis:

∇µeAν (x) =
gµν (x)

L
nA(x)

∂µn
A(x) =

1

L
eAµ(x),

and then taking commutator :

[∇µ,∇ν ]eAλ = R
ρ

µν,λ
eAρ = Kλ[νK

ρ
µ]

eAρ

we get the standard expression for AdSd+1 Riemann curvature
and Ricci tensors

R
ρ

µν,λ
= −

1

L2
(gµλδ

ρ
ν − gνλδ

ρ
µ)

Rµ,λ = −
d

L2
gµν , R = gµλRµλ = −

d(d + 1)

L2
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Turning to higher spins in flat ambient space we should introduce first the following
conventions. As usual, we utilize instead of symmetric tensors such as h

(s)
A1A2...As

(X )

polynomials homogeneous in the vector aA of degree s at the base point X

h(s)(X ; a) =
∑
Ai

(
s∏

i=1

aAi )h
(s)
A1A2...As

(X ).

Then we can write the symmetrized gradient, trace, and divergence

Grad : h(s)(X ; a)⇒ Gradh(s+1)(X ; a) = aA∂Ah
(s)(X ; a),

Tr : h(s)(X ; a)⇒ Trh(s−2)(X ; a) =
1

s(s − 1)
�ah

(s)(X ; a),

Div : h(s)(X ; a)⇒ Divh(s−1)(X ; a) =
1

s
ηAB∂A∂aBh

(s)(X ; a).

Moreover, we introduce the notation ∗a, ∗b, . . . for a contraction in the symmetric
spaces of indices a or b

∗saA =
1

(s!)2

s∏
i=1

←−
∂ aAi η

AiBi
−→
∂ aBi
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So we should fix two important points to perform correct pullback of higher spin theory from
flat ambient to one dimensional less AdS space:

We should fix the ansatz for d + 2 dimensional HS field in a way to get from one spin s
field exactly one spin s field in AdSd+1. The natural condition here send to zero all
components normal to the embedded hypersphere

nAh
(s)
AA2...As

(u, xν) ∼ XA(u, xν)h
(s)
AA2...As

(u, xν) = 0 (1)

Our auxiliary vector aA is constant in flat space

aA =EA
u (u, x)au(u, xν) + EA

µ (u, x)aµ(u, xν)

=eu
(
LnA(x)au(u, x) + eAµ (x)aµ(u, x)

)
(2)

∂Ba
A = 0, (3)

but in curve AdSd+1 space there is no possibility to get covariantly constant vectors.
from (3) we obtain the following four relations for derivatives of components
au(u, x), aµ(u, x):

∂ua
u(u, x) + au(u, x) = 0 (4)

∂ua
µ(u, x) + aµ(u, x) = 0 (5)

∂µa
u(u, x) +

1

L2
aµ(u, x) = 0 (6)

∇µaν(u, x) + δνµa
u(u, x) = 0 (7)
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First two equations we can solve directly:

au(u, x) = e−uau(x) (8)

aµ(u, x) = e−uaµ(x) (9)

Substituting these solutions in aA(au, aµ) and using restriction nAh
(s)
A... = 0 we see that in

curvilinear coordinates our ansatz leads to the following relation:

h(s)(X , aB) = h
(s)
A1A2...As

(X )aA1aA2 . . . aAs |
XA=(u,xµ),nAh

(s)
A...=0

= h(s)
µ1µ2...µs (u, x)aµ1(x)aµ2(x) . . . aµs (x) = h(s)(u, x , aµ(x)) (10)

where:
h(s)
µ1µ2...µs (u, x) = h

(s)
A1A2...As

(u, x)eA1
µ1

(x)eA2
µ1

(x) . . . eAs
µs (x) (11)

This is correct pullback of spin s tensor field from d + 2 dimensional flat space to
AdSd+1 space. The only reminder about flat space we have here is u-dependance of
d + 1 dimensional field components in (11)
Expand auxiliary vectors aA using Frenet basis for embedded AdS space we have finally,
the following embedding rule

aA => LnA(x)au + eAµ (x)aµ (12)
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The initial gauge variation of order zero for the spin s field is

δ(0)h
(s)(XA; aA) = s(aA∂A)ε(s−1)(XA; aA), (13)

with the traceless gauge parameter for the double traceless gauge field

�aAε
(s−1)(XA; aA) = 0, (14)

�2
aAh

(s)(XA; aA) = 0 (15)

Then we obtain

aA∂Aε
(s−1)(XA; aA) = e−u (au(x)∂u + aµ(x)∂xµ) ε(s−1)(u, x ; aµ(x)) (16)

where parameter ε(s−1)(XA; aA) obeys to the same type ansatz rule as the h(s)(XA; aA)

ε(s−1)(XA; aA) = ε(s−1)(u, x ; aµ(x)) (17)
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The next important observation is about derivatives ∂xµ ≡ ∂µ in respect to AdSd+1

coordinates xµ:

First note that we mapped scalar object in flat space constructed from X - dependent
tensor contracted with constant vectors aA to the scalar object in curve space
constructed from x-dependent tensor contracted with x-dependent vectors aµ(x). So as
a result we obtain for scalars ordinary derivative ∂xµ

To see appearance of the AdSd+1 covariant derivatives we should use Leibnitz rule in
curve space:

∂xµ(Tν(x)aν(x)) = ∇µTν(x)aν(x) + Tν(x)∇µaν(x)

= (∇µTν(x))aν(x)− Tµ(x)au(x) = (∇µTν(x))aν(x)− au(x)
∂

∂aµ
(Tν(x)aν) (18)

From this example we see that we should replace the usual derivative with the following
operators in Frenet basis:

∂A => (e−u∂u, e
−u∂µ), (19)

∂µ => Dµ = ∇µ − au∂aµ −
aµ
L2
∂au , (20)

where ∇µ is AdS covariant derivative constructed from the AdSd+1 Christoffel symbols
with the following action rule:

∇µh(s)(u, x ; a) = ∇µhµ1µ2...µs (u, x)aµ1aµ2 . . . aµs . (21)

So from now on we have instead of usual differential operator and coordinate dependent
auxiliary vector components ”constant” objects au and aµ and covariant derivative
operator working on rank s symmetric tensors as operators working in both x and a
spaces.
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Then we can write:

aA∂Aε
(s−1)(XA; aA) = e−u (au∂u + aµDµ) ε(s−1)(u, x ; aµ)

= e−u [au(∂u − s + 1) + aµ∇µ] ε(s−1)(u, x ; aµ) (22)

Using this and restricting the dependence on additional ”u” coordinates for all fields and
gauge parameters in the following (exponential) way

h(s)(u, xµ; aµ) = e∆huh(s)(xµ; aµ), (23)

ε(s−1)(u, xµ; aµ) = e∆εuε(s−1)(xµ; aµ), (24)

we obtain for ∆h,∆ε the following relation:

e∆huδh(s)(xµ; aµ) = e(∆ε−1)us [au(∆ε − s + 1) + aµ∇µ] ε(s−1)(x ; aµ). (25)

So we see that for getting from gauge transformation in d + 2 dimensional flat space (13) the
correct AdSd+1 gauge transformation

δh(s)(xµ; aµ) = saµ∇µε(s−1)(x ; aµ) (26)

we should fix the last freedom in our ansatz in unique form

∆ε = s − 1 (27)

∆h = ∆ε − 1 = s − 2 (28)

which is in agreement with other consideration.
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After all, we can formulate our final prescription for radial pullback in the massless AdS case
slightly differs from our reduction formulated in arXiv:1210.7227 and can be summarized by
the following three points.

1 Expand auxiliary vectors aA using Frenet basis for embedded AdS space

aA => LnA(x)au + eAµ (x)aµ (29)

2 Replace all derivatives in the following way:

∂A => e−u
(
−nA(x)

L
∂u + eµA(x)Dµ

)
(30)

where Dµ is

Dµ = ∇µ − au∂aµ −
aµ
L2
∂au (31)

3 Restrict the dependence on additional ”u” coordinates for all fields to preserve gauge
invariants during pullback.

h(s)(u, xµ; aµ) = e(s−2)uh(s)(xµ; aµ), (32)

(33)

4 Write very simple form of the pullback of star contractions:

∗saA =
1

(s!)2

s∏
i=1

(
−
←−
∂ aui
−→
∂ aui +

←−
∂ aµi

−→
∂ aµi

)
=

s∑
n=0

(−1)n(s
n

) ∗nau ∗s−naµ . (34)
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After some straightforward calculation using our reduction rules we can prove that d + 2
dimensional gauge invariant Fronsdal tensor

F (s)(XA; aA) = �d+2h
(s)(XA; aA)− aA∂A

(
∂B∂aBh

(s)(XA; aA)

−1

2
(aB∂B)�aAh

(s)(XA; aA
)
, (35)

reduces to the AdSd+1 gauge invariant Fronsdal tensor

F (s)(x ; aµ) = �d+1h
(s)(xµ; aµ)

−(aµ∇µ)
[
(∇ν∂aν )h(s)(x ; aµ)− 1

2
(aν∇ν)�aµh

(s)(x ; aµ)
]

− 1

L2
[s2 + s(d − 5)− 2(d − 2)]h(s)(xµ; aµ))− 1

L2
aµaµ�aµh

(s)(xµ; aµ). (36)

in the following way

F (s)(XA; aA) = e(s−4)uF (s)(x ; aµ), (37)
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Supplementing this with the reductions for field and for integration volume:∫
dd+2X =

∫
dudd+1x

√
−G = L

∫
dudd+1x

√
ge(d+2)u (38)

we obtain the following reduction rule for Fronsdal actions :

S0[h(s)(XA; aA)] =

[
L

∫
due(d+2s−4)u

]
× S0[h(s)(xµ; aµ)], (39)

The overall infinite factor [
L

∫
due(d+2s−4)u

]
, (40)

here the same as in arXiv:1210.7227 , where we described prescription to get correct
additional AdS correction terms from the full ”u” derivative part of interaction terms. This
additional terms can be found with insertion of the dimensionless delta function in measure
(38) ∫

dd+2X δ

(√
−X 2

L
− 1

)
(41)

then full derivative terms will survive only for normal u derivatives:∫
dd+2X δ

(√
−X 2

L
− 1

)
∂ALA =

∫
dd+2X δ(1)

(√
−X 2

L
− 1

)
XA

L2
Eu
ALu

=

∫
dudd+1x

√
ge(d+2)u δ

(1)(eu − 1)

L
Lu (42)
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Cubic Self-Interaction

We look at the main term in the case of a cubic self-interaction in flat space

Lmain
I =

∑
α,β,γ

α+β+γ=s

(
s

α, β, γ

)∫
dd+2X

∗γ+α
a (aA∂bA)γ(aB∂B)αh(s)(X ; bC )

∗α+β
b (bD∂cD )α(bE∂E )βh(s)(X ; cF )

∗β+γ
c (cG∂aG )β(cH∂H)γh(s)(X ; aK ), (43)

and see that the main object of cubic interaction above is the bitensorial function

K (s)(Q, n; aA, bA;X ) = (aA∂bA)Q(aB∂B)nh(s)(X ; bC ). (44)

This term should generate all AdS curvature corrections coming from main term. For that we
study these operators in a representation that act on pullback HS field

h(s)(X ; bA)|X=X (u,x) = h(s)(u, xµ; bµ) = e(s−2)uh(s)(xµ; bµ). (45)

Then we can obtain these AdS corrections expanding all flat d + 2 dimensional objects in
Frenet basis or in other words in term of d + 1 dimensional AdS space derivatives and vectors
and normal components surviving after applying our ansatz rules:

(aB∂B)n|X=X (u,x) =
[
e−u(au∂u + aµDµ)

]n
(46)

aµDµ = (a,D) = (a,∇)− au(a, ∂a)− bu(a, ∂b)− a2∂au − (a, b)∂bu (47)

where a2 = (a, a) = aµaνgµν(x)

and contracting over all au, bu, cu.
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Noncommutative algebra and au stripping

So we must deal with the d + 1 dimensional expansion for the n’th power of d + 2
dimensional derivatives (46), where the operator

au∂u + aµDµ = aµ∇̂µ(g)− R, (48)

∇̂µ = ∇µ − bu∂bµ − bµ∂bu , (49)

R = au[(a∂a)− ∂u] + a2∂au , (50)

act on ground states (45). These ground states can be characterized by the total symmetry in
the argument and by the fact that they are annihilated by the following operators:

| 0 >= e(s−2)uh(s)(xµ; bµ) (51)

∂aµ | 0 >= ∂au | 0 >= ∂bu | 0 >= 0, (52)

R | 0 >= (2− s)au | 0 > . (53)

The operator of interest is [
e−u(a, ∇̂)− e−uR

]n
, (54)

where in the sequel it is advantageous to write the operator R in the following way

R = au[(a∂a) + au∂au − ∂u] + (a2 − (au)2)∂au (55)

with the following important algebraic relations:

[(a∂a) + au∂au ,R] = R, (56)

[(a∂a) + au∂au , (a, ∇̂)] = (a, ∇̂), (57)

[R, e−u(a, ∇̂)] = 2e−uau(a, ∇̂). (58)
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we obtain

[(a, e−u∇̂)− e−uR]n | 0 >= e(s−2−n)u
n∑

p=0

(−1)p(a, ∇̂)n−p

∑
n−p≥ip≥ip−1≥ip−2...≥i1≥0

φipφip−1 . . . φi2φi1h
(s)(xµ; bµ), (59)

where we have φik as a very simple ”creation” operators

φik = au[2(ik + k)− s] + [a2 − (au)2]∂au . (60)

Now we show how to perform summation in (59) and obtain wanted expansion on the power
of au to contract after. Introducing notation

V p+1(ip+1)h(s)(xµ; bµ) =
∑

ip+1≥ip≥ip−1≥ip−2...≥i1≥0

φipφip−1 . . . φi2φi1h
(s)(xµ; bµ), (61)

and performing summation over the labels {ik}|pk=1 we should obtain a polynomial in au and
(a2) of the form

V p+1(ip+1) =

[ p
2

]∑
k=0

ξp+1
k (ip+1)(a2)k(au)p−2k . (62)

Considering the last expression as an ansatz for equation

V p+1(ip+1) =

ip+1∑
ip=0

φipV
p(ip) (63)
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we obtain the following recurrence relation for 2p − k order polynomials coefficients
ξp+1
k (ip+1) ∼ (ip+1)2p−k + . . .

ξp+1
k (j) =

j∑
i=0

(2i + p + 1 + 2k − s)ξpk (i) +

j∑
i=0

(p + 1− 2k)ξpk−1(i) (64)

This equation is easier to consider in ”differential” form

ξp+1
k (i)− ξp+1

k (i − 1) = (2i + p + 1 + 2k − s)ξpk (i) + (p + 1− 2k)ξpk−1(i) (65)

Investigating solutions of latter equation obtained by direct calculation of V p+1 for
p = 1, 2, 3, 4, . . . , we arrive to the following important ansatz for ξp+1

k (i)

ξp+1
k (i) =

1

(p − 2k)!
(i + 1)p(2k + 2 + i − s)p−2kPk(i) (66)

where Pk(i) ∼ ik + . . . is now p- independent polynomial of order k and we introduced
Pochhammer symbols

(a)n =
Γ(a + n)

Γ(a)
= a(a + 1) . . . (a + n − 1) (67)

Inserting (66) in equation (65) we obtain equation for Pk(i):

(i + 2k)Pk(i)− iPk(i − 1) = (i + 2k − s)Pk−1(i) (68)
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Then after more convenient normalization of our polynomials with additional 2k order factor:

Pk(i) ≡ (i + 1)2kPk(i) (69)

we arrive to the following simple equation with boundary condition:

Pk(i)− Pk(i − 1) = (i + 2k − 1)(i + 2k − s)Pk−1(i) (70)

P0(i) = P0(i) = 1 (71)

This we can solve in two way: first in the form of multiple sums:

Pk(i) =
∑

i≥ik≥ik−1≥ik−2...≥i1≥0

k∏
n=1

(in + 2n − 1)(in + 2n − s) (72)
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or solving differential equation for generating function

Pk(y) ≡
∞∑
i=0

Pk(i)y i (73)

where we introduced formal variable y with |y | < 1 for production of the boundary condition:

P0(y) =
∞∑
i=0

y i =
1

1− y
(74)

For this generation function, we obtain from recurrence relation the equation

(1− y)Pk(y) = (y
d

dy
+ 2k − 1)(y

d

dy
+ 2k − s)Pk−1(y) (75)

Solving recursively and using (74) we can write the solution in the form:

Pk(y) = y−(2k+1)

[
y4

1− y

d

dy
y s

d

dy
y−s
]k

y2

1− y
(76)

Finally, we can write ξp+1
k (i) in term of Pk(i)

ξp+1
k (i) =

1

(p − 2k)!
(2k + i + 1)p−2k(2k + 2 + i − s)p−2kPk(i) (77)
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Noncommutative algebra and bu stripping

To extract exact dependence from bu and obtain final expressions written directly through the
AdSd+1 covariant derivatives ∇ we have to evaluate the remaining factors

(a, ∇̂)n−p = [(a,∇)− bu(a, ∂b)− (a, b)∂bu ]n−p

=

n−p∑
p̃=0

(−1)p̃
(
n − p

p̃

)
(a,∇)n−p−p̃(L+ + L−)p̃, (78)

where L+, L− generate a Lie algebra

L+ = bu(a, ∂b), L− = (a, b)∂bu , (79)

[L+, L−] = H = a2bu∂bu − (a, b)(a, ∂b), (80)

[H, L±] = ±2a2L±. (81)

Representations of this Lie algebra are created from an (s + 1)-dimensional vector space of
”null vectors” {Φn(a; b)}|sn=0 of ”level” n

Φn(a; b) = h(s)
µ1,µ2,...µsa

µ1aµ2 ...aµnbµn+1bµn+2 ...bµs , L−Φn(a; b) = 0, (82)
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for any fixed tensor function hs . From our algebra follows that starting from Φ0(a; b) all
Φn(a; b) can be produced by application of H

HΦ0(a; b) = −s(a, b)Φ1(a, b), (83)

H2Φ0(a; b) = [s]2(a, b)2Φ2(a; b) + sa2(a, b)Φ1(a; b), (84)

H3Φ0(a; b) = −{[s]3(a, b)3Φ3(a; b) + 3[s]2a
2(a, b)2Φ2(a; b) + s(a2)2(a, b)Φ1(a; b)}. (85)

The ansatz

HnΦ0(a; b) = (−1)n
n∑

r=1

A
(n)
r [s]r (a2)n−r (a, b)rΦr (a; b), (86)

leads to the recurrence relation

A
(n)
r−1 + rA

(n)
r = A

(n+1)
r , (87)

A
(n)
r = 0 for r > n. (88)

The boundary conditions A
(n)
−1 = 0 and A

(0)
0 = 1 are assumed. Multiplying by x r and

introducing

Pn(x) =
∞∑
r=0

A
(n)
r x r (89)

we obtain simple differential equation

x
d

dx
(exPn(x)) = exPn+1(x) . (90)

which we can easily solve since P0(x) = 1.
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Iterating n times we find

exPn(x) =

(
x
d

dx

)n

ex , (91)

or

Pn(x) = e−x
(
x
d

dx

)n

ex . (92)

Evidently, Pn(x) is a polynomial of order n, which means that A
(n)
r = 0 for r > n.

Finally, we can find a ”double” generating function. Introducing

Q(x , t) =
∞∑
n=0

Pn(x)
tn

n!
(93)

we see that
Q(x , t) = e−xetx

d
dx ex = ex(et−1) (94)

where we have explored the fact that the operator etx
d
dx rescales the variable x by the factor

et . Expanding (94) in x and t we get

ex(et−1) =
∞∏
i=1

∞∑
ki=0

xki t iki

ki !(i !)ki
(95)
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It is not difficult to get a simple combinatorial formula for A
(n)
r . Let us denote by P(n, r) the

set of partitions of n into r nonzero parts. The partitions are in one to one correspondence
with Young diagrams with n boxes and r rows. An arbitrary partition λ may be represented as
λ = 1k12k23k3 · · · , where the nonnegative integer ki indicates the number of rows with length
i . For example the partition 8 = 1 + 1 + 3 + 3 is represented as 122032, hence
{k1, k2, k3} = {2, 0, 2} and k4 = k5 = · · · = 0. The corresponding Young diagram consists of
two rows of length 3 and two rows of length 1. For a diagram λ ∈ P(n, r) let us arbitrarily
distribute the integers 1, 2, · · · n among boxes. Let us identify two configurations which differ
from each other by permutations of numbers along rows or by permutation of entire rows of
same lengths. Evidently, the number of non-equivalent distributions is given by

S(λ) =
n!∏

i≥1 ki !(i !)
ki

(96)

Now comparing with expansion of the solution of differential equation one easily gets

A
(r)
n =

∑
λ∈P(n,r)

S(λ) (97)
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With the help of the basis {Φn(a; b)}sn=0 of null vectors the representation of the Lie algebra can be
constructed as follows.

(L+ + L−)p̃Φ0(b) =

[ p̃
2

]∑
k̃=1

(bu)p̃−2k̃(−1)k̃(a, ∂b)p̃−2k̃W k̃(a2,H)Φ0(b) (98)

Here we recognize that the whole basis {Φn(a; b)} of null vectors is produced from Φ0(b) by the action of
H. With the shorthand

ψi = iH + [i ]2 a
2, (99)

the result is

W k̃(a2,H, ik̃+1)Φ0(b) =
∑

ik̃+1≥ik̃≥ik̃−1≥ik̃−2...≥i2≥i1≥1

ψik̃−k̃+1ψik̃−1−k̃+2ψik̃−2−k̃+3...ψi2−1ψi1Φ0(b).

(100)

The sum is a homogeneous polynomial of H and a2 of degree k̃, :

W k̃(a2,H, ik̃+1) =
k̃∑

m=0

ηm
k̃

(ik̃+1)(a2)mH k̃−m (101)
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Using this ansatz and doing in the way similar to previous case we derive from

W k̃+1(a2,H, ik̃+2) =

ik̃+2∑
ik̃+1=1

ψik̃+1−k̃
W k̃(a2,H, ik̃+1) (102)

the following recurrence relation

ηm
k̃+1

(j) =

j∑
i=1

[
(i − k̃)ηm

k̃
(i) + (i − k̃)(i − k̃ − 1)ηm−1

k̃
(i)
]

(103)

or without summation:

ηm
k̃+1

(i)− ηm
k̃+1

(i − 1) = (i − k̃)ηm
k̃

(i) + (i − k̃)(i − k̃ − 1)ηm−1
k̃

(i) (104)

From the other hand we have already extracted bu dependence and can calculate coefficients
ηm
k̃

(ik̃+1) directly. We see that it is possible to write

ηm
k̃

(p̃ − k̃) = ηm
k̃

(ik̃+1)|ik̃+1=p̃−k̃ (105)

in the following form:
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ηm
k̃

(p̃ − k̃) =
∑

p̃−k̃≥ik̃≥ik̃−1≥ik̃−2...≥i2≥i1≥1

∑
k̃≥nm≥nm−1≥nm−2...≥n2≥n1≥1

k̃∏
lm=nm+1

(ilm − lk + 1)[inm − nm + 1]2

nm−1∏
lm−1=nm−1+1

(ilm−1 − lm−1 + 1)[inm−1 − nm−1 + 1]2 . . .

. . .

n3−1∏
l2=n2+1

(il2 − l2 + 1)[in2 − n2 + 1]2

n2−1∏
l1=n1+1

(il1 − l1 + 1)[in1 − n1 + 1]2

n1−1∏
l=1

(il − l + 1)

(106)

This formula means that we should inside of expression for η0
k̃

(p̃ − k̃):

η0
k̃

(p̃ − k̃) =
∑

p̃−k̃≥ik̃≥ik̃−1≥ik̃−2...≥i2≥i1≥1

k̃∏
l=1

(il − l + 1) (107)

replace m brackets (inr − nr + 1)|mr=1 with the m Pochhammers {[inr − nr + 1]2}|mr=1 in all
possible ways and then take sums.
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Pullback of the main term of cubic self-interaction

Now we can write expression for the whole main interaction term

Lmain
I =

∫
due(d+2s−4)udd+1x

√
g

∑
α,β,γ

α+β+γ=s

(
s

α, β, γ

) γ,α,[
p1
2

],α−p1,[
p̃1
2

]∑
m1,p1,k1,p̃1,k̃1

α,β,[
p2
2

],β−p2,[
p̃2
2

]∑
m2,p2,k2,p̃2,k̃2

β,γ,[
p3
2

],γ−p3,[
p̃3
2

]∑
m3,p3,k3,p̃3,k̃3

γ+α,α+β,β+γ∑
n1,n2,n3=0

(−1)n1+n2+n3(
γ+α
n1

)(
α+β
n2

)(
β+γ
n3

) ∗n1
au ∗

n2
bu ∗

n3
cu ∗

γ+α−n1
aµ ∗α+β−n2

bµ ∗β+γ−n3
cµ

(au)p1−2k1+m1(bu)p̃1−2k̃1−m1(a, ∂b)γ+p̃1−2k̃1−m1(a,∇)α−p1−p̃1Θ[γ, α,m1, p1, k1, p̃1, k̃1, a
2,H1]h(s)(bµ)

(bu)p2−2k2+m2(cu)p̃2−2k̃2−m2(b, ∂c)α+p̃2−2k̃2−m2(b,∇)β−p2−p̃2Θ[α, β,m2, p2, k2, p̃2, k̃2, b
2,H2]h(s)(cµ)

(cu)p3−2k3+m3(au)p̃3−2k̃3−m3(c, ∂a)β+p̃3−2k̃3−m3(c ,∇)γ−p3−p̃3Θ[β, γ,m3, p3, k3, p̃3, k̃3, c
2,H3]h(s)(aµ)

(108)

Now we can contract all non AdSd+1 components au, bu, cu using corresponding ”u”-stars from second
line of (108). This leads to the following constraints for summation indices:

p1 − 2k1 + m1 = p̃3 − 2k̃3 −m3 = n1 (109)

p2 − 2k2 + m2 = p̃1 − 2k̃1 −m1 = n2 (110)

p3 − 2k3 + m3 = p̃2 − 2k̃2 −m2 = n3 (111)

So we can take summation over mi , i = 1, 2, 3 with remaining constraints on other variables :

p1 + p̃1 = n1 + n2 + 2(k1 + k̃1) (112)

p2 + p̃2 = n2 + n3 + 2(k2 + k̃2) (113)

p3 + p̃3 = n3 + n1 + 2(k3 + k̃3) (114)
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Then to understand better the structure of the derivativesof interaction we can take into
account constraints latter constraints and rearrange the summations in the following way∑

n3≥0

∑
n2≥0

∑
n1≥0

(−1)n1+n2+n3 =
∑
N≥0

(−1)N
∑

n1,n2,n3∑
ni=N

, (115)

∑
{pi ,ki ,p̃i ,k̃i}i=1,2,3

pi+p̃i=ni+ni+1+2(ki+k̃i )

=
∑
K≥0

∑
{Pi ,Ki}i=1,2,3

Pi=ni+ni+1+2Ki∑
Ki=K

∑
{pi ,ki ,p̃i ,k̃i}i=1,2,3

pi+p̃i=Pi ;ki+k̃i=Ki

(116)

where in last equation {ni} = n1, n2, n3 with cyclic property n4 = n1 After that we should
introduce instead of α, β, γ new summation variables

α̃ = α− n1 − n2 − 2K1 = α− P1, (117)

β̃ = β − n2 − n3 − 2K2 = β − P2, (118)

γ̃ = γ − n3 − n1 − 2K3 = γ − P3. (119)

with corresponding summation limits and constraints

0 ≤ α̃, β̃, γ̃ ≤ s − 2(N + K ), (120)

α̃ + β̃ + γ̃ = s − 2(N + K ), (121)

N =
∑
i

ni ; K =
∑
i

Ki =
∑
i

(ki + k̃i ). (122)

These transformations lead to the following formula:
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Result

These transformations lead to the following formula:

Lmain
I =

∫
due(d+2s−4)udd+1x

√
g
∑
N≥0

∑
K≥0

(−1)Ns!

(s − 2(N + K ))!

∑
α̃,β̃,γ̃

α̃+β̃+γ̃=s−2(N+K)

(
s − 2(N + K )

α̃, β̃, γ̃

)

∑
{ni}i=1,2,3∑

ni=N

∑
{Pi ,Ki}i=1,2,3

Pi=ni+ni+1+2Ki∑
Ki=K

∑
{pi ,ki ,p̃i ,k̃i}i=1,2,3

pi+p̃i=Pi ;ki+k̃i=Ki

∗γ̃+α̃+N+2(K3+K1)
aµ ∗α̃+β̃+N+2(K1+K2)

bµ ∗β̃+γ̃+N+2(K2+K3)
cµ(

γ̃+α̃+N+2(K3+K1)+n1
n1

)(
α̃+β̃+N+2(K1+K2)+n2

n2

)(
β̃+γ̃+N+2(K2+K3)+n3

n3

)
(a, ∂b)γ̃+N+2K3(a,∇)α̃ Ξ2K1 [γ̃, α̃, n2, p1, k1, p̃1, k̃1, a

2,H1]h(s)(bµ)

(b, ∂c)α̃+N+2K1(b,∇)β̃ Ξ2K2 [α̃, β̃, n3, p2, k2, p̃2, k̃2, b
2,H2]h(s)(cµ)

(c , ∂a)β̃+N+2K2(c ,∇)γ̃ Ξ2K3 [β̃, γ̃, n1, p3, k3, p̃3, k̃3, c
2,H3]h(s)(aµ)

(123)

where

Ξ2K1 [γ̃, α̃, n2,P3, p1, k1, p̃1, k̃1, a
2,H1]

=
(α̃ + p̃1)!(a2)k1

(γ̃ + P3 − p̃1 + 2k̃1 + n2)!

(
p̃1 − 2k̃1

n2

)
ξp1+1
k1

(α̃ + p̃1)W k̃1(a2,H1) , (124)

Ξ2K2 [α̃, β̃, n3,P1, p2, k2, p̃2, k̃2, b
2,H2]

=
(β̃ + p̃2)!(a2)k2

(α̃ + P1 − p̃2 + 2k̃2 + n3)!

(
p̃2 − 2k̃2

n3

)
ξp2+1
k2

(β̃ + p̃2)W k̃2(b2,H2) , (125)

Ξ2K3 [β̃, γ̃, n1,P2, p3, k3, p̃3, k̃3, c
2,H3]

=
(γ̃ + p̃3)!(a2)k3

(β̃ + P2 − p̃3 + 2k̃3 + n1)!

(
p̃3 − 2k̃3

n1

)
ξp3+1
k3

(γ̃ + p̃3)W k̃3(c2,H3) . (126)
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Finalizing our consideration we can write direct (a2), (b)2, (c)2 expansion of corresponding Ξ2Ki terms
using second recurrence relation

(a2)k1W k̃1(a2,H1)h(s)(bµ) =

k̃1∑
t1=0

(−1)t1

k̃1−t1∑
r1=1

ηt1

k̃1
(p̃1 − k̃1)Ak̃1−t1

r1
[s]r1(a2)K1−r1(a, b)r1Φr1(a, b) (127)

(b2)k2W k̃2(b2,H2)h(s)(cµ) =

k̃2∑
t2=0

(−1)t2

k̃2−t2∑
r2=1

ηt2

k̃2
(p̃2 − k̃2)Ak̃2−t2

r2
[s]r2(b2)K2−r2(b, c)r2Φr2(b, c) (128)

(c2)k3W k̃3(a3,H3)h(s)(cµ) =

k̃3∑
t3=0

(−1)t3

k̃3−t3∑
r3=1

ηt3

k̃3
(p̃3 − k̃3)Ak̃3−t3

r3
[s]r3(c2)K3−r3(c, a)r3Φr3(c , a) (129)

So we see that Ξ2Ki really behave like a2K1 , b2K2 , c2K3 as they should for correct contractions of indices.
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Conclusion

We have constructed all AdS corrections including trace and divergence terms to the
main term of the cubic self-interaction by a slightly modified method of radial pullback
(reduction) proposed in arXiv:1210.7227 where all quantum fields are carried by a real
AdS space and corresponding interaction terms expressed through the covariant AdS
derivatives.

For given spin s and ∆min = s we derived all curvature correction terms (123) in the
form of series of terms with numbers s − 2(N + K ) of derivatives, where 0 ≤ N + K ≤ s

2 .
The latter is the number of seized pair of derivatives replaced by corresponding power of
1/L2 and K is the sum of power of a2, b2, c2 terms connected with trace and divergent
correction terms produced from the main term of interaction after pullback.
Correction terms appear with coefficients that are polynomials in the dimension d + 1
and spin number s with rational coefficients.
Now we can expect that the same method can be used for the derivation of the AdS
corrections to traces and deDonder terms connected with the main term by Noether’s
procedure derived for the flat case in R. M,. K. Mkrtchyan and W. Rühl arXiv:1003.2877.
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Thank you for your attention
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