3d conformal geometry and 4d prepotentials for fermionic higher-spin fields

> Victor Lekeu (ULB Brussels & Imperial College London)

Based on 1810.04457 with M. Henneaux, A. Leonard, J. Matulich & S. Prohazka

SQS'19, Yerevan, 27.08.2019

3d conformal fermionic higher-spin fields: symmetric tensor-spinors with gauge symmetries

$$\delta\psi_{i_1i_2\cdots i_s} = \partial_{(i_1}\xi_{i_2\cdots i_s)} + \gamma_{(i_1}\lambda_{i_2\cdots i_s)} \quad (i=1,2,3)$$

3d conformal fermionic higher-spin fields: symmetric tensor-spinors with gauge symmetries

$$\delta\psi_{i_1i_2\cdots i_s} = \partial_{(i_1}\xi_{i_2\cdots i_s)} + \gamma_{(i_1}\lambda_{i_2\cdots i_s)} \quad (i = 1, 2, 3)$$

- 1. Construction of invariants: $3d \Rightarrow$ Cotton tensor ("Cottino")
- → Bosonic case $\delta Z_{i_1...i_s} = \partial_{(i_1}\xi_{i_2...i_s)} + \delta_{(i_1i_2}\lambda_{i_3...i_s)}$ done in [Henneaux, Hörtner, Leonard '15] building on [Damour, Deser '87; Pope, Townsend '89]
- $\rightarrow\,$ Discovered first in [Kuzenko, Ogburn '16; Kuzenko, '16] using superspace techniques

3d conformal fermionic higher-spin fields: symmetric tensor-spinors with gauge symmetries

$$\delta\psi_{i_1i_2\cdots i_s} = \partial_{(i_1}\xi_{i_2\cdots i_s)} + \gamma_{(i_1}\lambda_{i_2\cdots i_s)} \quad (i=1,2,3)$$

- 1. Construction of invariants: $3d \Rightarrow$ Cotton tensor ("Cottino")
- → Bosonic case $\delta Z_{i_1...i_s} = \partial_{(i_1}\xi_{i_2...i_s)} + \delta_{(i_1i_2}\lambda_{i_3...i_s)}$ done in [Henneaux, Hörtner, Leonard '15] building on [Damour, Deser '87; Pope, Townsend '89]
- $\rightarrow\,$ Discovered first in [Kuzenko, Ogburn '16; Kuzenko, '16] using superspace techniques
- 2. Application: prepotentials and twisted self-duality for 4d (non-conformal) fermionic higher spins
- $\rightarrow\,$ Uses 1. to solve the Hamiltonian constraint
- \rightarrow New "prepotential" action gives twisted self-duality directly; not manifestly Lorentz-invariant
- $\rightarrow \mbox{ cf. [Deser, Teitelboim '76] for Maxwell; works in many other cases [Bunster/Teitelboim, Henneaux, Hillmann, Hörtner, Julia, VL, Leonard, Matulich, Prohazka, ...]}$

Goal: get a complete set of invariants under $\delta \psi_{i_1 i_2 \cdots i_s} = \partial_{(i_1} \xi_{i_2 \cdots i_s)} + \gamma_{(i_1} \lambda_{i_2 \cdots i_s)}.$

Invariant for ξ transformations: "Riemann" tensor $R = d_{(s)}^{s}\psi$,

$$R_{i_1 j_1 \cdots i_s j_s} = 2^s \, \partial_{j_1} \cdots \partial_{j_s} \psi_{i_1 \cdots i_s} \,, \quad \text{with} \, [i_k j_k]$$

∂	∂	∂	 ∂	∂

Goal: get a complete set of invariants under $\delta \psi_{i_1 i_2 \cdots i_s} = \partial_{(i_1} \xi_{i_2 \cdots i_s)} + \gamma_{(i_1} \lambda_{i_2 \cdots i_s)}.$

Invariant for ξ transformations: "Riemann" tensor $R = d_{(s)}^{s}\psi$,

$$R_{i_1j_1\cdots i_sj_s} = 2^s \,\partial_{j_1}\cdots \partial_{j_s}\psi_{i_1\cdots i_s}\,, \quad \text{with } [i_kj_k]$$

∂	∂	∂	 ∂	∂

Two theorems, based on the cohomology of $d_{(s)}$ with $d_{(s)}^{s+1} = 0$:

- 1. Completeness: $R = 0 \Leftrightarrow \psi = d_{(s)}\xi$
- 2. Poincaré lemma: $d_{(s)}T = 0$, $T \sim (s, s) \Leftrightarrow T = R[\psi]$

[Olver '82; Dubois-Violette, Henneaux '99, '02; Bekaert, Boulanger '02, '04]

Invariant under λ transformations? 3D: no Weyl tensor !

 \rightarrow Higher-derivative Cotton tensor

Invariant under λ transformations? 3D: no Weyl tensor !

 \rightarrow Higher-derivative Cotton tensor

- 1. Einstein tensor $G = \star^{s} R$,
- 2. Schouten tensor made of G and its (gamma-)traces \rightarrow simple transformation $\delta S = d_{(s)}\nu$

3.
$$d_{(s)}^{s}S$$
 is invariant since $d_{(s)}^{s+1} = 0$
 \rightarrow Cotton $D = \star^{s} d_{(s)}^{s}S$

D is symmetric, divergenceless and gamma-traceless.

Example: spin 5/2 (s = 2) $\delta \psi_{ij} = \partial_{(i}\xi_{j)} + \gamma_{(i}\lambda_{j)}$ 1. Einstein tensor:

$$G_{ij} = \varepsilon_{ikm} \varepsilon_{jln} \partial^k \partial^l \psi^{mn}$$

Schouten tensor:

$$S_{ij} = G_{ij} + b_1 \gamma_{(i} \mathcal{G}_{j)} + a_0 \delta_{ij} G_k^{\ k}$$

Requiring $\delta S_{ij} = \partial_{(i}\nu_{j)}$ for some ν_j fixes $b_1 = -\frac{1}{2}$, $a_0 = -\frac{1}{4}$

Example: spin 5/2 (s = 2) $\delta \psi_{ij} = \partial_{(i}\xi_{j)} + \gamma_{(i}\lambda_{j)}$ 1. Einstein tensor:

$$G_{ij} = \varepsilon_{ikm} \varepsilon_{jln} \partial^k \partial^l \psi^{mn}$$

2. Schouten tensor:

$$S_{ij} = G_{ij} + b_1 \gamma_{(i} \mathcal{G}_{j)} + a_0 \delta_{ij} G_k^{\ k}$$

Requiring $\delta S_{ij} = \partial_{(i}\nu_{j)}$ for some ν_j fixes $b_1 = -\frac{1}{2}$, $a_0 = -\frac{1}{4}$

3. Cotton tensor: 4 = 2s derivatives

$$D_{ij} = \varepsilon_{ikm} \varepsilon_{jln} \partial^k \partial^l S^{mn}$$

$$\begin{split} \left[D_{ij} &= \Delta^2 \left(\psi_{ij} - \frac{1}{2} \gamma_{(i} \psi_{j)} - \frac{1}{4} \delta_{ij} \bar{\psi} \right) \\ &+ \frac{\Delta}{4} \left(\partial_i \partial_j \bar{\psi} + 2 \partial \!\!\!\!/ \partial_i (\psi_{j)} + \partial^k (\delta_{ij} \partial^l \psi_{lk} - 10 \partial_{(i} \psi_{j)k} + 2 \gamma_{(i} \partial \!\!\!/ \psi_{j)k} + 2 \partial_{(i} \gamma_{j)} \psi_k) \right) \\ &+ \frac{1}{4} \partial_i \partial_j \left(5 \partial^k \partial^l \psi_{kl} - 2 \partial \!\!\!/ \partial^k \psi_k \right) - \frac{1}{2} \partial_{(i} \gamma_{j)} \partial^k \partial^l \partial \!\!\!/ \psi_{kl} \end{bmatrix} \end{split}$$

Two important theorems:

1. Completeness:

$$D[\psi] = 0 \iff \psi = d_{(s)}\xi + \gamma\lambda$$

2. Conformal Poincaré lemma:

$$T_{i_1i_2...i_s} = T_{(i_1i_2...i_s)}, \ \partial \cdot T = 0, \ \gamma \cdot T = 0 \iff T = D[\psi]$$

Maxwell's equations (spin 1) in 4D can be rewritten as

$$\begin{pmatrix} \star F \\ \star G \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix}, \quad F = dA, \ G = d\tilde{A}$$

which makes the SO(2) duality manifest.

Maxwell's equations (spin 1) in 4D can be rewritten as

$$\begin{pmatrix} \star F \\ \star G \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix}, \quad F = dA, \ G = d\tilde{A}$$

which makes the SO(2) duality manifest. Generalizes to

• Extended (ungauged) supergravity $\star \mathcal{G} = \Omega \mathcal{M}(\phi) \mathcal{G}$ \rightarrow duality group $G \subset Sp(2n_v, \mathbb{R})$

• Linearized gravity,
$$\begin{pmatrix} \star R \\ \star \tilde{R} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} R \\ \tilde{R} \end{pmatrix}$$

• Bosonic higher-spin fields

• ...

Genuine *off-shell* symmetries ! This can be made manifest by going to the Hamiltonian and solving the constraints.

Free (non-conformal) fermionic higher-spin field in four dimensions:

1. Fang-Fronsdal equation

$$\mathcal{F}_{\mu_1\cdots\mu_s}\equiv \partial\!\!\!/\psi_{\mu_1\cdots\mu_s}-s\partial_{(\mu_1}\psi_{\mu_2\cdots\mu_s)}=0$$

Gauge variation $\delta \mathcal{F} = d_{(s)}^2 \notin$ under $\delta \psi_{\mu_1 \cdots \mu_s} = \partial_{(\mu_1} \xi_{\mu_2 \cdots \mu_s)}$ \rightarrow Invariant iff $\notin = 0$.

Free (non-conformal) fermionic higher-spin field in four dimensions:

1. Fang-Fronsdal equation

$$\mathcal{F}_{\mu_1\cdots\mu_s}\equiv \partial\!\!\!/\psi_{\mu_1\cdots\mu_s}-s\partial_{(\mu_1}\psi_{\mu_2\cdots\mu_s)}=0$$

Gauge variation $\delta \mathcal{F} = d_{(s)}^2 \notin$ under $\delta \psi_{\mu_1 \cdots \mu_s} = \partial_{(\mu_1} \xi_{\mu_2 \cdots \mu_s)}$ \rightarrow Invariant iff $\notin = 0$.

2. Drop $\notin = 0$ condition: higher-derivative geometric equation

$$R = 0$$

Equivalent because $earrow = d_{(s)}^{s-1}\mathcal{F}$. [Bekaert, Boulanger '03; Bandos, Bekaert, de Azcarraga, Sorokin, Tsulaia '05]

Also equivalent to twisted self-duality

$$R + \gamma_5 \star R = 0$$

with spatial constraint

$$\gamma^{kl} R_{kl \, i_2 j_2 \cdots i_s j_s} = 0$$

- $\to\,$ Duality rotations $R\leftrightarrow \star R$ act as chirality transformations $\psi\leftrightarrow\gamma_5\psi$
- \rightarrow Equivalent to the constraint associated to the Lagrange multiplier $\psi_{0i_2\ldots i_{\rm s}}$ in the Hamiltonian formalism

[Deser, Kay, Stelle '77] for spin 3/2; see also [Deser, Seminara '04; Henneaux, Teitelboim '13]

Constraint is $\mathcal{G}[\psi_{\text{spatial}}] = 0$. Also symmetric and divergenceless... \Rightarrow use conformal Poincaré lemma !

$$\exists \chi_{i_1 \dots i_s} \text{ such that } G[\psi] = D[\chi] \quad (\Leftrightarrow \psi = S[\chi])$$

Constraint is $\oint [\psi_{\text{spatial}}] = 0$. Also symmetric and divergenceless... \Rightarrow use conformal Poincaré lemma !

$$\exists \chi_{i_1...i_s} \text{ such that } G[\psi] = D[\chi] \quad (\Leftrightarrow \psi = S[\chi])$$

 \rightarrow Equations of motion:

$$\dot{D}^{i_1\dots i_s}[\chi] + \gamma_5 \varepsilon^{i_1 j k} \partial_j D_k^{i_2\dots i_s}[\chi] = 0$$

 \rightarrow Action:

$$S[\chi] = -i \int dt \, d^3 x \, \chi^{\dagger}_{i_1 \dots i_s} \left(\dot{D}^{i_1 \dots i_s}[\chi] + \gamma_5 \varepsilon^{i_1 j k} \partial_j D_k^{i_2 \dots i_s}[\chi] \right)$$

with SO(2) invariance $\chi
ightarrow e^{lpha \gamma_5} \chi$

4. Conclusions

- 1. Conformal geometry of 3D fermionic HS fields
- ightarrow Cotton tensor
- \rightarrow Proofs of completeness + conformal Poincaré lemma
- 2. Twisted self-duality for 4D fermionic HS fields
- ightarrow Use 1. to solve Hamiltonian constraint
- $\rightarrow\,$ New action gives twisted self-duality directly

4. Conclusions

- 1. Conformal geometry of 3D fermionic HS fields
- \rightarrow Cotton tensor
- \rightarrow Proofs of completeness + conformal Poincaré lemma
- 2. Twisted self-duality for 4D fermionic HS fields
- $\rightarrow\,$ Use 1. to solve Hamiltonian constraint
- $\rightarrow\,$ New action gives twisted self-duality directly

Some open questions:

- Similar form for all bosonic and fermionic fields \rightarrow Symmetries? Hypersymmetry, Sp(8), ...
- Extension to (A)dS? to massive/partially massless fields?
- Conformal self-dual rectangles in six dimensions?
- Interactions?

4. Conclusions

- 1. Conformal geometry of 3D fermionic HS fields
- \rightarrow Cotton tensor
- \rightarrow Proofs of completeness + conformal Poincaré lemma
- 2. Twisted self-duality for 4D fermionic HS fields
- $\rightarrow\,$ Use 1. to solve Hamiltonian constraint
- $\rightarrow\,$ New action gives twisted self-duality directly

Some open questions:

- Similar form for all bosonic and fermionic fields \rightarrow Symmetries? Hypersymmetry, Sp(8), ...
- Extension to (A)dS? to massive/partially massless fields?
- Conformal self-dual rectangles in six dimensions?
- Interactions?

Thank you for your attention !