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Orthogonal Algebra

gl(n) algebra:
[G™ 61, G75] = 05,66 = 053Gy [G1, G2] = [Pr2, Gi] = —[Pr2, G,
so(n) algebra differs by the additional restriction G,, = —Gp,:
[G™ 61, G™5,] = 03, G5, — 033 G™ b, + €77 Gy, — €015, G,

here €., = 6.5 (¢ = 6 is used for so(n) and e,, = (—1)?8,p for
so(m, n — m). In abstract notations this algebra relation looks like:

[G1, Go] = [P12 — K12, Gi] = —[P12 — K12, G2],
where the invariant operator Ki» has components:

ajay __ _a1a
Kblbz =& Ebyby-
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Symplectic Algebra

. ~k .
preserves the bilinear form [x, y| = > (%2y -5 — X_,Va), Xa — coordinates and

Laa=1

pa = X_, — momenta of phase space. Generators
Gi = X20p — €26pX_pO—a, e, = sign(a), a,b=41,+2, ...+ m,

are skew-symmetric:
Gab = _Eagbcfb,faq

w.r.t. the metric
€ab = €a0a,—b, ebe = —epte, eape’ = 58S
and form the algebra:
[Gab, Ged] = Obc Gad — 0ad Geb + €cEb0b,—d Ga,—c — €aEb0a,—cG_b.d.

Introducing a discrete parameter e: (e = +1 in orthogonal and e = —1 in
symplectic case):

Eab = €Eba, Gap = —€Gpyy, or Ki2(G1 + G2) = (G1 + G2)Kio,

one describes both algebras uniformly.
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Yang-Baxter relation

The fundamental Yang-Baxter rquation:

Rotos (WRE: (u+ VIRZS (v) = R (VRS (u + vV)RES (u).

b1 by c1by bic3
In s¢(n)-case the fundamental solution is given by

Ryl (u) = ubptop2 + 6,1672, R(u) = ul + P.

In so(n) the fundamental solution looks more complicated

RO () = u(u — Q)30 + (u— )67 — U8 0m, =1 n/2
In symplectic sp(2m) case the fundamental solution looks quite similar:
Rotor(u) = u(u + B)o,1052 + (u+ B)ogtoy; — UEaEb 0728, 5, B=1+m

In the frame of Quantum inverse scattering method the new solution can be
obtained by the fusion of fundamental ones:
401, a1---4n — a01a1 ap2a2 a0nan
Tag,nﬂ, bl,..bn(u) - Raozbl (U)Rao3b2 U) R Raomﬂb,,(u)'
The irreducible parts of the Monodromy matrix T (u) obtained by

(anti)symmetrization of indices a; ... a, correspond to higher spin solutions of
YBE.
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The RLL-equation as a defining relation

RLL Yang-Baxter equation:

Rt (u)Le; (0 + V)L (v) = (VL3 (u + v)Ree (),
used to define the Yangian algebra.

Being given by the L-operator, acting in fundamental and an arbitrary
representation in gf(n)-case one can rise the problem to determine 9R-operator,
acting in two arbitrary representation spaces (indexes run (infinite-dimensional)
range corresponding to an arbitrary representation).

In more complicated so(n) and sp(n) cases the more modest (the inverse)
problem stands: to determine the most general L-operator, acting in
fundamental and an arbitrary representation, if the fundamental R-matrix is
given. Here indexes run the finite range, corresponding to fundamental
representation.
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Yangian resolution

Yangian Y(a) is an infinite-dimensional Hopf algebra, associated with given
algebra a in following sense: let R(u) is fundamental R-matrix related to
algebra a, then ternary RTT-relation R(u-v)T(u)T(v)=T(v)T(u)R(u-v)
generates Yangian defining relations for:

0
Ti(u) = Zt £ = 5.

The simplest example is g/(n)-algebra,

s+1 +1 s s
[t 6] — [66 65 ] = (621 — £2e?)).

This case admits the linear resolution: the series for T can be truncated at

linear term:
Tii(u) = udyj + tU ),
where tlg.l) are generators of g/(n)-algebra.
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Orthogonal and Symplectic Yangians Yo, Ys

The fundamental R-matrix can be written in the universal form:

FRu- =G =D -1+ 8) - (G - & + F2)P - (G - K.

v u IJ\/2 U2 \4 LIV2 usv

here 5 = (5 —¢), e = +1 for SO and € = —1 for SP. Then the defining

2
relations for the generators (L*))2 of the Yangians Y (G):

(L9, 1972 — 2, 1§79 4 (1872, 19 +
ALY, LT = L2, ) +
+ P(LED L0 10 4 D 1Y) -
o (ng—Z)Lgkfl) _ ng—l)Lgk72) +ﬂng72) L(lk—2))P +

+E(K (L= U= ke =2y g Um0 D -2 () K) =0,
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Inner automorphysms of Yangian algebra

The RLL-relation has translational symmetry: u — u + a as well as is invariant
upon rescaling
L(u) = f(u)L(u),

where f(u) = 14 bi/u+ by/u? + ... is scalar function. Consider

L(u) — (u=2a) ) L(u),

at k = 1 one has

)

LW 1® —an,, 1® 5P W ® O @

Taking a = %TrL(l) one can make L) traceless.
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Finite resolutions of Yp and Ys

Orthogonal and Symplectic Yangians also can be truncated at some finite order
k:
Lu)y=1+u LW+ 4o ),

here L) =/ unity operator.
We consider the linear:

Lw)y=ul+6G, GW=g¢,
the quadratic:
L(u) = v*l + uG + H, cM=¢6, G6?P=H,
and the cubic evaluation:
Lw)=d’l+*G+uH+J, GY=¢G, cP=H 6®=1

It is convenient to assign the scale dimension to u: [u] = 1, then [G'"] = k.
In contrast with the gf(n) case, generators G, H, J are not arbitrary, they are
subjected to the symmetry constraints and to the additional restrictions
following from the RLL-relation.
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Linear resolution

We start with the linear ansatz:
L%(u) = ud + G?.
Then defining RLL-relation takes the form:
(u(u+ B)h2 + (u+ B)Pr2 — ueKn2)(u + v+ Gi)(v + G2) =
=(v+ G)u+v+ G)(u(u+ B+ (u+ B)Pi2 — ueKiz),
here I, = 621 52, P = 5;; (SZT, Kio = €%¢p,5,. One can be rewritten it:
(u+ &)([Gl. Gl + (G — Go)Piz — €[Kua, @]) — ev[Kuz, Gi + Go]—

7('/’(13(61 — r)')Gz + (Gz(Gl — j)Klg =0.

It has to take place identically by powers of u and v, which implies three
restrictions on generators G:

—ve) = _ev[Kiz, G + Go] =0, (1)
(u+B)e™? = (u+ d)([Gl. G| + (GL — G)Pus — e[ Kz, Gg]) —0. (2

- 76<K12(Gl —B)Gs — Gy(G1 — J)Klg> —o. (3)
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Linear resolution

The first constraint just tells that the Yangian generators must be
e-antisymmetric (up to the unity matrix)

G=g+6G, G”=—eG",
like the generators of the Lie algebra so(n) or sp(2m). The scalar parameter g

singled out above is just the trace of generator G and can be treated as a
center of the algebra. It can be excluded by imposing the additional (unitarity)
condition.

The second constraint just states that the first Yangian generator G®) = G
satisfies to so(n) or sp(2m) algebra relations. The finite-dimensional linearly
truncated Yangian differs from the corresponding so(n) or sp(2m) Lie algebra
by the additional third constraint, which specified unique (resolution)
representation.

In linear case this is the usual spinor representation in orthogonal case and its
(infinite-dimensional) analogue in the symplectic case.
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Quadratic ansatz

In general case the number of constraints is (p +1)> — 1 = p(p + 2), here p is
the number of Yangian YP)(G) generators. L(u) = u?l + uG + H:

2

¢ = [Ki2, G+ G] =0,
¢ = ([G1, G] + (G1 — G) P12 — e[Kiz, Ga]) = 0,
¢ = Kip(Hy + Ha + (GL — B)G2) — (Ga(Gy — fB) + Hi + Ha)Kiz = 0,
¢ = ([Gy, Ha] + (Hh — Ha) P12 — €[Kia, Ha]) = 0,
¢ = ([Hy, Go] + (Hh — Ha) P12 — €[Kia, Hi]) = 0,
¢ = Kip(Hi(G2 + B) + (G — B)Ha) — (Ha( Gy — B) + (Gz + B)Hi) K1z = 0.

27 — ([H1, Ho]+ (GoH1 — H2 Gy ) Pio — eK12(GL — B)Ha + Ha (Gy —B)EKD) =0,

¢ = eKip(Hh — BGyL + B*)Ha — Ha(Hy — BGy + B%)eKip = 0.
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Symmetric and antisymmetric constraints

The set of defining equations above is equivalent to the following set of
equations with definite symmetry with respect to 1 <> 2:

Q[Q:(Zl) = 0, 66(2’1) = 9:(2’1) = [P12 — €K12, Gy + G2] = 0,

6e?? = gel®h 2P =[G, G] - %[P12 — €Kiz, G — Go] = 0,
AP = (1 - eP)e®? = ([61, G2] - B(GL — Go) ) Koz = APV ks,
Al = €I (1 - ePra) = Ko ([G1, Gl + B(Gr — o)) = Kaoe®?,
e = [Prp — €Kiz, Hy + Ho — %(Gf + &) +{e®Y G+ G}y =0,

1 1 1
SC =[G, Ho = 5G]+ [Go, Hr — 5 GI] - &€ — (G — &, 8¢},

Q1¢(2’4) = [Gl, H2] — [GQ, H1] — [P12 — EK12, H; — Hz] =0,
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AP = €O (1—ePrp) = KA, ACH® = (1-ePr2)e®?) = A Ky,
Ge®o (1 + €P1)EPO (1 + €Piy) = [Pia — eKia, {Hi, G} + {G1, Ha}],
&¢D = &¢I Py — ~ K, 6} - Zee?,
A = [Hy, Ho] + %[Pu — €Ki, {G1, Ho} — {Go, Hi}] — §{K12,Ql¢(2’4)}7

€—n

AC® = ¢ (1 — ePry) = eKpp (A>T 4 2l€(2’4))7

(Gl [Klz,{Hl,Hz} /BE(H1+H2)] — *{K12,CL24 }+ bQ< )

So one deduces that the |ndependent constraints are: &€ bQ(2 3 Ge?0)
and G¢® ("symmetric’ constraints) and A¢??), ¢4 = P12€2 ) P12 and
A€ ("algebra” constraints).

David Karakhanyan On the representations of orthogonal and symplectic Yangians



Quadratic resolution

In quadratic case the Yangian algebra form two generators: G = G and

G® = H. The appearance of the new generator H lifts the third constraint on
G? specifying the resolution representation in linear case and expresses the
symmetry restriction on new generator H instead. So, like in the first
constraint ¢V specifies the e-symmetric part of G to be proportional to the
unity operator, €2 fixes the e-symmetric part of H:

1., - _ o _ _
H=h+ §G2 +H, Kp(Hi+H)=0=(H+H)Kiz <& Hap = —€Hpa.

One can rewrite the remaining set of p(p + 1) equations in terms of parameters
g, h and "independent” (e-antisymmetric) generators G and H:

¢ = =[G1 + P12 — €Kiz, Go] = 0,

24 = [Gi + Pi2 — €Kiz, Ho] = 0,
g2 = —Plzé(Q’A)Plz = [/:/17 Gy + Piy — eK12] =0,

- o 1 - o _ _ _
€3N = [Ay, A] — 7Pz — ek, G +2{Fo, G} — 4gHz — 2 G; + 4hG]+

1 = = == - - -
+Z(G2Glz — G3G )Py + §(G22K12Gz — GK12G3) =0
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define the Yangian algebra between generators G and H and the two higher
"symmetric”" constraints:

2 = —[Kua, {1, Gi} + {Fs, Go} — (B+8)(Gf + G3)] =0,
and

= P2 Lige @4 By, a2 | A2\\1 _
2000 = (Ko, (—FE = 8 + (G + G + (h+ (g + 2)(G + G))I =0,
define restrictions:

{H. G} +28A = (B +)(G" + BG) — ¢,

and
_ 1= = - 1 =
H2:—ZG4—263—,3(5-1-@”—('7“’§+§("+g+26)62+
B B 3¢y My 1oy nte
H(o(n—e)n—4e)+ T (n+2g = )+ T2)6 + 5 s,

specifying the particular Yangian resolution representation in quadratic case.
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Summary of the quadratic solution

Let us summarize: the quadratic (p = 2) resolution of the Yangian Y(G) is
determined by eight constraint. The four (p®) constraints ¢?2) ¢H ¢29
and €27 contain commutator between generators and form the Yangian
algebra (like in gf(n) case). All these constraints are antisymmetric with
respect to auxiliary space index 1 <+ 2 (their symmetric parts reduce to
lower-dimensional constraints). Remaining four (2p) constraints are symmetric:
two of them with the lower dimension €2 and €2 impose the restrictions
on e-symmetric parts of generators G and H (relate them to the numerical
parameters and to the lower generator(s)). These restrictions correspond to (1)
of the linear case, which just declares the difference between so, sp and g¢.

So Yangians Yép) and ySP) like Y(g£(n)) consist of p?> commutator algebra
relations, but obey also p symmetry constraint, which fix the e-symmetric part
of each generator and p additional algebraic relations, which fix the
anticommutators of the highest generator with the remaining ones.
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Composite solutions (with the lower number of generators)

Along with the most general solution obtained above there exist also particular
ones, corresponding to the case when one or more highest dimensional Yangian
generators (H in the case under consideration) are absent. There are two
possibilities: the first one is trivial, when the quadratic ansatz is in fact linear
(L(v) = (u+a)(u+ b+ G). The second degeneracy corresponds to the case of
the single generator G (H =0 or H = aG, where a is (a dimensionful)
numerical parameter). So let us set:

= agG,
then one has using ¢23)
1= =
€24 and ¢2° then are reduced to ¢, The next constraint €2 then tells:

2a=g+p,

and the further restrictions come from €37 and ¢29).
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The first leads to:
W = 762(/312 — €K12)GQ — 6(P12 — EK12)G_2 =+ (662 -+ 1)61 =0,
or in components:

WazdchQ = (Gazd + Edsz)éclcz + (GBQC2 + 652)&151 + (Gazq + féilz)éc‘gd =

1 ~a ~ ~a ~ ~a ~
= 5 ({674, Gaea} + {60, G} + {67, G} ).
so called cyclic constraint, while the last relation takes the form:
[K2, (G + G2) + b(GI + G5)] =0,

which is equivalent to (3).

Compare now at gf(n) case, the quadratic resolution of Y(g¢(n)) is specified
by two unconstrained generators GV, G® which obey some algebra. The
quadratic solution Li(u) = v + uGl(l) + Gl(z) corresponds to the fusion of two
linear ones Liz(u) = u+a—+ Gl(;) and Lyy(u)=u+b+ Gl(i) at

G” = (a+63)(b+ G).
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¢CY = ¢[Kiz, G + Go] = 0,
¢ = (61, G] + (61 — G2)Prz — e[Kuz, Ga]) = O,
¢ = eKin(Hi + Hy + (GL = B)Go) — (GG — B) + Hi + Ha)eKi = 0,
¢ = ([G1, Ho] + (Hi — H2) P12 — e[Kiz, Ha]) = 0,
¢ = ([H, G + (Hr — Hy)Pia — €[Kz, Hi]) = 0,
¢ = eKio(h + b + Hi(Go + B) + (GL — B)Ha)—
(H2(GL = B) + (G2 + B)H1 + 1 + J)eKio = 0.
U =, Gl + (= h)Pro — eKia(o + Hi(Ga + B) + (G1 — B)Ha)—
—(Ha(G1 — B) + (G2 + B)Hi + ho)eKiz = 0,
e = ([Hl, Ho] + (J1 — Jo + GoHy — Ha Gy) Pro—

—eKi2(h + (G — B)H2) — (H2(GL — B) + J2)€K12) =0,
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¢ = [G1, L] + (S — o) P12 — €[Krz, L],
@310 — ([H17 L]+ (G — 2G1)Pra — eKi2(GL — 8) J2) — Jo(GL — B)EKH) =0,

O = (1, Hal +(Gah = Gr)Pra — eKia(Gr —26) o+ (Hh = BGy + %) )~
~(Ha(Hh =BGy + B°) + Jo(G1 — 28))ekiz) = O,
¢12) = (—ef<12((c1 —38) s+ HiHs — 28(G1 — BYHs — BH1(Go + B) + h Go)—
—(h(Gi — 36) + Habhs — 28(Gy — B)Hz — BH(G2 + ) + Gah)eKiz ) =0,
e = ([Jl, bl + (Hah — hH) Py — eKio(Hy — BGy + B2) o+
+h(H — BGy + B)ekiz) =0,
¢ = (—eKua((r — BH + G — B)Ho + (F — 286Gy + 36°) )+
H(Fo(h = Bbh + G = B) + S(Hh — BGr + B))ek ) =0,

¢ = —eKip(dh — BHL+ Gy — B) 2 + o(h — BHL + B2 Gy — B*)eKiz = 0.
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The set of the independent constraints

The above set of equations is equivalent to:

el — &) — [Pi2 — €K1z, G1 + G2] =0,
1
e — [GL, Go] — E[Plz — €Kiz, G — G| =0,
1
&¢Y = [Pra — Kz, Hy + Hy — 5(GF + G2)] =0,

ey 1, 1 5

Se0 = (61 Hy — 563+ 6o Ho — 5671 =0
A = [Gi, o] ~ [Go, Hi] — [Pr2 — €Kiz, Hh — Ho] = 0,
1
sl = [Pi2 — Kz, 1 + )2 + 5({"’1, G2} +{G1, H2})] = 0,

A¢C) =[Gy, k] — [Ga, h] — [Pr2 — €Kiz, 1 — Jo] =0,
S = [G1, ] + [G2, A] + [Pr2 — €K1z, L + L] =0,
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1 1
DITA [Hi, Ho] + [P12 — €Kiz, E(JZ —h)+ Z({Gl’ H} — {G, H1)}] =0,

1
A = [Hy, b] — [Ha, 1] + 5[Pi2 = eKi2, {G1, b} = { G2, h}] = 0,
e = [Hy, k] + [Ha, 1] + %[Klz, {H1, H2} — Be(H1 + H2)] = 0,

Gg/(a‘lz)

= [Ki2, {H1, H2} — eB(H1 + Ho) + {G1, o} + {4, G }] =0,
Ql@: (3:13) =[h, L] + 7[P12 — €K, {H1, »} — {H>, h}] =0,
SeCM = ¢[Ka, {h, Ho} + {Jo, Hi} — 2Be(h + J2) +28%(Hy + H2)] = 0,

Q‘)Q:(?’ 15) _ 6[,{127 {J17J2} + *{Hh H2} —|— (35 26)(H1 + H2)]
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The solution to the cubic constraints

Again, constraints 2¢G?), GeC4 AeGH qel) GeB), e, ge10),
619 and A1 express the Yangian algebra Y®)(G). The
lower-dimensional symmetric constraints: GG, &3 and &¢C) restrict
the e-symmetric parts of the generators:

}+ 8 2

(A,G) 2'G\j

N =

G=g+G, H:h+%§+ﬁ7 J=j

Substituting this solution to the remaining independent p(p + 1) = 12
constraints:

Q[€(3 ,2) [G G2] _ 7[P12 — €Ki, Gl G2] =0,

Se® =[Gy, Ao] + [Go, Fh] = 0,
A =[Gy, Fh] — [Ga, Fir] — [Prz — €Kz, Fh — Fo] = 0,
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66(37) [G1 J2]+[G2’J1] =0,
A6 = 6, b - R
A = [y, ]+ [Pra—cKiz, 5 (G2 GE)~ S (i) & (Fu—Fa)+ 5 (Gi-Ga)l+
+} (GZ[PIZ — €Ki, 52]62 - él[Plz — ek, él]él) =0

Se® = [Ay, B) + [Fo, B] + = ([Gl R+ 163, h)) - %{(Gl — Go), [Fh, Fa }+
+%{(Gf — @), G, Ao} — Z[[Gh Gal, [Gr, Fell+

DB (G A+ (G ) + K G + G = 43(5 + (G + G -

DTG [y, o] = [Ha, 1]+ {(G1 + G2), %[Fh, Fol} + M[Gl’ Gol+
+{[G1, Go],j + = (Jz +h)+ ({/‘717 G} + {H2, Go}) — g +g(G1 +G2)h+

+[P12 — €K, E(Fll2 —F3) - g(h— %) - g({l:ll’ G} = {Fe, G2},
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e = [J1,J2]+ (G, [Fh, b]}— {Gz,[Hz,Jl]})+ [Pra—eKa, { Ay, i} —{ Fa, B }]+
4z [P12—6K127{G1,J2} {GQ,Jl}]+B+g([G1,J2] [G2,Jl])—f[Plz—eKlg,Jl—Jz]—l—
+Z[{él,nl}_{cz,ﬁz}]+g[Pu—eKn,{Hl,{Ffz,Gz}}—{Flz,{ﬁl’Gl}}H
+i[Pu—eKu, {G}, {F, Go}}—{ G5, { A, cl}}]+ﬁ[p12_em2, {2, G} —{Fh, Gi}]-
LB (G2, (P, Y16 {h, G+ L E (Pra—ckaa, [, GEY— (i, GEVI

+[P12—6K12,W( G2)—|— ( Flz)]-l— (ﬂ+g) [G17G2]

The remaining three constrainEs:_6€(3’12),_(‘5_6(3'14) and 66(3’15 impose the
algebraic restrictions on J?, {J, H} and {J, G}, which specify the particular
resolution representation.
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Second order evaluation

L(u):u2+uG+H
G=g+G, H=h+2 (G2+BG)+H
G obeys the Lie algebra relation, A transforms as the adjoint representation.
{G, A} +28H — g(G* + BG) = ),
-1 - - =
[Hi, Ho]+ §[W12, G —Gl+= [P12 — Kz, x1— X2 —4g(Fh— >)a(Gi— G2)] = 0

a=4h+ 5 +1—2ef+ me/2,

sy

B

3
H* = c®9 4 2G* — gBH + BG* + (252 + h)G? +(5 + 2hB3)G.

N
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Center of the Yangian Y

Center is generated by

Cu) = L (u—B)L(u) =
= (* +ug+h)(h+ (u—B)+ (u—PB)g) + (8 — u)c®® — &9,

The elements g, h, c?9) and %) are central.
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Lie algebra resolution

Consider first the trivial case:
p(A) = aG, p(G)=G=g+G,

and
_ 1 = _
Lw)=uv’"+ulg+G)+h+ 5(62 + 3G),

The sufficient condition is
Warbyarby = G[a1b1 G32b2)7

The all central elements then are expressed in terms of mz = %tr(é2):

g2:7527%, 4h:2ﬁ271+2ﬂ67%.

The condition Wi, = 0 implies that the graded-antisymmetric part of G is
proportional to G:

X:é3+(2ﬂ+e)62+§(4ﬂ—m2)@—%:0.
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Oscillator representation

are realized as follows:

CaCb+ECbCa:Eba

b b b b
, Ca = €abC, = cc” +ec’c, =0,
a n b
CaCp + €CpCs = Eap, CaC = 5 = €C Cp.
€
Gop = EEab — Cacp = —€Gp,

2 = Sn- = £ £
(G + rBG)ab = 4('7 6)631, 2(5 + 2)631,.
The metric for Sp(n) and O(n) (n = 2k) is convenient to choose as:

€ab = E€a0a,—b, a,b:—g,...,—l,l,,..,g.
ijk=1,2,..

n
T
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Highest weight vector

of the Lie algebra representation |0) is realized as follows:
G_i,—j|0) =0, G_ijl0) =0, i<y}, G_i,i|0) = hi|0) = 0.
The algebra implies:
[Gab, GE] = —€cbGag + €20 G + €ac Gy — €dbGlay

so one deduces:

G, _j|0) =0, GT 10y =0, i<},
G™410) = h{710) =0, Gi10) = K10y =0,
hgrll = h h(,i == *Eh,‘,

hg) is calculated iteratively:

WD = (ehi — 28 + i — e)h? + (e = DA + D" ehl) + 3 "(eh™) + A7),
k<i k>i
WD = —eh by + (1= A+ A7),
k<i
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Linear resolution

So for any Lie algebra representation obeying:

G2+28G—m, =0,

n

has weights subjected to 5 — 1 conditions

(hi — hi—1)(e(hi + hi-x — B+i—1)=0.

The oscillator (spinor) representation admits two solutions:

1 n
== i=1...3, c_i|0)y =0,
and 1 5 1
hi = 5 i=1,. ,571, h§:+§,
and the highest weight vector |0):
c_i|0) =0, i:l,...,gfl, c2|0) =
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Representation corresponding to (quadratic) Lie algebra resolution

Any Lie algebra representation obeying
Wib,cd = GabGed + Gac Gab + Gad Gbe + Ged Gab + Gab Gac + Gpe Gag = 0,

has weights
(h17...,hg):(1,...7h70...,0).
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Jordan-Schwinger representation

is realized as follows:
Xaab - EabXa - [Xayab]—e = Eab, [Xa,Xb]—e =0= [837 ab]—e-

p: YIG) - H

P(Gap) = Gap = xa0p — €xp05.

All conditions are fulfilled.
Wi byarb, = C_"[31b1 Ga2b2)’

The all central elements then are expressed in terms of m, = % tr(G?):

g2:_52_ﬂ, 4h:2ﬂ2—1+256—ﬂ.
8 2
The condition Wi, = 0 implies that the graded-antisymmetric part of G3is
proportional to G:
my

> =0.

X =G+ (284G + (48 — m)G —
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Weights corresponding to Jordan-Schwinger representation

[aaa Xb]—€ = Eab, Gpa = Xaab - EXbaa~
Highest weight vector |0)
B(x) = (1),
weights
hy = —e\ = h, hi =0, i:2,...,g.

(hi,....n5 = (h,0,...,0).

In orthogonal case the canonical pairs are bosonic and A is an arbitrary
number. In the symplectic case the canonical pairs are fermionic and ) is either
constant or is proportional to the first power of x_1, so A=0or A = 1.
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Weights corresponding to the general quadratic resolution

The highest weight |0) of the Yangian algebra Y?
[0a, xb] —e = €ab, Gha = X20p — €x50.

Highest weight vector |0)

G_i_jl0) =0, G_ijl0)=0, i<}, G_ii|0) = h;|0),
H_;_;|0) =0, H_;j|0) =0, i<}, H_; |0y = bh;|0).
6-th constraint implies:
i—1
2hilhi +e(i —1—B)] —2¢ > he — g(h'®) — eBh;) = c*9,
k=1

while 8-th constraint gives:

s

) = —}lh(j‘? — BhC) — (5 + h)hC) + eB( S + 2h)hi—
L.e 0 ) @, 1 B @ _ @
= [Z(hfk — HE) 4 ehih®), — chih® + 5 (=e(h — h)(2h+ 5) + B(H%, — h).
k<i
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