Covariant Actions for Chiral p-forms

Karapet Mkrtchyan

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

SQS'19, Yerevan August 30, 2019

Based on arXiv:1908.01789

The Lorentz-covariant field variable is taken in the same representation as that of the little group carried by the corresponding particle

Examples

- Trivial representation of the little group corresponds to the spin-zero particle. Lorentz covariant variable scalar field.
- Vector representation of the little group corresponds to the spin-one particle and is described by a Lorentz vector field (Maxwell potential).
- Symmetric tensor of the little group corresponds to the spin-two particle and is described by the linearised Einstein equations (Fierz-Pauli) and is described by symmetric Lorentz tensor.

Particles and fields

Wigner classification of particles \leftrightarrow field equations (unique?)

For massless spin-zero particle the simplest option is the Klein-Gordon equation

$$\Box \phi = 0$$

The scalar here is a single field that carries one degree of freedom: trivial representation of the massless little group. The Lagrangian is

$$\mathcal{L} \sim rac{1}{2} \phi \, \Box \, \phi$$

Alternative

An alternative formulation of the scalar field is given by so-called Notoph Lagrangian by Ogievetsky and Polubarinov:

 $\mathcal{L} \sim \partial^{\mu} B_{\mu\nu} \partial_{\lambda} B^{\lambda\nu}$

A p-form and its dual

The Lagrangian is given in the form of ("Maxwell Lagrangian")

$$\mathcal{L} \sim F \wedge \star F$$
, $F = dA$.

Massless p-form and a (d-2-p)-form fields describe correspondingly particles of p-form and a (d-2-p)-form representations of the massless little group ISO(d-2), which are dual to each other.

Attention!

Dual formulations do not admit the same interacting deformations!

There are special representations of the Poincaré algebra which are described by self-dual forms. The covariant equations describing such representations are given as:

$$F = \pm \star F$$
, $F = dA$

which implies the regular "Maxwell equations" $d \star F = 0$.

Lagrangian?

Lagrangian formulation of the (free) chiral fields has a long history. Siegel '84, Kavalov-Mkrtchyan '87, Florianini-Jackiw '87, Henneaux-Teitelboim '88, Harada '90, Tseytlin '90, McClain-Yu-Wu '90, Wotzasek '91, ..., Pasti-Sorokin-Tonin '95,...

Duality-symmetric fields

Maxwell action for $p-{\rm forms}$ and $(d-2-p)-{\rm forms}$ describes the same particle content.

When d = 2p + 2, the dual variables are of the same type and the Maxwell action itself takes the same form in both variables.

Twisted self-duality equations

The Maxwell equations are equivalent to first-order equations involving both dual potentials:

$$F = \pm \star \tilde{F}, \quad F = dA, \quad \tilde{F} = d\tilde{A}$$

Duality-symmetric formulations

Zwanziger '70,..., Tseytlin'90, Schwarz-Sen '93, Gibbons-Rasheed '95, Pasti-Sorokin-Tonin '96, Cederwall-Westerberg '97, Ivanov-Zupnik '02, ..., Kuzenko-Theisen '00,...

Minkowski vs Euclidean

Since $\star^2 = (-1)^{\sigma+p+1}$ where σ is the number of time directions, only even-forms can be self-dual (chiral) in Minkowski space.

p = 2k forms in d = 4k + 2 dimensions

For even p-form potentials in special dimensions the corresponding particles are not irreducible but contain two irreps — chiral and anti-chiral halves.

New action for Chiral fields

The new Lagrangian

$$\mathcal{L} = -\frac{1}{2(p+1)} F_{\mu_1 \dots \mu_{p+1}} F^{\mu_1 \dots \mu_{p+1}} + G^{\mu\nu} \partial_{[\mu} c_{\nu]}$$
$$-\frac{1}{2(p+1)} (\mathcal{F}_{\mu_1 \dots \mu_{p+1}} - (p+1) c_{[\mu_1} R_{\mu_2 \dots \mu_{p+1}]}) \times (\mathcal{F}^{\mu_1 \dots \mu_{p+1}} - (p+1) c^{[\mu_1} R^{\mu_2 \dots \mu_{p+1}]})$$

where

$$F = d\varphi \,, \quad \mathcal{F} = F + \star F \,,$$

or, equivalently,

$$\mathcal{L} \sim -F \wedge \star F + \star G \wedge dc - (\mathcal{F} - c \wedge R) \wedge \star (\mathcal{F} - c \wedge R)$$

Equivalence to PST

Integrating out the auxiliary field

We solve the algebraic equation of motion for the field $R_{\mu_1...\mu_p}$,

$$\mathcal{F}_{\mu_1\dots\mu_{p+1}} c^{\mu_1} + (-1)^{p+1} p c_{[\mu_2} R_{\mu_3\dots\mu_{p+1}]\mu_1} c^{\mu_1} - c^2 R_{\mu_2\dots\mu_{p+1}} = 0$$

as

$$R_{\mu_1...\mu_p} = \frac{1}{c^2} \mathcal{F}_{\nu\mu_1...\mu_p} \, c^{\nu} + c_{[\mu_1} \lambda_{\mu_2...\mu_p]}$$

and plug back into the action to get:

$$\mathcal{L} = -\frac{1}{2(p+1)} F_{\mu_1...\mu_{p+1}} F^{\mu_1...\mu_{p+1}} + G^{\mu\nu} \partial_{[\mu} c_{\nu} + \frac{1}{2c^2} F_{\mu_1...\mu_{p\nu}} c^{\nu} F^{\mu_1...\mu_{p\rho}} c_{\rho}$$

classically equivalent to the celebrated PST action.

Integrating out the field ${\cal G},$ we get a classically equivalent Lagrangian

$$\begin{aligned} \mathcal{L} &= -\frac{1}{2(p+1)} F_{\mu_1 \dots \mu_{p+1}} F^{\mu_1 \dots \mu_{p+1}} \\ &- \frac{1}{2(p+1)} \left(\mathcal{F}_{\mu_1 \dots \mu_{p+1}} - (p+1) \partial_{[\mu_1} a R_{\mu_2 \dots \mu_{p+1}]} \right) \times \\ &\times \left(\mathcal{F}^{\mu_1 \dots \mu_{p+1}} - (p+1) \partial^{[\mu_1} a R^{\mu_2 \dots \mu_{p+1}]} \right), \end{aligned}$$

or

$$\mathcal{L} \sim -F \wedge \star F - (\mathcal{F} - d \, a \wedge R) \wedge \star (\mathcal{F} - d \, a \wedge R) \,,$$

Rearranging the Lagrangian

After a field redefinition $\varphi_{\mu_1...\mu_p} \to \varphi_{\mu_1...\mu_p} + a R_{\mu_1...\mu_p}$ can be rewritten in the form:

$$\mathcal{L} = -\frac{1}{2(p+1)} \left(F_{\mu_1 \dots \mu_{p+1}} + a \, Q_{\mu_1 \dots \mu_{p+1}} \right) \left(F^{\mu_1 \dots \mu_{p+1}} + a \, Q^{\mu_1 \dots \mu_{p+1}} \right) - \frac{1}{(p+1) \, (p+1)!} \epsilon_{\mu_1 \dots \mu_{p+1} \nu_1 \dots \nu_{p+1}} \, a \, F^{\nu_1 \dots \nu_{p+1}} \, Q^{\mu_1 \dots \mu_{p+1}} \,,$$

where $Q_{\mu_1...\mu_{p+1}} = (p+1)\partial_{[\mu_1}R_{\mu_2...\mu_{p+1}]}$, or

$$\mathcal{L} \sim -(F + a Q) \wedge \star (F + a Q) - a F \wedge Q$$

where $F = d \varphi$, Q = d R.

Finally, one can rewrite the action in the form:

$$\mathcal{L} = -\frac{1}{2(p+1)} F_{\mu_1 \dots \mu_{p+1}} F^{\mu_1 \dots \mu_{p+1}} - \frac{1}{2(p+1)} (\mathcal{F}_{\mu_1 \dots \mu_{p+1}} + a Q_{\mu_1 \dots \mu_{p+1}})^2$$

We will use the notation:

$$Q_{\mu_1\dots\mu_{p+1}}^{\pm} = Q_{\mu_1\dots\mu_{p+1}} \pm \frac{1}{(p+1)!} \epsilon_{\mu_1\dots\mu_{p+1}\nu_1\dots\nu_{p+1}} Q^{\nu_1\dots\nu_{p+1}}$$

for (anti)self-dual part of the (p+1)-form $Q_{\mu_1...\mu_{p+1}}$.

Equations and PST symmetry

Combining the equations of motion $E^{\varphi}\,,\,E^R$ for the fields $\varphi_{\mu_1...\mu_p}$ and $R_{\mu_1...\mu_p}$ one gets

$$E^{R}_{\mu_{2}...\mu_{p+1}} + a E^{\varphi}_{\mu_{2}...\mu_{p+1}} = \partial^{\mu_{1}} a P_{\mu_{1}...\mu_{p+1}} = 0,$$

$$P_{\mu_{1}...\mu_{p+1}} \equiv \mathcal{F}_{\mu_{1}...\mu_{p+1}} + a Q^{+}_{\mu_{1}...\mu_{p+1}},$$

which implies

$$P_{\mu_1...\mu_{p+1}} = 0 \,,$$

automatically satisfying the equation of motion E^a for the a field,

$$E^{a} = Q_{\mu_1...\mu_{p+1}} P^{\mu_1...\mu_{p+1}} = 0.$$

This indicates the existence of a PST like symmetry (shift for a).

An interesting generalisation of the Lagrangian is:

$$\mathcal{L} = -\frac{1}{2} f(a) \left(\sqrt{a} F + \frac{1}{\sqrt{a}} Q \right)^2 + f(a) F \wedge Q.$$

For $f(a)\sim 1/a$, this Lagrangian is equivalent to the chiral one written earlier and describes a single chiral p-form carried in field φ . For $f(a)\sim a$, it describes an anti-chiral p-form field carried by R. The exchange $\varphi\leftrightarrow R$, $a\rightarrow -\frac{1}{a}$, $f(a)\rightarrow -f(a)$ is a symmetry of the Lagrangian.

One can integrate out the c_{μ} field in the original action:

$$c_{\mu} = \frac{1}{R} \mathcal{F}_{\mu} + \frac{1}{R^2} \epsilon_{\mu\nu} \partial^{\nu} \tilde{r} \,,$$

and plugging back into action (renaming $\frac{1}{R} \rightarrow r$) to get:

$$S = \int \left(-\frac{1}{2} \partial_{\mu} \varphi \, \partial^{\mu} \varphi - \frac{1}{2} \, r^2 \, \partial_{\mu} \tilde{r} \, \partial^{\mu} \tilde{r} - r \, \mathcal{F}^{\mu} \, \partial_{\mu} \tilde{r} \right) d^2 x \, .$$

Another parametrisation gives:

$$\mathcal{L}_{\pm} = -\frac{1}{8} \left[(r+1)\partial_{\mu}\varphi \pm (r-1)\partial_{\mu}\tilde{\varphi} \right]^{2} + \frac{1}{4} \epsilon^{\mu\nu} r \,\partial_{\mu}\varphi \,\partial_{\nu}\tilde{\varphi} \,,.$$

where different signs correspond to different chiralities. Here $\varphi = \varphi_+ + \varphi_-$ and $\tilde{\varphi} = \varphi_+ - \varphi_-$. The two actions transform into each other under $\varphi \leftrightarrow \tilde{\varphi}, r \rightarrow -r$.

A compact form

The Lagrangian in a simpler form

$$\mathcal{L} \sim -\mathcal{M}_{IJ} F^I \wedge \star F^J - \mathcal{K}_{IJ} F^I \wedge F^J \,,$$

with

$$\mathcal{M}_{IJ} = \begin{bmatrix} 1 & a \\ a & a^2 \end{bmatrix}, \quad \mathcal{K}_{IJ} = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}, \quad F^I = \begin{bmatrix} F \\ Q \end{bmatrix},$$

where F^I is a two-vector with p+1-form components. \mathcal{M} is of rank one. The "background matrix" $\mathcal{E} = \mathcal{M} + \mathcal{K}$ is invertible.

An observation

The same action with the inverted background matrix \mathcal{E}^{-1} describes the same degrees of freedom, exchanging the roles of φ and R.

Duality-symmetric Electromagnetism

The Lagrangian for a single massless spin-one field

$$\begin{aligned} \mathcal{L} &= -\frac{1}{8} \, F^{a}_{\mu\nu} \, F^{a\,\mu\nu} + G^{\mu\nu} \, \partial_{[\mu} c_{\nu]} \\ &- \frac{1}{8} \, (\mathcal{F}^{a}_{\mu\nu} - 2 \, c_{[\mu} \, R^{a}_{\nu]}) (\mathcal{F}^{a\,\mu\nu} - 2 \, c^{[\mu} \, R^{a\,\nu]}) \,, \end{aligned}$$

where a, b = 1, 2, and

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu}, \quad \mathcal{F}^{a}_{\mu\nu} = F^{a}_{\mu\nu} - \frac{1}{2}\epsilon_{ab}\,\varepsilon_{\mu\nu\lambda\rho}F^{b\,\lambda\rho},$$

$$\epsilon_{ab} = -\epsilon_{ba}, \quad \epsilon_{12} = 1 = \epsilon^{12}, \quad \varepsilon_{0123} = 1 = -\varepsilon^{0123}.$$

The following identities hold (Einstein summation rule is assumed for both types of indices):

$$\mathcal{F}^{a}_{\mu\nu}\,\mathcal{F}^{a\,\mu\nu} = 0\,,\quad \varepsilon_{\mu\nu\lambda\rho}\mathcal{F}^{a\,\lambda\rho} = 2\,\epsilon^{ab}\,\mathcal{F}^{b}_{\mu\nu}\,,$$

$$\mathcal{L} = -\frac{1}{8} F^{a}_{\mu\nu} F^{a\mu\nu} - \frac{1}{8} \left(\mathcal{F}^{a}_{\mu\nu} + a Q^{a}_{\mu\nu} \right) \left(\mathcal{F}^{a\mu\nu} + a Q^{a\mu\nu} \right)$$

where $Q^a_{\mu\nu} = \partial_\mu R^a_\nu - \partial_\nu R^a_\mu$. This Lagrangian describes a single Maxwell field, using four vectors and a scalar. It can be written as:

$$\mathcal{L} = -\frac{1}{8} \,\mathcal{M}_{IJ} \,F^{I}_{\mu\nu} \,F^{J\mu\nu} - \frac{1}{16} \,\mathcal{K}_{IJ} \epsilon^{\mu\nu\alpha\beta} \,F^{I}_{\mu\nu} \,F^{J}_{\alpha\beta} \,,$$

where

$$\mathcal{M}_{IJ} = \begin{bmatrix} 1 & 0 & a & 0 \\ 0 & 1 & 0 & a \\ a & 0 & a^2 & 0 \\ 0 & a & 0 & a^2 \end{bmatrix}, \quad \mathcal{K}_{IJ} = \begin{bmatrix} 0 & 0 & 0 & a \\ 0 & 0 & -a & 0 \\ 0 & -a & 0 & 0 \\ a & 0 & 0 & 0 \end{bmatrix}, \quad F^I = \begin{bmatrix} F^1 \\ F^2 \\ Q^1 \\ Q^2 \end{bmatrix}$$

A list of related problems

- Duality-symmetric formulation for non-abelian gauge theory.
- \bullet Interacting theory of non-abelian Chiral (self-dual) $p-{\rm forms.}$

Thank you for your attention!