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Dynamical equations
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Radial evolution equations: (p* + 6’2)1/2,01_‘18,) (p“!_l(p2 - 82)_1/2]—"’)“) + D, F" =0



Boosted electric charge. The simplest family of solutions is found by assuming A, = 0,C
for which F,, = 0. By closedness of F,, we have

WFuvp— OF,, = 0. (3.4)
Then, F,, = 0,1 for a gauge-invariant scalar v,
v=A,—-0,C. (3.5)

Equation (3.3) reduces to

VP + P
G

and the solution is (see appendix A)

(p™ " (p* + )P FM) = 0. (3.6)

= p" U+ )V RY(2Y),  DFDab(a”) =0 (3.7)



This is the exact solution for an electric charge with an arbitrary boost, which crosses the
event at the origin of AdS (no dipole moment). To see this, consider a static electric charge at
the origin, which in hyperbolic coordinates is given by

p3~dcos?3 1

\/p2+gz

Y is a Lorentz scalar and under boosts, it acquires angle-dependence so that other components

]:TP - - T/‘/}(p? T)' (38)

of F,, are also turned on. The phase space of all superpositions of boosted electric charges
consists of all functions ¥ (p, z#) satisfying conditions (3.7). Finally, note that near the origin,
p < [, the behavior is 1)  p*~¢ which matches flat space solutions |22, 26|. Near the boundary,

however, the behavior is weaker 1) o< p*~<.




Displaced electric charge. Let us now relax the condition A, = 0,C. Fixing the A, = 0
gauge, the constraint equation (3.2) implies that A, is a divergenceless de Sitter vector D" A, =
0. Spectrum of the Laplace operator on A, is given by representation theory of SO(d — 1,1)
(see appendix A for a derivation using differential equations):

D'FUl = —B(8+d—4)A. (3.9)
Eq. (3.3) then becomes an equation for the eigen-vector .A,[f !
Vit 2y (p*3(p* + A)'20,AP) — B(B+d — 4) AP =0 (3.10)
gzpd—s p\P P ’ PY poo '

Exact expressions can be expressed in terms of hypergeometric functions. We are only interested
in two asymptotic limits p < ¢ and p > /.

At . yﬂ,mi

where V5., are harmonics on S~2, ¢f. Appendix A for conventions. In hyperbolic coordinates (which is related
to global coordinates by (2.7)), and in radial gauge A, = 0 this potential is given by

3—p—d — —d— tan7cos? A3+ ,
= costtP 3 ppl=d=Fy, A = — P49,y

AT_4—/3—d” 4—-pB—d

Explicitly, looking for solutions to £;A = 0 in the A, = 0 gauge, we find the above expressions for the fields in
which (3 is quantized. Straightforward algebra shows that

DiFiy, = -B(B+d—4)A,.
This equality holds also in a boosted frame by Lorentz covariance. Thus, .AL[,;] eigen-vectors with integral values
for B correspond to electric 2°-poles.



Flat region p < (. The two solutions for eigen-vector fields (3.9) are
B B B 4—d—-p
.AL]ocp , AL]ocp . (3.11)

For integer /3, the solutions with p*~@~# falloff are of course recognized as the multipole moments
of the electromagnetic field [26, 29, 30]. Note that (3.9) is Lorentz covariant. Therefore, the
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eigen-vector field A, describes a system of 2°-poles moving freely in flat space.
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Boundary region p > (. For each eigen-vector field A, one employs a near boundary

expansion

AT =" pr ARG (3.12)

Equation (3.10) leads to a recursive relation
s(d+ s —3)AP) = B(B + d — 4) AP+ (3.13)

Although the recursive relation depends on the moment [ (and the exact solution is a hyper-
geometric function depending on 3 and d), the leading term is universal in 3

AL~ 0(1), A~ oY) vp (3.14)



Falloff/Boundary conditions

A, AP
A= 5+ —5
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As in the usual AdS/CFT |18], we fix the radial gauge by setting A, = 0. This gauge is accessible
by setting A, = (d — 3)5\ and correspondingly for subleading orders, while the leading gauge
parameter Ag is unconstrained. As we see this gauge fixing is not possible in 3d case, as in this
case the electric charge yields a logarithmic function of p; the 3d should be studied separately:.
Here we focus on d > 3 case.
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Action Principle
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Conserved Symplectic form
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Conserved Symplectic form, On-shell
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Physical gauge transformations

(SQ)\ — Q( (5/\)

QE[\I’] — % \/ﬁTu ()\S'DM\I’ — \I’D“/\S),
o0Xr

Qf[q’] — f \/ET,,, (/\RD"’<I> — <I>D"'/\R),
[0 )

{QF,. Q7 =0, {QF.Q¥} =0,
{Q,QY} = —Q0xg. 0y, 7{ Vh 7,(AD*x — xDF\).

/ .
{Ql m; {'2:;:} = 21 5(00J + 1) 5[,[’5m,1,m;:



Scaling symmetry

b M 1P, U — MW,

A = f Vhr,(VD'd — DH),

{AQ}=-0x. {AQ}=0)



Boundary gauge transformations and integrability of AdS isometry charges

0¢, (D, D"®) = L, (D, D" D)
d¢, (D,A) = L¢, (D, AY),

0¢r (D, D' ®) = D, [E4.D, D"® + (d — 3)&4.D" P]
S¢r (D, A”) = D, [§4 D, A" + (d — 3)¥D"&}

((Sa + (SfT)(I) — O ((5‘3 + (5€T)\IJ — O

de,. DV D, ® =6, D' D, ® — D*a = 0,
5e, D' A, =5¢, D' A, + D*3 = D, [f;(Dﬂfiﬂ + D“D‘,\I/)] ~ 0,



Lorentz charges are integrable. The action of Lorentz subgroup of isometries defined
by Lie derivative enjoys integrable charges. One can see that by computing phase space Lie
derivative of the symplectic form under Lorentz transformations,

Le, Q= %\/ﬁrug'iwﬂ“x, (6.23)

where w™ is defined in (4.6) and is vanishing on our phase space. Therefore, d¢, has an
integrable charge on the constructed phase space and is computed to be (see (B.7)),

I = / VI T + (3—d) §  vhn, [UD"(E'D,®) — D'VE“D, )] . (6.24)
s,

%,
The notable point here is the boundary term containing the boundary data ¥ and ®. Using
our gauge conditions and Killing equations, one can easily show that the boundary term is
nothing but the boundary energy momentum tensor introduced in (4.10) contracted by &;. So,
the Lorentz charges can be recast as,

I, = / VITEET™ + 7{ Vhr, ek (6.25)
Xr [e )



AdS-Translation charges are not integrable. Under AdS-translations the symplectic
form transforms as (see appendix B for details),

L, Q2= %\/ﬁ 7, w™™ — (d — 3)? ]{ Vh 7,7 OWOD. (6.26)
This proves non-integrability of AdS-translations, even if w™>* = 0.

Improved AdS-translations are integrable. In section 6.2.1 we replaced o¢,. by 5&. =
d¢r + 0o Which leaves the boundary gauge conditions invariant. Detailed computations in
appendix B show that the transformation 3& defined above leaves the boundary data W and ®
invariant and importantly, has integrable well-defined canonical charge. In other words, using
the equations of motion we can show that 5€T leaves our phase space invariant and is also a

canonical transformation on it,

L2 = (Le, + Lo g)2= 0. (6.27)
This leads us to,
O, 0g,) = 01, (6.28)

where the charge I; turns out to be (see (B.11)),

I; = /2 VIra& T, (6.29)

This is a plausible conclusion since the boundary data are invariant under the improved AdS-
translations.



Algebra

{[éT’ IéT} - I[@]ﬂ {ICL’ IfL} — I[fL:CL]’ {I{:Lv IéT} — I[@]
{IéTa Qi} = 0, {IéTa Qf} =0

{I€L7 Qi} — QigLA’ {IfLﬂQf} — Q?gL/\'

{A7[€L} = 0, {AvIAT} = 0.



Thank you



