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Let V be a vector space over the field C and P be the usual flip
acting in V⊗2 or its matrix.
Also, let M = (mj

i ) be a numerical N × N matrix. Consider the
system

P M1 M2 −M1 M2 P = 0, M1 = M ⊗ I , M2 = I ⊗M.

Note that M2 = P M1 P and consequently, this system can be cast
under the form

P M1 P M1 −M1 P M1 P = 0.

This system written via the entries reads

mj
i m

l
k = ml

k m
j
i , ∀ i , j , k , l ,

i.e. the entries commute with each other.
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Example N = 2:

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , M =

(
a b
c d

)
,

M1 =


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 , M2 =


a b 0 0
c d 0 0
0 0 a b
0 0 c d

 .

The corresponding system reads

ab = ba, ac = ca, ...
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Let us introduce some symmetric polynomials of M (namely,
elementary ones and power sums)

det(M − t I ) =
N∑
0

(−t)N−kek(M), pk(M) = Tr Mk .

If M is a triangular matrix these elements are respectively
elementary symmetric polynomials and power sums in the
eigenvalues µi of M. Namely, we have

ek =
∑

i1<...<ik

µi1 ...µik , pk(M) =
∑

µki .

Also, note that these symmetric polynomials of M are related by
the Newton identities

k ek − p1 ek−1 + p2 ek−2 + · · ·+ (−1)kpk e0 = 0.
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Together with the initial system P M1 P M1 −M1 P M1 P = 0
consider its inhomogeneous analog

P M1 P M1 −M1 P M1 P = P M1 −M1 P.

In terms of the entries we have the relations

mj
i m

l
k −ml

k m
j
i = ml

i δ
j
k −mj

k δ
l
i ,

which define the enveloping algebra U(gl(N)).

Note that if in the homogeneous (inhomogeneous) system we
replace P by the super-flip Pm|n, we get the defining relations of
the super-commutative algebra Sym(gl(m|n)) (resp., the
enveloping algebra U(gl(m|n))).
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Now, deform P → R in the corresponding systems–homogeneous
and not. And do the same with the super-flip Pm|n. Namely, take
R as follows (here N = 2, m = n = 1)

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

 ,


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 −q−1

 .

Note that for q → 1 we respectively recover the flip P and the
super-flip P1|1.
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If we deform the system P M1 P M1 −M1 P M1 P = 0 and its
inhomogeneous analog, we get

R M1 R M1 −M1 R M1 R = 0.

R M1 R M1 −M1 R M1 R = R M1 −M1 R.

The first one will be called Reflection Equation (RE) algebra. The
second one–modified RE algebra.

If we deform P in the system P M1 M2 −M1 M2 P = 0, we get

R M1 M2 −M1 M2 R = 0 ⇔ R M1 P M1 P −M1 P M1 P R = 0.

This algebra will be called RTT algebra.

Note that all these algebras make sense for some other braidings R .
Question: for what R deforming P these algebras are deformations
of commutative ones?
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We call an invertible linear operator R : V⊗2 → V⊗2 braiding if it
satisfies the so-called braid relation

R12 R23 R12 = R23 R12 R23, R12 = R ⊗ I , R23 = I ⊗ R.

Then the operator R = R P where P is the usual flip is subject to
the QYBE

R12R13R23 = R23R13R12.
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A braiding R is called involutive symmetry if R2 = I .
A braiding is called Hecke symmetry if it is subject to the Hecke
condition

(q I − R)(q−1 I + R) = 0, q ∈ C, q 6= 0, q 6= ±1.

In particular, such a symmetry comes from the QG Uq(sl(N)). For
N = 2 it is just the example above.

We assume q to be generic. This means that kq 6= 0 for any integer
k .

As for the braidings coming from the QG of other series Bn,Cn,Dn,
each of them has 3 eigenvalues and it is called BMW symmetry.
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In order to classify Hecke symmetries, consider "R-symmetric" and
"R-skew-symmetric" algebras

SymR(V ) = T (V )/〈Im(qI−R)〉,
∧

R
(V ) = T (V )/〈Im(q−1I+R)〉,

where T (V ) is the free tensor algebra. Also, consider the
corresponding Poincaré-Hilbert series

P+(t) =
∑
k

dim Sym
(k)
R (V )tk , P−(t) =

∑
k

dim
∧(k)

R
(V )tk ,

where the upper index (k) labels homogenous components of these
quadratic algebras.
If R is involutive, we put q = 1 in these formulae.
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Example
Let us compare two symmetries. The first one is Hecke coming
from Uq(sl(2)), the second one is involutive:

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

 ,


1 0 0 0
0 0 q 0
0 q−1 0 0
0 0 0 1

 .

For the first (resp., second) symmetry we have

SymR = T (V )/ < xy−qyx >,
∧

R
= T (V )/ < x2, y2, qxy+yx > .

SymR = T (V )/ < xy−qyx >,
∧

R
= T (V )/ < x2, y2, xy+qyx > .

Observe that the algebras SymR(V ) are similar, but
∧

R(V ) are not.

Dmitry Gurevich Valenciennes University (with Pavel Saponov) Quantum matrix algebras: a review



Introduction
Braidings and symmetries

Quantum Matrix algebras and quantum determinants
Baxterization and Generalized Yangians

One example more. Consider an involutive symmetry
1 a −a ab
0 0 1 −b
0 1 0 b
0 0 0 1

 .

Then we have

SymR(V ) = T (V )/ < xy − yx + b y2 >,∧
R

(V ) = T (V )/ < x2 +
a

2
(xy − yx), xy + yx , y2 > .

If b = 0, a 6= 0, the algebra SymR(V ) is usual but
∧

R(V ) is not.
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The following holds P−(−t)P+(t) = 1.

Proposition. (Phung Ho Hai)

The HP series P−(t) (and hence P+(t)) is a rational function:

P−(t) =
N(t)

D(t)
=

1 + a1 t + ...+ ar t
r

1− b1 t + ...+ (−1)s bs ts
=

∏r
i=1(1 + xi t)∏s
j=1(1− yj t)

,

where ai and bi are positive integers, the polynomials N(t) and
D(t) are coprime, and all the numbers xi and yi are real positive.

We call the couple (r |s) bi-rank. In this sense all involutive and
Hecke symmetries are similar to super-flips, for which the role of
the bi-rank is played by the super-dimension (m|n).
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Examples. If R comes from the QG Uq(sl(m)), then

P−(t) = (1 + t)m.

If R is a deformation of the super-flip Pm|n, then

P−(t) =
(1 + t)m

(1− t)n
.

Also, there exist "exotic" examples: for any N ≥ 2 there exits a
Hecke symmetry such that

P−(t) = 1 + Nt + t2.

Here dimV = N, the bi-rank is (2|0).
If P−(t) is a polynomial, i.e. the bi-rank of R is (m|0), R is called
even.
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Given an even Hecke symmetry R , how to construct a category,
similar to that Rep − Uq(sl(m))?
Observe that in general we have no object of QG Uq(gl(N)) type.
First, let us extend R up to a braiding

R = RV⊕V ∗
: (V ⊕ V ∗)⊗2 → (V ⊕ V ∗)⊗2,

where V ∗ is the dual space with the paring 〈 , 〉 : V ⊗ V ∗ → C.

We fixe a basis {xi} ∈ V . The basis {x j} ∈ V ∗ such that
< xi , x

j >= δji is called "right dual".
We want to define the extension RV⊕V ∗

so that it would be in a
sense coordinated with this pairing.
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The following method of extending R belongs to V.Lyubashenko.
Let us present the symmetry R (involutive or Hecke) in the basis
{xi} ∈ V :

R(xi ⊗ xj) = Rkl
ij xk ⊗ xl .

We say that a braiding R is skew-invertible if there exists an
operator Ψ : V⊗2 → V⊗2 such that

Tr2R12Ψ23 = P13 ⇔ Rkl
ij Ψjq

lp = δqi δ
k
p ,

If it is so, then the mentioned extension is

RV⊕V ∗
(xk ⊗ x l) = R lk

ji x
i ⊗ x j , RV⊕V ∗

(xi ⊗ x j) = (R−1)jlikx
k ⊗ xl ,

RV⊕V ∗
(x j ⊗ xi ) = Ψkj

li xk ⊗ x l .
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Also, introduce two operators

B = Tr1Ψ ⇔ B j
i = Ψkj

ki , C = Tr2Ψ ⇔ C j
i = Ψjk

ik .

Then we define
< x j , xi >= B j

i

Also, for any N × N matrix A (may be with NC entries) we put

TrRA = Tr C A.

This R-trace (or quantum trace) has many remarkable properties.
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Below, we use the following notions. Let A be an N × N matrix.
Then we put

A1 = A1, A2 = R A1 R
−1,

A3 = R2 A2 R
−1
2 = R2 R1 A1 R

−1
1 R−1

2

and so on.
Note that

A2 = I ⊗ A = P A1 P = P(A⊗ I )P.

One of the main properties of the quantum trace is (Dubna’s group)

TrR(2) A2 = TrR(1) A1.

Note that in the classical case we have

Tr2 A2 = Tr1 A1.
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It is natural to put dimRV = TrR IV .

Example. If R is an even symmetry of rank (2, 0) (i.e.
P−(t) = 1 + Nt + t2), then

dimV = N, dimR V = q−2 2q

for a Hecke R , and dimR V = 2 for an involutive involutive R .

Example. If R is the above Hecke coming from Uq(sl(2)), then

C = diag(q−3, q−1), B = diag(q−1, q−3).

Observe that in general dimRV = qn−m(m − n)q depends only on
the bi-rank (m|n) of the initial symmetry R .
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Now, pass to defining quantum determinants in RTT and RE
algebras.
Let us assume R to be Hecke. Consider the projectors
(idempotents) V⊗k →

∧(k)(V ), called R-skew-symmetrizers

A
(1)
R = I , A

(k)
R =

1
kq

A
(k−1)
R

(
qk−1I − (k − 1)qRk−1

)
A
(k−1)
R , k = 2, 3...

For instance,

A
(2)
R =

qI − R

2q
,

A
(3)
R =

q3I − q2R12 − q2R23 + qR12R23 + qR23R12 − R12R23R12

2q 3q
.

If R is involutive, we put q = 1.
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If R has the bi-rank (m|0) the space Im A(m) is one-dimensional.
Consequently, there exist two tensors

u = (ui1...im) and v = (v j1...jm),

such that

A
(m)
R (xi1 ⊗ ...⊗ xim) = ui1...im v j1...jmxj1 ⊗ ...⊗ xjx ,

< v , u >:= v i1...im ui1...im = 1.

The element v j1...jmxj1 ⊗ ...⊗ xjm is a generator of Im A
(m)
R .

Note that the tensors u and v are defined up to a renormalization

u → au, v → a−1v , a ∈ C, a 6= 0.
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Again, consider the above symmetries.

For the latter symmetry (involutive) we have

u = (u11, u12, u21, u22) =
1
2

(0, 1,−q−1, 0),

v = (v11, v12, v21, v22) = (0, 1,−q, 0).

For the former one (Hecke, coming from Uq(sl(2))) we have

u =
1
2q

(0, q−1,−1, 0), v = (0, 1,−q, 0).

Dmitry Gurevich Valenciennes University (with Pavel Saponov) Quantum matrix algebras: a review
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Observe that the tensors v corresponding to these symmetries
coincide with each other and, consequently, the algebras

SymR(V ) = T (V )/ < v >

are the same. Nevertheless, the tensors u are different.
Also, the algebras

∧
R(V ) are different as well. We have∧

R
(V ) = T (V )/ < x2, y2, qxy − yx >∧

R
(V ) = T (V )/ < x2, y2, xy − qyx >

respectively for the Hecke and involutive symmetries.
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How to find relations in QMA, if we know the algebra SymR(V )?
Let us assume that the relations in SymR(V ) are
xi xj − q xj xi = 0, i < j . Apply the coproduct xi →

∑
k t

k
i ⊗ xk to

this relation. We have

(
∑
k

tki ⊗ xk) (
∑
l

t lj ⊗ xl)− q (
∑
l

t lj ⊗ xl) (
∑
k

tki ⊗ xk) = 0.

Now, we have to take away the terms t lj from the second factors by
transposing them with xk .

However, the result depends on the way of transposing the factors
t lj and these xk . Thus, by imposing different ways we get different
algebras (RTT or RE).
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Now, introduce the determinants in the QM algebras. Recall that
the RTT algebra corresponding to R is defined by the system

RT1T2 − T1T2R, T = (t ji ), 1 ≤ i , j ≤ m,

and the corresponding RE one is defined by that

RL1RL1 − L1RL1R = 0, L = (l ji ), 1 ≤ i , j ≤ m.

Also, remind the above notation

L1 = L1, L2 = R12 L1 R
−1
12 , L3 = R23 L2 R

−1
23 = R23 R12 L1 R

−1
12 R−1

23 , ...

In this notation the defining relations of the RE algebra become
similar to the RTT ones

RL1L2 = L1L2R.
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Let R be a symmetry (involutive or Hecke) and F be a
skew-invertible. Let us define the quantum determinant in the
algebra RTT and RE by assuming R to be of bi-rank (m|0).

Definition
The element

detL(R,F )(L) :=< v |L1...Lm|u >:= v i1...im (L1...Lm)j1...jmi1...im
uj1...jm ,

is called quantum determinant of the generating matrix L in the RE
algebra. In RTT one it is necessary only to replace the overlined
indexes with usual ones.
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Quantum analogs of the elementary symmetric polynomials and
power sums in the RTT algebras are respectively defined as follows

ek(L) = Tr(12...k)A
(k)
R L1...Lk .

pk(L) = Tr(12...k)Rk−1 k ...,R23R12 L1...Lk .

In the RE algebra the usual trace Tr(12...k) should be replaced by
TrR(12...k).

Note that if R is of bi-rank (m|0), the element em is a multiple of
the quantum determinant.
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As shown in [IOP], they are related by the quantum version of the
Newton identities

pk −qpk−1 e1 + (−q)2pk−2 e2 + ...+ (−q)k−1p1 ek + (−1)kkqek = 0

and commute with each other.

The algebra generated by these quantum symmetric polynomials is
called Bethe.

Dmitry Gurevich Valenciennes University (with Pavel Saponov) Quantum matrix algebras: a review



Introduction
Braidings and symmetries

Quantum Matrix algebras and quantum determinants
Baxterization and Generalized Yangians

Note that in the RE algebras the power sums can be reduced to the
form similar to the classical one:

pk = TrR Lk .

Moreover, in this case there exists a quantum analog of the
Cayley-Hamilton identity similar to the classical one

Lm−q Lm−1 e1+(−q)2Lm−2 e2+...+(−q)m−1L em−1+(−q)m I em = 0.
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In this case we can also define the so-called quantum characteristic
polynomial

ch(t) = tm − q tm−1 e1 + (−q)2tm−2 e2 + ...

+(−q)m−1t em−1 + (−q)m 1 em = 0,

such that ch(L) = 0.

Observe that the polynomial detR(L− tI ) is well defined but it is
not equal to ch(t).
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Consider the quantum determinants in the RTT algebras L(R,P),
corresponding to the symmetries R above.
Below, we denote a = l11 , b = l21 , c = l12 , d = l22 . Then the defining
relations in the algebra L(R,P), corresponding to the involutive
symmetry above are

ab = q−1ba, ac = qca, ad = da, bc = q2cb,

bd = qdb, cd = q−1dc .

The quantum determinant in this algebra is

det(L) =
1
2

(ad−qcb−q−1bc+da) = ad−q−1bc = da−qcb. (1)
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The defining relations in the algebra corresponding to the Hecke
matrix are

ab = qba, ac = qca, ad − da = (q − q−1)bc, bc = cb,

bd = qdb, cd = qdc .

The corresponding quantum determinant is

det(L) =
1
2q

(q−1ad−bc−cb+qda) = ad−qbc = da−q−1cb. (2)
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Now, introduce the corresponding Generalized Yangians (GY).
The famous Yang braiding is R(u, v) = P − I

u−v .

Proposition.
1. If R is an involutive symmetry, then

R(u, v) = R − a I

u − v

is an R-matrix, i.e. it meets the quantum Yang-Baxter equation

R12(u, v)R23(u,w)R12(v ,w) = R23(v ,w)R12(u,w)R23(u, v).

2. If R = R(q) is a Hecke symmetry, then the same is valid for

R(u, v) = R(q)− (q − q−1)u I

u − v
.
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The Drinfeld’s Yangian Y(gl(N)) is in fact an RTT algebra defined
by

R(u, v)T1(u)T2(v) = T1(v)T2(u)R(u, v)

with the Yang braiding and under a assumption that T (u) is a series

T (u) =
∑
k≥0

T [k] u−k

and T [0] = I .

Introduce two types of GY in a similar manner.
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1. Generalized Yangians of RTT type are defined by

R(u, v)T1(u)T2(v) = T1(u)T2(v)R(u, v),

where R(u, v) is one of the above current braidings.
2. GY of RE type (also called braided Yangians) are defined by

R(u, v)L1(u) L2(v) = L1(v) L2(u)R(u, v).

Here L2 = R L1 R
−1.

These relations can be also presented as follows

R(u, v)L1(u)RL1(v) = L1(v)RL1(u)R(u, v).
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If a braiding R(u, v) arises from an involutive symmetry R , the
corresponding GY Y (R,P) is called rational. If R is Hecke, then
Y (R,R) is called trigonometrical.

If R is of bi-rank (m|0), we define quantum determinants in the
rational (resp., trigonometrical) GY as follows

detY(R,F )(L(u)) =< v |L1(u) L2(u − 1) . . . Lm(u −m + 1)|u >,

detY(R,F )(L(u)) =< v |L1(u) L2(q−2u) . . . Lm(q−2(m−1)u)|u > .

Thus, the determinants are defined by formulae similar to those
above but with shifts in arguments of the matrices L(u), additive in
the rational cases and multiplicative in the trigonometrical ones.
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As for quantum elementary symmetric polynomials ek(u) in
Y (R,R), they are in the trigonometrical case

ek(u) = TrR(1...k)

(
A
(k)
R L1(u)L2(q−2u) . . . Lk(q−2(k−1)u)

)
, k ≥ 1,

Quantum powers of the generating matrices in the Generalized
Yangians of RE type are defined in the trigonometrical case by

L[k](u) = L(q−2(k−1)u)L(q−2(k−2)u)...L(u), k ≥ 1.

The quantum power sums are defined in this case by

pk(u) = TrR L[k](u) = TrR L(q−2(k−1)u)L(q−2(k−2)u)...L(u).

Here, also the quantum determinant and the highest quantum
elementary polynomial differ from each other by a numerical factor.

Dmitry Gurevich Valenciennes University (with Pavel Saponov) Quantum matrix algebras: a review



Introduction
Braidings and symmetries

Quantum Matrix algebras and quantum determinants
Baxterization and Generalized Yangians

Let us exhibit the quantum Newton relations and Cayley-Hamilton
identities in the Generalized Yangians Y (R,R) of RE type

Proposition.

pk(u)− qpk−1(q−2u)e1(u) + (−q)2pk−2(q−4u)e2(u) + ...

+(−q)k−1p1(q−2(k−1)u)ek(u) + (−1)kkqek(u).

Proposition.
m∑

p=0

(−q)pL[m−p](q−2pu)ep(u) = 0.

Observe that in the GY of RE type Y(R,R) there is an evaluation
morphism similar to the that in the Drinfeld’s Yangian.
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Now, consider the case of general symmetries R (not necessary
even) in more detail.

If a given symmetry R is of bi-rank (m|n) n 6= 0, the generating
matrix L of the RE algebra also meets the Cayley-Hamilton identity

am+n L
m+n + am+n−1 L

m+n−1 + · · ·+ a0 I = 0,

where all the coefficients ak belong to the center of the algebra
L(R,R). Note that in this case the leading coefficient am+n does
not equal 1. Upon dividing this relation by a0L, we can express the
matrix L−1 as a linear combinations of the matrices Lk ,
0 ≤ k ≤ m + n − 1 with the coefficients −ak/a0.
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Observe that for any Schur diagrams (partitions)
λ = (λ1 ≥ ... ≥ λk) there exists an analog of the Schur functor
V 7→ Vλ and the corresponding Schur polynomial pλ.

Then the quantum determinant and quantum Berezinian are
defined by some fractions pλ/p′λ. For the quantum determinant we
have pλ = a0, p

′
λ = am+n.
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Many thanks
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