Higher derivatives couplings from maximal conformal supergravity

Franz Ciceri

Max Planck Institute for gravitational physics, Potsdam

Based on:

F.C. and B. Sahoo, JHEP 01 (2015) 59
D. Butter, F.C., B. de Wit and B. Sahoo, PRL 118 (2017) 081602
D. Butter, F.C., B. de Wit and B. Sahoo, in progress

Supersymmetries and Quantum symmetries, Yerevan 26th of August 2019

Supergravities in 4 dimensions

- Supergravity theories are supersymmetric extensions of Einstein's gravity.

Freedman, van Nieuwenhuizen, Ferrara, 1976
\rightarrow Local symmetries: supersymmetry $+\frac{\text { Poincaré symmetries }}{\text { translations }+ \text { Lorentz }}$

- Extended supergravity: N independent supersymmetry parameters ϵ^{i}.

$$
i=1, \cdots, N
$$

\rightarrow There is always a so-called gravity multiplet: $\left(e_{\mu}{ }^{a}, \psi_{\mu}{ }^{i}, \cdots\right)$

Physical states of the gravity multiplets (massless multiplets)

Lagrangians:
$\mathcal{L}=\operatorname{det}(e) R+$

helicity	$\mathrm{N}=1$	$\mathrm{~N}=2$	$\mathrm{~N}=3$	$\mathrm{~N}=4$	$\mathrm{~N}=5$	$\mathrm{~N}=6$	$\mathrm{~N}=7$	$\mathrm{~N}=8$	$\mathrm{~N}=9$
$+5 / 2$									1
+2	1	1	1	1	1	1	1	1	10
$+3 / 2$	1	2	3	4	5	6	8	8	45
+1		1	3	6	10	16	28	28	120
$+1 / 2$			1	4	11	26	56	56	210
+0				2	10	30	70	70	252
$-1 / 2$			1	4	11	26	56	56	210
-1		1	3	6	10	16	28	28	120
$-3 / 2$	1	2	3	4	5	6	8	8	45
-2	1	1	1	1	1	1	1	1	10
$-5 / 2$				Higher-spin					

Supergravities in 4 dimensions

- As Einstein's gravity, supergravities typically suffer from unrenormalizable ultraviolet divergences at the quantum level.
- $N=8$ and $N=4$ are special:
$\rightarrow N=8$ is the maximal theory. Latest result: finite up to five loops!
Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, Zeng, 2018
$\rightarrow N=4$ has its first divergence at four loops. It is believed to be tied to a rigid $\mathrm{U}(1) \subset \mathrm{SU}(1,1)$ duality symmetry anomaly in the theory.

helicity	$\mathrm{N}=1$	$\mathrm{~N}=2$	$\mathrm{~N}=3$	$\mathrm{~N}=4$	$\mathrm{~N}=5$	$\mathrm{~N}=6$	$\mathrm{~N}=7$	$\mathrm{~N}=8$	$\mathrm{~N}=9$
$+5 / 2$									1
+2	1	1	1	1	1	1	1	1	10
$+3 / 2$	1	2	3	4	5	6	8	8	45
+1		1	3	6	10	16	28	28	120
$+1 / 2$			1	4	11	26	56	56	210
+0				2	10	30	70	70	252
$-1 / 2$			1	4	11	26	56	56	210
-1		1	3	6	10	16	28	28	120
$-3 / 2$	1	2	3	4	5	6	8	8	45
-2	1	1	1	1	1	1	1	1	10
$-5 / 2$									1

Conformal supergravity

$$
i=1, \cdots, N
$$

- Conformal supergravities are supersymmetric extensions of conformal gravity.
\rightarrow Local symmetries:
N supersymmetries + conformal symmetries + internal R-symmetries

Q- and S-	Poincaré		
supersymmetries		\quad	dilatations
:---:			
+ conformal boosts	\quad Only for N>0		

Conformal supergravity

$$
i=1, \cdots, N
$$

- Conformal supergravities are supersymmetric extensions of conformal gravity.
\rightarrow Local symmetries:
conformal symmetries
Poincaré
+ dilatations
+ conformal boosts
- Conformal gravity ($\mathrm{N}=0$):

The fields of theory are the gauge fields associated to the local conformal symmetries:

As in gravity, some fields are not independent as a result of algebraic constraints.

The unique invariant Lagrangian is:

$$
\mathcal{L}=\operatorname{det}(e) C^{\mu \nu}{ }_{a b} C_{\mu \nu}{ }^{a b}
$$

Higher-derivative Lagrangian

Conformal supergravity

$$
i=1, \cdots, N
$$

- Conformal supergravities are supersymmetric extensions of conformal gravity.
\rightarrow Local symmetries:
N supersymmetries + conformal symmetries + internal R-symmetries

- Conformal supergravity $(N \neq 0)$:

The fields of theory include the gauge fields associated to the local superconformal symmetries. They organise into a so-called

$$
\text { Weyl multiplet: }\left(e_{\mu}{ }^{a}, \omega_{\mu}^{a b}, b_{\mu}, f_{\mu}{ }^{a}, \psi_{\mu}{ }^{i}, \frac{\phi_{\mu}{ }^{i}}{\substack{i=\text { susy } \\ \text { gauge field }}}, \cdots\right)
$$

The invariant Lagrangian is the superconformal completion of the Weyl tensor squared:

$$
\mathcal{L}=\operatorname{det}(e) C^{\mu \nu}{ }_{a b} C_{\mu \nu}{ }^{a b}+\cdots
$$

Higher-derivative
Lagrangian

$D=4$ conformal supergravities

Weyl
multiplets
(off-shell):

	$\mathrm{N}=1$	$\mathrm{~N}=2$	$\mathrm{~N}=3$	$\mathrm{~N}=4$	$\mathrm{~N}=5$		
spin-5/2					1		
spin-2	1	1	1	1	10		
spin-3/2	2	4	6	8	44	\quad	Higher-spin
:---:							
spin-1							
field							
spin-1/2							
spin-0							

- The $N=1,2$ conformal supergravities have been studied extensively.
[Butter, de Wit, Ferrara, Gates, Kaku, Kuzenko, Novak, Siegel, Stelle Tartaglino-Mazzucchelli, Townsend, Van Holten, Van Proeyen, West ...]
Powerful: off-shell formalism to construct higher-derivatives invariants.
After gauge fixing the conformal symmetries, they provide insights into the higher-derivatives structure of the Poincaré theories.
\rightarrow String theory effective action, subleading corrections to black hole entropy,...
- $N=4$ conformal supergravity is the maximal theory.

Until now' still no Lagrangian...

$\mathrm{N}=4$ conformal supergravity

The full field content was derived 35 years ago:
$\longrightarrow \mathbf{N}=4$ Weyl multiplet: gauge fields + 'matter' fields.

Gauge fields		Field	Symmetry (Generator)	Name/Restrictions	SU(4)	w	c
	Bosons	$e_{\mu}{ }^{a}$	Translations (P)	vierbein	1	-1	0
		$\omega_{\mu}{ }^{a b}$	Lorentz (M)	spin connection	1	0	0
		b_{μ}	Dilatation (D)	dilatational gauge field	1	0	0
		$V_{\mu}{ }^{i}{ }_{j}$	SU(4) (V)	$\mathrm{SU}(4)$ gauge field	15	0	0
				$V_{\mu i}{ }^{j} \equiv\left(V_{\mu}{ }^{i}{ }^{j}\right)^{*}=-V_{\mu}{ }^{j}{ }_{i}$			
				$V_{\mu}{ }^{i}{ }_{i}=0$			
		$f_{\mu}{ }^{a}$	Conformal boosts (K)	K-gauge field	1	1	0
		a_{μ}	U(1)	$\mathrm{U}(1)$ gauge field	1	0	0
	Fermions	$\phi_{\mu_{i}}$	S-supersymmetry (S)	S-gauge field	$\overline{4}$	$\frac{1}{2}$	$\frac{1}{2}$
				$\gamma_{5} \phi_{\mu_{i}}=\phi_{\mu_{i}}$			
		$\psi_{\mu}{ }^{i}$	Q-supersymmetry (Q)	gravitino; $\gamma_{5} \psi_{\mu}^{i}=\psi_{\mu}^{i}$	4	$-\frac{1}{2}$	$-\frac{1}{2}$

Supersymmetries

$N=4$ conformal supergravity

$$
\begin{aligned}
& i=1, \cdots, 4 \\
& \alpha=1,2
\end{aligned}
$$

In addition to gauge fields, the $\mathrm{N}=4$ Weyl multiplet contains "auxiliary fields":

'Matter' fields		Field	Properties	$\mathrm{SU}(4)$	w	${ }^{\text {c }}$	The complex scalars $\phi_{\alpha}, \phi^{\alpha}$transform under rigid
		ϕ_{α}	$\phi^{\alpha}=\eta^{\alpha \beta}\left(\phi_{\alpha}\right)^{*}, \phi_{\alpha} \phi^{\alpha}=1$	1	0	-1	
		$E_{i j}$	$E_{i j}=E_{j i}$	$\overline{10}$	1	-1	$\mathrm{SU}(1,1)$ transformations
		$T_{a b}{ }^{\text {b }}$	${ }^{\frac{1}{2} \varepsilon a b b^{\text {cd }} T_{\text {ca }}{ }^{i j}}=-T_{a b^{i j}}$	6	1	-1	and satisfy:
	Bosons	$D^{i j}{ }_{k l}$	$\begin{aligned} & T_{a a^{i j}}=-T_{a{ }^{j i}} \\ & D^{b_{k}}=\frac{1}{4} \varepsilon^{i j m n} \varepsilon_{k l p q} D^{p q_{m n}} \\ & D_{k l}{ }_{k l} \equiv\left(D^{k k{ }_{i j}}\right)^{*}=D^{i j_{k l}} \end{aligned}$	20^{\prime}	2	0	$\phi_{1} \phi^{1}+\phi_{2} \phi^{2}=1$
		Λ_{i}	$\gamma_{5} \Lambda_{i}=\Lambda_{i}$	$\overline{4}$	$\frac{1}{2}$	$-\frac{3}{2}$	and parametrize $\operatorname{SU}(1,1)$ matrices:
	Fermions	$\chi^{i j}{ }_{k}$	$\begin{aligned} & \gamma^{\gamma^{i j}{ }^{i{ }_{j}} k}=\chi^{i j_{k}} ; \chi^{i j_{k}}=-\chi^{i{ }_{k}} \\ & \chi^{i j_{j}}=0 \end{aligned}$		$\frac{3}{2}$		

\rightarrow The scalars ϕ_{α} are also subject to the local $U(1)$ symmetry and therefore describe two physical degrees of freedom associated with an $\mathrm{SU}(1,1) / \mathrm{U}(1)$ coset space.
\longrightarrow They carry no Weyl weight and will play a central role.

Lagrangian(s?)

The full off-shell superconformal transformation rules have been derived:

$$
\begin{aligned}
& \delta_{Q} e_{\mu}{ }^{a}=\bar{\epsilon}^{i} \gamma^{a} \psi_{\mu i}+\text { h.c. }, \\
& \delta_{Q} \psi_{\mu}{ }^{i}=2 \mathcal{D}_{\mu} \epsilon^{i}-\frac{1}{2} \gamma^{a b} T_{a b}{ }^{i j} \gamma_{\mu} \epsilon_{j}+\varepsilon^{i j k l} \bar{\psi}_{\mu j} \epsilon_{k} \Lambda_{l}, \\
& \delta_{Q} E_{i j}=2 \bar{\epsilon}_{(i} \gamma^{\mu} D_{\mu} \Lambda_{j)}-2 \bar{\epsilon}^{k} \chi^{m n}{ }_{(i} \varepsilon_{j) k m n}-\bar{\Lambda}_{i} \Lambda_{j} \bar{\epsilon}_{k} \Lambda^{k}+2 \bar{\Lambda}_{k} \Lambda_{(i} \bar{\epsilon}_{j)} \Lambda^{k},
\end{aligned}
$$

Their non-linearity makes it very tedious to construct the invariant Lagrangian by directly supersymmetrising the Weyl tensor squared:

$$
\underset{\substack{\text { sal" } N=4 \\ \text { nal SUGRA }}}{\mathcal{L}_{N=4}=\operatorname{det}(e) R(M)^{\mu \nu}{ }_{a b} R(M)_{\mu \nu}^{a b}+? ?} \text { supercovariant }=C_{\mu \nu}^{a b}+\text { fermions }
$$

"Minimal" $N=4$
conformal SUGRA
\rightarrow Partial construction: with this iterative ("Noether") method, the Lagrangian was derived up to quadratic order in fermions.

FC, Sahoo, 2015
\rightarrow Unlike for $\mathrm{N}<4$, there is no multiplet calculus available...

Lagrangian(s?)

The full off-shell superconformal transformation rules have been derived:

$$
\begin{aligned}
& \delta_{Q} e_{\mu}{ }^{a}=\bar{\epsilon}^{i} \gamma^{a} \psi_{\mu i}+\text { h.c. }, \\
& \delta_{Q} \psi_{\mu}{ }^{i}=2 \mathcal{D}_{\mu} \epsilon^{i}-\frac{1}{2} \gamma^{a b} T_{a b}{ }^{i j} \gamma_{\mu} \epsilon_{j}+\varepsilon^{i j k l} \bar{\psi}_{\mu j} \epsilon_{k} \Lambda_{l}, \\
& \delta_{Q} E_{i j}=2 \bar{\epsilon}_{(i} \gamma^{\mu} D_{\mu} \Lambda_{j)}-2 \bar{\epsilon}^{k} \chi^{m n}{ }_{(i} \varepsilon_{j) k m n}-\bar{\Lambda}_{i} \Lambda_{j} \bar{\epsilon}_{k} \Lambda^{k}+2 \bar{\Lambda}_{k} \Lambda_{(i} \bar{\epsilon}_{j)} \Lambda^{k},
\end{aligned}
$$

Their non-linearity makes it very tedious to construct the invariant Lagrangian by directly supersymmetrising the Weyl tensor squared:

$$
\begin{aligned}
& \mathcal{L}_{N=4}=\operatorname{det}(e) \mathcal{H}\left(\phi_{\alpha}, \phi^{\alpha}\right) R(M)^{\mu \nu}{ }_{a b} R(M)_{\mu \nu}{ }^{a b}+\cdots . \\
& \text { supercovariant }=C_{\mu \nu}{ }^{a b}+\text { fermions } \\
& \text { "Non-minimal" } N=4
\end{aligned}
$$ conformal SUGRA

In fact, it was suggested already a long time ago that there could/should exist a large class of actions, that depend on a function of

Fradkin, Tseytlin, 1982 the coset scalars $\mathcal{H}\left(\phi_{\alpha}, \phi^{\alpha}\right)$.

How we construct the invariant Lagrangian(s)?

We directly propose a density formula (or a 'skeleton') for the Lagrangian using the 'ectoplasm method'.

Gates, Grisaru, Knutt-Wehlau, Siegel, 1998
\longrightarrow Entirely written in terms of 4-forms. Schematically:

$$
e^{4}=e^{a} \wedge e^{b} \wedge e^{c} \wedge e^{d}
$$

$$
\mathcal{L}_{N=4}=\frac{e^{4} \square}{-\frac{e^{3} \psi}{-} \frac{\square}{-7 / 2} \overline{+7 / 2} \quad \ldots e^{2} \psi^{2} \square+e \psi^{3} \square+\frac{\psi^{4} \square}{-2} \frac{\square}{+2}} \text { Weyl weight } w:
$$

The \square denote supercovariant coefficient functions (or 'composites') that will ultimately depend on the Weyl multiplet fields.

How we construct the invariant Lagrangian(s)?

We directly propose a density formula (or a 'skeleton') for the Lagrangian using the 'ectoplasm method'.

Gates, Grisaru, Knutt-Wehlau, Siegel, 1998
\longrightarrow Entirely written in terms of 4-forms. Schematically:

$$
e^{4}=e^{a} \wedge e^{b} \wedge e^{c} \wedge e^{d}
$$

The \square denote supercovariant coefficient functions (or 'composites') that will ultimately depend on the Weyl multiplet fields.

Two assumptions:

- The 4-forms that appear only involve the gravitini and the vierbein.
- The bottom composites transform in the 20^{\prime} of $\mathrm{SU}(4)$:

$$
\begin{aligned}
\mathcal{L}_{N=4}=\cdots & -i \varepsilon^{\mu \nu \rho \sigma} \bar{\psi}_{\mu i} \psi_{\nu j} \bar{\psi}_{\rho}^{k} \psi_{\sigma}^{l} A^{i j}{ }_{k l} \\
& -\frac{i}{4} \varepsilon^{\mu \nu \rho \sigma} \bar{\psi}_{\mu i} \psi_{\nu j} \bar{\psi}_{\rho k} \psi_{\sigma l} \varepsilon^{k l r s} C^{i j}{ }_{r s}+\text { h.c. }
\end{aligned} 20^{\prime}
$$

Require $\delta_{Q}($ density formula $)=0$ at each order in e and ψ :

Cancellation of $\epsilon \psi^{4}$ variations

We parametrise the Q-supersymmetry transformations of the bosonic composites:

$$
\begin{aligned}
\delta C^{i j}{ }_{k l} & =\bar{\epsilon}^{m} \Xi^{i j}{ }_{k l, m}+\bar{\epsilon}_{m} \Xi^{i j, m}{ }_{k l}, \\
\delta A_{k l}^{i j} & =\bar{\epsilon}^{m} \Omega^{i j}{ }_{k l, m}+\bar{\epsilon}_{m} \Omega^{i j, m},
\end{aligned}
$$

in terms of
fermionic composites.

Gathering all the Q-supersymmetry variations proportional to $\epsilon \psi^{4}$ and requiring them to vanish, leads to the following constraints on the variations of the composites $C^{i j}{ }_{k l}$ and $A^{i j}{ }_{k l}$:

$$
\mathcal{L}_{N=4}=\cdots+e \psi^{3}(\square, \square)+\cdots
$$

Fixes the Q-supersymmetry transformations of $C^{i j}{ }_{k l}$ and $A^{i j}{ }_{k l}$: determines the expressions of some higher composites.

Repeat for all other variations: $\epsilon e \psi^{3}, \epsilon e^{2} \psi^{2}, \ldots$

Completing the density formula

By requiring all variations to vanish, we obtain further constraints which determine the supersymmetry transformation rules of all the composites.

1
Final (and necessary) check:
We then verify that the transformations of the composites satisfy the same algebra as those of the Weyl multiplet fields.
\longrightarrow We make use the computer algebra package Cadabra
Peeters, 1998

Summary at this point:
We have determined an invariant Lagrangian (as a density formula) which is expressed in terms of supercovariant composites that do not yet depend explicitly on the Weyl multiplets fields.

Constructing the composites

Last step: Express the composites in terms of the Weyl multiplet fields.

$$
\mathcal{L}_{N=4}=e^{4} \underbrace{?}+e^{3} \psi+e^{2} \psi^{2} ?+e \psi^{3} ?+\psi^{4} ? ? \text { Start with } C^{i j}{ }_{k l} \text { and } A^{i j}{ }_{k l}
$$

\rightarrow Determine the other composites via the SUSY transformations rules.
Task: $C^{i j}{ }_{k l}$ and $A^{i j}{ }_{k l}$ have to be in the 20^{\prime} of $\mathrm{SU}(4)$ and S-supersymmetric. They must satisfy:

$$
\begin{aligned}
{\left[\Xi^{i j}{ }_{k l, m}\right]_{\overline{\mathbf{6 0}}} } & =\left[2 \Lambda_{m} A^{i j}{ }_{k l}\right]_{\overline{\mathbf{6 0}}}, \quad\left[\Xi^{i j, m}{ }_{k l}\right]_{\mathbf{6 0}}=0, \quad \text { with } \quad \begin{array}{l}
\delta C^{i j}{ }_{k l}=\bar{\epsilon}^{m} \Xi^{i j}{ }_{k l, m}+\bar{\epsilon}_{m} \Xi^{i j, m}{ }_{k l}, \\
{\left[\Omega^{i j}{ }_{k l, m}\right]_{\overline{\mathbf{6 0}}}=\left[\Lambda_{m} \bar{C}^{i j}{ }_{k l}\right]_{\mathbf{6 0}}}
\end{array} \quad \delta A^{i j}{ }_{k l}=\bar{\epsilon}^{m} \Omega^{i j}{ }_{k l, m}+\bar{\epsilon}_{m} \Omega^{i j, m}{ }_{k l},
\end{aligned}
$$

Constructing the composites

Last step: Express the composites in terms of the Weyl multiplet fields.

$$
\mathcal{L}_{N=4}=e^{4} \underbrace{?}_{\delta_{Q}}+e^{3} \psi \underbrace{?}_{\delta_{Q}}+e^{2} \psi^{2} \underbrace{?}_{\delta_{Q}}+e \psi^{3} \underbrace{?+\psi^{4}}_{\delta_{Q}} ? ? C^{\text {Sij }}{ }_{k l} \text { and } A^{i j}{ }_{k l}
$$

\rightarrow Determine the other composites via the SUSY transformations rules.
Task: $C^{i j}{ }_{k l}$ and $A^{i j}{ }_{k l}$ have to be in the 20^{\prime} of $\mathrm{SU}(4)$ and S-supersymmetric. They must satisfy:

$$
\begin{array}{lll}
{\left[\Xi^{i j}{ }_{k l, m}\right]_{\overline{60}}=\left[2 \Lambda_{m} A^{i j}{ }_{k l}\right]_{\mathbf{6 0}}, \quad\left[\Xi^{i j, m}{ }_{k l}\right]_{60}=0,} & \text { with } & \delta C^{i j}{ }_{k l}=\bar{\epsilon}^{m} \Xi^{i j}{ }_{k l, m}+\bar{\epsilon}_{m} \Xi^{i j, m}{ }_{k l}, \\
{\left[\Omega^{i j}{ }_{k l, m}\right]_{\overline{\mathbf{6 0}}}=\left[A_{m}{ }_{k l}=\bar{\epsilon}^{i j}{ }_{k l}{ }_{k l} \Omega_{\overline{60}}^{i j}{ }_{k l, m}+\bar{\epsilon}_{m} \Omega^{i j, m}{ }_{k l},\right.}
\end{array}
$$

We find only one solution:

- Depends on a holomorphic function $\mathcal{H}\left(\phi_{\alpha}\right)$ which is homogeneous of zero-th degree in the coset scalars:
$\longrightarrow \mathcal{H}\left(\phi_{\alpha}\right)$ only depends on powers of ϕ_{1} / ϕ_{2}.
\longrightarrow The expressions of all the other composites depend on $\mathcal{H}\left(\phi_{\alpha}\right)$.

$N=4$ conformal supergravity Lagrangians

$\mathcal{D}=-\phi^{\alpha} \varepsilon_{\alpha \beta} \frac{\partial}{\partial \phi_{\beta}}$
The bosonic terms of this class of Lagrangians are, up to a total derivative:

$$
\operatorname{det}(e)^{-1} \mathcal{L}=\mathcal{H}\left[\frac{1}{2} \underline{R(M)^{a b c d}} R(M)_{a b c d}^{-}+R(V)^{a b i}{ }_{j} R(V)_{a b}^{-j}{ }_{i}+\frac{1}{8} D^{i j}{ }_{k l} D^{k l}{ }_{i j}+\frac{1}{4} E_{i j} D^{2} E^{i j}-4 T_{a b}{ }^{i j} D^{a} D_{c} T^{c b}{ }_{i j}\right.
$$

Weyl
tensor
+
...
$+2 \mathcal{H} e_{a}{ }^{\mu} f_{\mu}{ }^{c} \eta_{c b}\left[P^{a} \bar{P}^{b}-P^{d} \bar{P}_{d} \eta^{a b}\right]+$ h.c
Butter, FC, de Wit, Sahoo, 2017

$\mathrm{N}=4$ conformal supergravity Lagrangians

$\mathcal{D}=-\phi^{\alpha} \varepsilon_{\alpha \beta} \frac{\partial}{\partial \phi_{\beta}}$
The bosonic terms of this class of Lagrangians are, up to a total derivative:
$\operatorname{det}(e)^{-1} \mathcal{L}=\mathcal{H}\left[\frac{1}{2} R(M)^{a b c d} R(M)_{a b c d}^{-}+R(V)^{a b i}{ }_{j} R(V)_{a b}^{-}{ }^{j}{ }_{i}+\frac{1}{8} D^{i j}{ }_{k l} D^{k l}{ }_{i j}+\frac{1}{4} E_{i j} D^{2} E^{i j}-4 T_{a b}{ }^{i j} D^{a} D_{c} T^{c b}{ }_{i j}\right.$
Weyl
tensor
$+$ $-\bar{P}^{a} D_{a} D_{b} P^{b}+P^{2} \bar{P}^{2}+\frac{1}{3}\left(P^{a} \bar{P}_{a}\right)^{2}-\frac{1}{6} P^{a} \bar{P}_{a} E_{i j} E^{i j}-8 P_{a} \bar{P}^{c} T^{a b}{ }_{i j} T_{b c}{ }^{i j}-\frac{1}{16} E_{i j} E^{j k} E_{k l} E^{l i}$
r

$$
+\frac{1}{48}\left[E_{i j} E^{i j}\right]^{2}+T^{a b}{ }_{i j} T_{a b k l} T^{c d i j} T_{c d}{ }^{k l}-T^{a b}{ }_{i j} T_{c d}{ }^{j k} T_{a b k l} T^{c d l i}-\frac{1}{2} E^{i j} T^{a b k l} R(V)_{a b}{ }^{m}{ }_{i} \varepsilon_{j k l m}
$$

$$
+\frac{1}{2} E_{i j} T^{a b}{ }_{k l} R(V)_{a b}{ }^{i}{ }_{m} \varepsilon^{j k l m}-\frac{1}{16} E_{i j} E_{k l} T^{a b}{ }_{m n} T_{a b p q} \varepsilon^{i k m n} \varepsilon^{j l p q}-\frac{1}{16} E^{i j} E^{k l} T^{a b m n} T_{a b}{ }^{p q} \varepsilon_{i k m n} \varepsilon_{j l p q}
$$

$$
\left.-2 T^{a b i j}\left(P_{[a} D_{c]} T_{b}^{c k l}+\frac{1}{6} P^{c} D_{c} T_{a b}^{k l}+\frac{1}{3} T_{a b}^{k l} D_{c} P^{c}\right) \varepsilon_{i j k l}-2 T^{a b}{ }_{i j}\left(\bar{P}_{[a} D_{c]} T_{b}^{c}{ }_{k l}-\frac{1}{2} \bar{P}^{c} D_{c} T_{a b k l}\right) \varepsilon^{i j k l}\right]
$$

$$
+\mathcal{D H}\left[\frac{1}{4} T_{a b}{ }^{i j} T_{c d}{ }^{k l} R(M)^{a b c d} \varepsilon_{i j k l}+E_{i j} T^{a b i k} R(V)_{a b}{ }^{j}{ }_{k}-\frac{1}{8} D^{i j}{ }_{k l}\left(T^{a b m n} T_{a b}{ }^{k l} \varepsilon_{i j m n}-\frac{1}{2} E_{i m} E_{j n} \varepsilon^{k l m n}\right)\right.
$$

$$
\left.+T^{a b i j} T_{a}{ }^{c k l} R(V)_{b c}{ }^{m}{ }_{k} \varepsilon_{i j l m}-\frac{1}{24} E_{i j} E^{i j} T^{a b k l} T_{a b}{ }^{m n} \varepsilon_{k l m n}-\frac{1}{6} E^{i j} T_{a b}{ }^{k l} T^{a c m n} T_{c}^{b}{ }_{c}{ }^{p q} \varepsilon_{i k l m} \varepsilon_{j p q n}\right]
$$

$$
+\mathcal{D}^{2} \mathcal{H}\left[\frac{1}{6} E_{i j} T_{a b}{ }^{i k} T^{a c j l} T_{c}^{b}{ }_{c}^{m n} \varepsilon_{k l m n}-\frac{1}{8} E_{i j} E_{k l} T_{a b}{ }^{i k} T^{a b j l}+\frac{1}{384} E_{i j} E_{k l} E_{m n} E_{p q} \varepsilon^{i k m p} \varepsilon^{j l n q}\right.
$$

$$
\left.+\frac{1}{32} T^{a b i j} T^{c d p q} T_{a b}{ }^{m n} T_{c d}{ }^{k l} \varepsilon_{i j k l} \varepsilon_{m n p q}-\frac{1}{64} T^{a b i j} T^{c d p q} T_{a b}{ }^{k l} T_{c d}{ }^{m n} \varepsilon_{i j k l} \varepsilon_{m n p q}\right]
$$

$$
+2 \mathcal{H} e_{a}{ }^{\mu} f_{\mu}^{c} \eta_{c b}\left[P^{a} \bar{P}^{b}-P^{d} \bar{P}_{d} \eta^{a b}\right]+\text { h.c }
$$

Corresponds to the

bosonic part of

$\mathcal{L}_{N=4}=e^{4} \square+e^{3} \psi \square+e^{2} \psi^{2} \square+e \psi^{3} \square+\psi^{4} \square$,

$\mathrm{N}=4$ conformal supergravity Lagrangians

$\mathcal{D}=-\phi^{\alpha} \varepsilon_{\alpha \beta} \frac{\partial}{\partial \phi_{\beta}}$
The bosonic terms of this class of Lagrangians are, up to a total derivative:

$$
\operatorname{det}(e)^{-1} \mathcal{L}=\mathcal{H}\left[\frac{1}{2} \underline{R(M)^{a b c d}} R(M)_{a b c d}^{-}+R(V)^{a b i}{ }_{j} R(V)_{a b}^{-j}{ }_{i}+\frac{1}{8} D^{i j}{ }_{k l} D^{k l}{ }_{i j}+\frac{1}{4} E_{i j} D^{2} E^{i j}-4 T_{a b}{ }^{i j} D^{a} D_{c} T^{c b}{ }_{i j}\right.
$$

Weyl
tensor
+

$+\frac{1}{48}\left[E_{i j} E^{i j}\right]^{2}+T^{a b}{ }_{i j} T_{a b k l} T^{c d i j} T_{c d}{ }^{k l}-T^{a b}{ }_{i j} T_{c d}{ }^{j k} T_{a b k l} T^{c d l i}-\frac{1}{2} E^{i j} T^{a b k l} R(V)_{a b}{ }^{m}{ }_{i} \varepsilon_{j k l m}$
$+\frac{1}{2} E_{i j} T^{a b}{ }_{k l} R(V)_{a b}{ }^{i}{ }_{m} \varepsilon^{j k l m}-\frac{1}{16} E_{i j} E_{k l} T^{a b}{ }_{m n} T_{a b p q} \varepsilon^{i k m n} \varepsilon^{j l p q}-\frac{1}{16} E^{i j} E^{k l} T^{a b m n} T_{a b}{ }^{p q} \varepsilon_{i k m n} \varepsilon_{j l p q}$
$\left.-2 T^{a b i j}\left(P_{[a} D_{c]} T_{b}{ }^{c k l}+\frac{1}{6} P^{c} D_{c} T_{a b}{ }^{k l}+\frac{1}{3} T_{a b}{ }^{k l} D_{c} P^{c}\right) \varepsilon_{i j k l}-2 T^{a b}{ }_{i j}\left(\bar{P}_{[a} D_{c]} T_{b}{ }^{c}{ }_{k l}-\frac{1}{2} \bar{P}^{c} D_{c} T_{a b k l}\right) \varepsilon^{i j k l}\right]$
$+\mathcal{D H}\left[\frac{1}{4} T_{a b}{ }^{i j} T_{c d}{ }^{k l} R(M)^{a b c d} \varepsilon_{i j k l}+E_{i j} T^{a b i k} R(V)_{a b}{ }^{j}{ }_{k}-\frac{1}{8} D^{i j}{ }_{k l}\left(T^{a b m n} T_{a b}{ }^{k l} \varepsilon_{i j m n}-\frac{1}{2} E_{i m} E_{j n} \varepsilon^{k l m n}\right)\right.$
$\left.+T^{a b i j} T_{a}{ }^{c k l} R(V)_{b c}{ }^{m}{ }_{k} \varepsilon_{i j l m}-\frac{1}{24} E_{i j} E^{i j} T^{a b k l} T_{a b}{ }^{m n} \varepsilon_{k l m n}-\frac{1}{6} E^{i j} T_{a b}{ }^{k l} T^{a c m n} T^{b}{ }_{c}{ }^{p q} \varepsilon_{i k l m} \varepsilon_{j p q n}\right]$
$+\mathcal{D}^{2} \mathcal{H}\left[\frac{1}{6} E_{i j} T_{a b}{ }^{i k} T^{a c j l} T^{b}{ }_{c}{ }^{m n} \varepsilon_{k l m n}-\frac{1}{8} E_{i j} E_{k l} T_{a b}{ }^{i k} T^{a b j l}+\frac{1}{384} E_{i j} E_{k l} E_{m n} E_{p q} \varepsilon^{i k m p} \varepsilon^{j l n q}\right.$
$\left.+\frac{1}{32} T^{a b i j} T^{c d p q} T_{a b}{ }^{m n} T_{c d}{ }^{k l} \varepsilon_{i j k l} \varepsilon_{m n p q}-\frac{1}{64} T^{a b i j} T^{c d p q} T_{a b}{ }^{k l} T_{c d}{ }^{m n} \varepsilon_{i j k l} \varepsilon_{m n p q}\right]$
$+2 \mathcal{H} e_{a}{ }^{\mu} f_{\mu}{ }^{c} \eta_{c b}\left[P^{a} \bar{P}^{b}-P^{d} \bar{P}_{d} \eta^{a b}\right]+$ h.c
Butter, FC, de Wit, Sahoo, 2017

Corresponds to the

bosonic part of

$\mathcal{L}_{N=4}=e^{4} \square+e^{3} \psi \square+e^{2} \psi^{2} \square+e \psi^{3} \square+\psi^{4} \square$,

$\mathrm{N}=4$ conformal supergravity Lagrangians

 $\mathcal{D}=-\phi^{\alpha} \varepsilon_{\alpha \beta} \frac{\partial}{\partial \phi_{\beta}}$ The bosonic terms of this class of Lagrangians are, up to a total derivative:$$
\operatorname{det}(e)^{-1} \mathcal{L}=\mathcal{H}\left[\frac{1}{2} \underline{R(M)^{a b c d}} R(M)_{a b c d}^{-}+R(V)^{a b i}{ }_{j} R(V)_{a b}^{-j}{ }_{i}+\frac{1}{8} D^{i j}{ }_{k l} D^{k l}{ }_{i j}+\frac{1}{4} E_{i j} D^{2} E^{i j}-4 T_{a b}{ }^{i j} D^{a} D_{c} T^{c b}{ }_{i j}\right.
$$

Weyl tensor
+
...

$$
+\frac{1}{48}\left[E_{i j} E^{i j}\right]^{2}+T^{a b}{ }_{i j} T_{a b k l} T^{c d i j} T_{c d}{ }^{k l}-T^{a b}{ }_{i j} T_{c d}{ }^{j k} T_{a b k l} T^{c d l i}-\frac{1}{2} E^{i j} T^{a b k l} R(V)_{a b}{ }^{m}{ }_{i} \varepsilon_{j k l m}
$$

$$
+\frac{1}{2} E_{i j} T^{a b}{ }_{k l} R(V)_{a b}{ }^{i}{ }_{m} \varepsilon^{j k l m}-\frac{1}{16} E_{i j} E_{k l} T^{a b}{ }_{m n} T_{a b p q} \varepsilon^{i k m n} \varepsilon^{j l p q}-\frac{1}{16} E^{i j} E^{k l} T^{a b m n} T_{a b}{ }^{p q} \varepsilon_{i k m n} \varepsilon_{j l p q}
$$

$$
\left.-2 T^{a b i j}\left(P_{[a} D_{c]} T_{b}{ }^{c k l}+\frac{1}{6} P^{c} D_{c} T_{a b}^{k l}+\frac{1}{3} T_{a b}{ }^{k l} D_{c} P^{c}\right) \varepsilon_{i j k l}-2 T^{a b}{ }_{i j}\left(\bar{P}_{[a} D_{c]} T_{b}^{c}{ }_{k l}-\frac{1}{2} \bar{P}^{c} D_{c} T_{a b k l}\right) \varepsilon^{i j k l}\right]
$$

$$
+2 \mathcal{H} e_{a}{ }^{\mu} f_{\mu}{ }^{c} \eta_{c b}\left[P^{a} \bar{P}^{b}-P^{d} \bar{P}_{d} \eta^{a b}\right]+\text { h.c }
$$

When $\mathcal{H}\left(\phi_{\alpha}\right)=$ constant, the Lagrangian reduces to the result of: $F C$, Sahoo, 2015

$\mathrm{N}=4$ conformal supergravity Lagrangians

$$
\mathcal{D}=-\phi^{\alpha} \varepsilon_{\alpha \beta} \frac{\partial}{\partial \phi_{\beta}}
$$

The bosonic terms of this class of Lagrangians are, up to a total derivative:

$$
\begin{aligned}
& \operatorname{det}(e)^{-1} \mathcal{L}=\mathcal{H}\left[\frac{1}{2} R(M)^{a b c d} R(M)_{a b c d}^{-}+R(V)^{a b i}{ }_{j} R(V)_{a b}^{-}{ }^{j}{ }_{i}+\frac{1}{8} D^{i j}{ }_{k l} D^{k l}{ }_{i j}+\frac{1}{4} E_{i j} D^{2} E^{i j}-4 T_{a b}{ }^{i j} D^{a} D_{c} T^{c b}{ }_{i j}\right. \\
& \text { Weyl } \\
& \text { tensor } \\
& + \\
& -\bar{P}^{a} D_{a} D_{b} P^{b}+P^{2} \bar{P}^{2}+\frac{1}{3}\left(P^{a} \bar{P}_{a}\right)^{2}-\frac{1}{6} P^{a} \bar{P}_{a} E_{i j} E^{i j}-8 P_{a} \bar{P}^{c} T^{a b}{ }_{i j} T_{b c}{ }^{i j}-\frac{1}{16} E_{i j} E^{j k} E_{k l} E^{l i} \\
& +\frac{1}{48}\left[E_{i j} E^{i j}\right]^{2}+T^{a b}{ }_{i j} T_{a b k l} T^{c d i j} T_{c d}{ }^{k l}-T^{a b}{ }_{i j} T_{c d}{ }^{j k} T_{a b k l} T^{c d l i}-\frac{1}{2} E^{i j} T^{a b k l} R(V)_{a b}{ }^{m}{ }_{i} \varepsilon_{j k l m} \\
& +\frac{1}{2} E_{i j} T^{a b}{ }_{k l} R(V)_{a b}{ }^{i}{ }_{m} \varepsilon^{j k l m}-\frac{1}{16} E_{i j} E_{k l} T^{a b}{ }_{m n} T_{a b p q} \varepsilon^{i k m n} \varepsilon^{j l p q}-\frac{1}{16} E^{i j} E^{k l} T^{a b m n} T_{a b}{ }^{p q} \varepsilon_{i k m n} \varepsilon_{j l p q} \\
& \left.-2 T^{a b i j}\left(P_{[a} D_{c]} T_{b}^{c k l}+\frac{1}{6} P^{c} D_{c} T_{a b}{ }^{k l}+\frac{1}{3} T_{a b}{ }^{k l} D_{c} P^{c}\right) \varepsilon_{i j k l}-2 T^{a b}{ }_{i j}\left(\bar{P}_{[a} D_{c]} T_{b}{ }^{c}{ }_{k l}-\frac{1}{2} \bar{P}^{c} D_{c} T_{a b} k l\right) \varepsilon^{i j k l}\right] \\
& +\mathcal{D H}\left[\frac{1}{4} T_{a b}{ }^{i j} T_{c d}{ }^{k l} R(M)^{a b c d} \varepsilon_{i j k l}+E_{i j} T^{a b i k} R(V)_{a b}{ }^{j}{ }_{k}-\frac{1}{8} D^{i j}{ }_{k l}\left(T^{a b m n} T_{a b}{ }^{k l} \varepsilon_{i j m n}-\frac{1}{2} E_{i m} E_{j n} \varepsilon^{k l m n}\right)\right. \\
& \left.+T^{a b i j} T_{a}{ }^{c k l} R(V)_{b c}{ }^{m}{ }_{k} \varepsilon_{i j l m}-\frac{1}{24} E_{i j} E^{i j} T^{a b k l} T_{a b}{ }^{m n} \varepsilon_{k l m n}-\frac{1}{6} E^{i j} T_{a b}{ }^{k l} T^{a c m n} T_{c}^{b}{ }^{p q} \varepsilon_{i k l m} \varepsilon_{j p q n}\right] \\
& +\mathcal{D}^{2} \mathcal{H}\left[\frac{1}{6} E_{i j} T_{a b}{ }^{i k} T^{a c j l} T^{b}{ }_{c}{ }^{m n} \varepsilon_{k l m n}-\frac{1}{8} E_{i j} E_{k l} T_{a b}{ }^{i k} T^{a b j l}+\frac{1}{384} E_{i j} E_{k l} E_{m n} E_{p q} \varepsilon^{i k m p} \varepsilon^{j l n q}\right. \\
& \left.+\frac{1}{32} T^{a b i j} T^{c d p q} T_{a b}{ }^{m n} T_{c d}{ }^{k l} \varepsilon_{i j k l} \varepsilon_{m n p q}-\frac{1}{64} T^{a b i j} T^{c d p q} T_{a b}{ }^{k l} T_{c d}{ }^{m n} \varepsilon_{i j k l} \varepsilon_{m n p q}\right] \\
& +2 \mathcal{H} e_{a}{ }^{\mu} f_{\mu}{ }^{c} \eta_{c b}\left[P^{a} \bar{P}^{b}-P^{d} \bar{P}_{d} \eta^{a b}\right]+\text { h.c }
\end{aligned}
$$

When $\mathcal{H}\left(\phi_{\alpha}\right) \neq$ constant , the function breaks the rigid $\mathrm{SU}(1,1)$ invariance. Applications...?

Applications

Provide a class of higher-derivatives invariants for $N=4$ Poincaré supergravity:

How to transition to Poincaré ? \longrightarrow use 'compensating' matter.

Conformal gravity ($\mathrm{N}=0$) example:

> 2-derivatives Lagrangian:

Free scalar ϕ in a conformal gravity background

$$
\mathrm{e}^{-1} \mathcal{L}=-\phi D_{\mu} D^{\mu} \phi
$$

Invariant under local
conformal trans.

$$
\begin{aligned}
=\partial_{\mu} \phi \partial^{\mu} \phi & -\frac{1}{6} R \phi^{2} \\
& =f_{\mu}{ }^{\mu}
\end{aligned}
$$

$$
\longrightarrow \begin{gathered}
\begin{array}{c}
\text { conformal } \\
\text { gauge fixing } \\
b_{\mu}=0
\end{array}
\end{gathered} \longrightarrow \mathrm{e}^{-1} \mathcal{L}=\frac{1}{2 \kappa} R
$$

ϕ : compensator for the dilatation symmetry
For $N=4$: same principle, but additional subtleties.

From $N=4$ conformal to Poincaré (1)

For $\mathrm{N}=4$: use compensating vector multiplets: $\left(\begin{array}{ccc}A_{\mu}^{I} & \lambda^{I}, & \phi_{i j}^{I}\end{array}\right)$

$$
I, J=1, \ldots, 6
$$

spin:
$\mathbf{1}$ $\mathbf{1 / 2} \quad \mathbf{0} \quad \begin{gathered}\text { on-shell } \\ \text { multiplet }\end{gathered}$

From N=4 conformal to Poincaré (1)

For $\mathrm{N}=4$: use compensating vector multiplets:

$$
I, J=1, \ldots, 6
$$

	6 abelian vector		
2-derivatives			
Lagrangian:			galtiplets in a $\mathrm{N}=4$
:---:			
conformal supergravity			
background $\left(\mathcal{L}_{V}\right)$	\longrightarrow equivalence $\quad \longrightarrow$	N=4 Poincaré	
:---:			
supergravity			
$\left(\mathcal{L}_{\mathrm{P}}\right)$			

de Roo, 1985		
\mathcal{L}_{V}	superconformal gauge fixing (D, K, S)	\mathcal{L}_{P}
Rigid	integrating out	Rigid
Electric-magnetic $\operatorname{SU}(1,1)$	some of the 'auxiliary' fields of the $\mathrm{N}=4$ Weyl multiplet	$\mathrm{SU}(1,1)$
duality rotations invariance		invariance
$F_{\mu \nu} \underset{\mathbf{U}(1)}{ } G_{\mu \nu}^{\prime}$	4	

Straightforward: \mathcal{L}_{V} is at most quadratic in these background fields, and their field equations are algebraic.

From N=4 conformal to Poincaré (2)

Add the 4-derivatives invariant $\mathcal{L}_{\mathrm{CSG}}$:

$$
\begin{aligned}
& \mathcal{L}_{V}+\alpha \mathcal{L}_{\mathrm{CSG}} \\
& \text { Depends } \boldsymbol{\nearrow} \\
& \text { on } \mathcal{H}\left(\phi_{\alpha}\right)
\end{aligned}
$$

superconformal gauge fixing
integrating out some of the 'auxiliary' fields of the $\mathrm{N}=4$ Weyl multiplet

Integrating out the Weyl multiplet fields is now non-trivial since their field equations receive non-linear deformations from $\mathcal{L}_{\mathrm{CSG}}$.
\rightarrow Iterative procedure: solve the field equations order by order in α.

Toy example for a scalar A: $A=A_{(0)}+\alpha A^{2} \xrightarrow{\text { solve }} A=\sum_{n=0}^{\infty} A_{(n)}$, with

$$
\begin{aligned}
A_{(1)} & =\alpha A_{(0)}^{2} \\
A_{(2)} & =2 \alpha A_{(1)} A_{(0)} \\
& =2 \alpha^{2} A_{(0)}^{3}
\end{aligned}
$$

From N=4 conformal to Poincaré (2)

Add the 4-derivatives invariant $\mathcal{L}_{\mathrm{CSG}}$:
$\mathcal{L}_{V}+\alpha \mathcal{L}_{\mathrm{CSG}}$
Depends $\boldsymbol{\nearrow}$
on $\mathcal{H}\left(\phi_{\alpha}\right)$
superconformal gauge fixing integrating out some of the 'auxiliary' fields of the $\mathrm{N}=4$ Weyl multiplet

Integrating out the Weyl multiplet fields is now non-trivial since their field equations receive non-linear deformations from $\mathcal{L}_{\mathrm{CSG}}$.
\rightarrow Iterative procedure: solve the field equations order by order in α.

Toy example for a scalar A : $A=A_{(0)}^{\pi}+\alpha A^{2} \xrightarrow{\text { solve }} A=\sum_{n=0}^{\infty} A_{(n)}$, with

$$
\begin{aligned}
A_{(1)} & =\alpha A_{(0)}^{2} \\
A_{(2)} & =2 \alpha A_{(1)} A_{(0)} \\
& =2 \alpha^{2} A_{(0)}^{3}
\end{aligned}
$$

In practice: $T_{\mu \nu} \underset{\substack{\text { Field strength } \\ \text { for spin 1 }}}{F_{\mu \nu}}+\alpha\left(\partial^{2} T_{\mu \nu}+T \cdot T+\ldots\right)$

The field equations are not algebraic anymore.

- \mathcal{L}_{P}^{\prime} contains an infinity of terms: series in F and ∂F
- Involved in practice but the result is guaranteed to be supersymmetric.

Future directions

- Relevance for the potential duality anomaly of the $N=4$ Poincaré theory:

with $\tau=i \frac{\phi_{1}+\phi_{2}}{\phi_{1}-\phi_{2}} \quad$ Fully cancels the $U(1)$ anomaly of $N=4$ Poincaré up to two
loops: Based on loop computations of : Carrasco, Kallosh, Roiban, Tseytin, 2013 Bern, Parra-Martinez, Roiban, 2017
Implications for finiteness of $\mathrm{N}=4$ Poincare supergravity?!

Future directions

- Relevance for the potential duality anomaly of the $N=4$ Poincaré theory:
$\frac{\mathcal{L}_{\mathrm{P}}}{\substack{\text { Rigid } \\ \operatorname{SU}(1,1)}}+\mathcal{L}_{\mathrm{P}}^{\prime} \mathcal{K}_{\substack{\text { Depends } \\ \text { on } \mathcal{H}\left(\phi_{\alpha}\right)}}$
$\mathcal{L}_{\mathrm{P}}^{\prime}$ should be seen as a counterterm deforming the classical 2-derivatives Lagrangian \mathcal{L}_{P}.

self-dual Riemann tensor
For $\mathcal{H}(\tau)=i \tau$,

$$
\mathcal{L}_{\mathrm{P}}^{\prime}=i \tau\left(R_{\mu \nu \rho \sigma}^{-}\right)^{2}-i \bar{\tau}\left(R_{\mu \nu \rho \sigma}^{+}\right)^{\prime}+\mathrm{SUSY}
$$

with $\tau=i \frac{\phi_{1}+\phi_{2}}{\phi_{1}-\phi_{2}}$
Fully cancels the $U(1)$ anomaly of $N=4$ Poincaré up to two loops: Based on loop computations of : Carrasco, Kallosh, Roiban, Tseytin, 2013 Bern, Parra-Martinez, Roiban, 2017

Implications for finiteness of $\mathrm{N}=4$ Poincare supergravity?!

- Study subleading corrections to N=4 black holes entropy.
\rightarrow Existing computations have been performed in a truncated $\mathrm{N}=2$ setting.
- Higher-dimensional origin of the holomorphic function $\mathcal{H}\left(\phi_{\alpha}\right)$?
\rightarrow Connection with (2,0), $\mathrm{D}=6$ conformal supergravity.

Thank you for your attention.

