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Euclidean methods

Tr exp(~ ) =[ d[¢]expGrl¢]), (3.3) | .
Gibbons & Hawking 1977,
where the path integral is now taken over all fields Action integrals and partition
which are periodic with period g in imaginary functions in QG

time. The left-hand side of (3.3) is just the parti-

What Hilbert space gives this InZ =il[ go, ol +1n | dl ] exp(L,| g))
background contribution ? —

Can one do the trace on the LHS ?
But the normal thermodynamic argument

What is the simplest model ? InZ==-W7T"*, -
where W=M -TS-2,,1,C,; is the “thermodyham-

H NB:dC|aSS!CaI black holg | ic potential” of the system. One can therefore re-
thermodynamics comes entirely gard iI[ go,4,] as the contribution of the background

from background to =WT-! and the second -
as the contributions arising from thermal gravi-

tons




Euclidean methods

What is the simplest model ?
Linear theory

Linearized gravity similar to
electromagnetism



Semi-classical contribution

Charged spherical or planar capacitor
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Improved action with boundary term I’ =1 + Jdtcsz — fdt%Q @ =- f do; 7,
S

Hawking & Ross 1995, Duality
between electric and magnetic BHs



Semi-classical contribution

Gibbons & Hawking: contribution to partition function from Euclidean action evaluated
at classical saddle point

InZ(8, 1) = =1 + f(B) f= 91— 92

5 1 Ro
Ry — Rq

—Ip =27Bp

Aim : microscopic explanation of semi-classical contribution

Z(8,1) = Tr e P0T™—1@



Boundary conditions

perfectly conducting boundary conditions i-B=0=1ixE
as in Casimir effect

do not use heat kernel techniques but mode expansion
possible because of very simple geometry

xt = (2%, 2°) a=1,2 ki = Lo

Dirichlet, sines only for x,y components

Z Z Acka,ks sin kgz3etha®” Z Z Ti'k ks SIN k3T Beika”

Ng n3>0 g n3>0

Neumann, cosines + zero mode for z components

As(m-) 2[A3 ko0 T 2 Agkmkg cos kgazg]eik“":a,

ng>0

Na

m(z') = Z (752 + Z Ty, COS kega®]etke”

Na  rm— 113>0

id FT!



Edge modes/Soft degrees of freedom

Detailed Hamiltonian analysis

Put the mode expansion in the canonical | |

Hamiltpnian and perform the constraint H, = Jd3$[§Wi7ri + ZFijFij — Apf;")
analysis after having taken the boundary

conditions into account

ks # 0 modes related to standard black body result
(corrected because of Casmir effect at non-
zero temperature)

constraints Z [A[)k s ki + s )]

Ng,n3>0

standard discussion applies, only two independent polarizations



Extra partition function

ks =0 are physical : not affected by the constraints nor by gauge transformations
Ai\IPG(xa y,()) — Cf)gb — a%[ng]a W?VPG(ivaya 0) - 5?37[- — (%[Zﬂ'],

not longitudinal because  z € [0, Ls]

ks = 0 modes give extra dynamics of massless scalar in 2+1 dimensions

v
_ 3C _3C#% 2 C Cs _ 2 2
Hypa = 52 [Wka,,o’ﬁka,o + wka.AS,kmoA&ka,O]a Wiy = \/ KT + k3.

gyre _ L [ le LQd N2 — 0. ho”
-3 | dy|(9)? = dus|
— L1 — Lo

Ly Lo
Electric charge observable Q= —7000A4 = —J d:ﬂf dym, A=4L1L,.



Extra partition function

k, £0 modesgive Zhpa(B) = Tre PHnra,

e ——

In Z p(8) = Fa(8) 4 564872 ba = A

ko, =0 mode corresponds to free particle

q = Ag’:o’ovv, p = ﬂ'g’,%"o V

1 | A
HJQ[PG’ = 51927 Q= - L—gp-

o .
turn on chemical potential for electric charge ZJOVPG(B, H) — Tre PHNPc +5»uQ7

|
In 73 pe (B, 1) = Ag — o In (2mB) +

reproduces the semi-classical result !



Casimir effectat T #0

Helmholtz free energy

F(B) = -B""1InZ(B) = F(0) + F2(B)

Zero temperature Casimir energy

hwy = atem
Z e _720L3

Thermal contrlbutlon

Z/B 1111 Bhwk)

Subtraction of empty space BB result

2 g )2 o0 .
_ Z " {_ 2‘}6(;&] £+ Thar n.)%[&‘%g] q(a)}

Sernelius, Surface modes

b(d,T,n)= ll T dsln[] —exp(— Jrhﬁc\/.;d)]
2

ffl}A(B)‘ oA




Main claim

microstates responsible for BH entropy related
to non-proper gauge (=soft) DoF
rather than physical gravitons

What the physical DoF freedom are can only
be decided after taking the boundary
conditions (or the topology) into account, not
before



« Gauge sector of electromagnetism as topological field theory

« Quantum Coulomb solution as coherent state of unphysical photons
* linearized Schwarzschild solution involves temporal/longitudinal DoF
* no physical gravitons in 3d but BTZ black hole

» observables = ADM surface charges involve unphysical DoF



DoF & reduced quantization

Hamiltonian formulation S = Jdt U Pz (A, — 70 + Agdin’) — HD]

1 . 1 .. _ .
HO =fd3$(27TZ7Ti—|—4F@JFij) 'j"('Z = —EZ
first class constraints l=0= (%wi
physical DoF (A;T, m}) unphysical DoF (AZ-La Wi): (Ao, WO)

reduced phase space: transverse DoF

uantization : N . .
Q In positive definite Hilbert space

with charged sources: quantize transverse
fluctuations around classical charged solution



Ghosts

guantize all polarizations in indefinite metric Hilbert space

a) Gupta-Bleuler [au(E), ai(E’)] = 77“,,5(3)(1_@’ — E’)

physical state condition (8MA“)+|w>phyS =0 additional (null) states decouple

_ spurious fermionic DoF
b) BRST quantization (P,C), (C,p)

cancel contributions from
longitudinal and temporal photons

BRST charge Q= Jdgas (7%p — 0,7 C)

L _ 1
gauge fixation K = Jd?’g:(CakA’“ + PAg — §Ovr°),

path integral JD(A”W”CPpC)eingST



Topological sector

. . 1 |
“physical” sector AT HPY = | @3z = (nbn] — ATAAL),
RN A 9 T ) T

1
topological sector (Af = 0; A, ) = Za"w),(AOWO)

1. 1
H& = Jd%%gs = —ii{Q,Q}, Q= 2K —i dSLEPZﬂ'

contains electric charge observable



BRST quantization

expand all fields in terms of oscillators

physical transverse [aa(k),al (k)] = 60 (k —K'), a,b=1,2

unphysical bosonic  [a(k), bt (k)] = 6@ (k — &) o0 0100
(nutl) Mo =g g1 o] TR T g 001 0
unphysical ghost [c(k), e (k)] = 6P (k — k) 0 001 00 0 1

BRST charge Q= J &k (cTa + d'e)
physical states ~ Q[p)P'¥s = (0 BRST exact states decouple  Phs(y|Qy) = 0
in particular Q0> =0 vacuum state is physical

AN Hy +[Q, K] = | @k wpala® + [Q, K’ .
Hamiltonian o+ 1% K] f wpaqa” + [, K] ghosts and unphysical

x \ bosonic DoF drop out

responsible for black body entropy (s)Tr e BILK'] _

Gauge sector always trivial ? No: cf. topological field theories



Coupling to a source

static charge at the origin ~ Sr = S"" — Jd‘lw AL, G = 66Q6%) (x)

only Gauss law modified ot = 4°
modified BRST charge 0% = Jdg’k [c"(a —qz) + (a — q5)c]

_ & .
c-number % = V2(2m) 20 Fourier transform of
old vacuum no longer physical Q%10 # 0
new vacuum (a — q,;)\0>Q =0 (b,c, G aq)|00° =0 =
in terms of old vacuum 0)Q = S d* azb' (k) 0)

coherent state of null photons

Q°|0)° =0



Quantum Coulomb solution

[b(k),bT (k')] =0 ——mm=—  unusual ‘classical’ properties  2(0[0) = 1

instead of (a|B) = e P

Ehrenfest theorem

Qx

A3

YO1E(2)|0)? = ~ IV x A(@)]0)? = 0

1 6—1/7“

= —)O
lf2—|-l/2) Ay’ Y

NB: requires infrared regularisation FT(

interpretation : extrapolation of Aharonov-Bohm
effect to quantized electromagnetic field

Dirac 1932

Fock & Podolski 1932
Bronstein 1936

GB 2010



Electromagnetism  Quantum Coulomb solution

32-3*
On Dirac’s Quantum Electrodynamics

V. Fock AND B. PODOLSKY

Phys. Zs. Sowjetunion 1, 798, 1932 (in English)
Fock57, pp. 52-54

In his new paper,! Dirac suggested an original combination of the quan-
tum electrodynamics of vacuum with the wave equation for matter. For
a one-dimensional example, he demonstrated how the Coulomb interac-
tion can appear in some approximation.

Why — ih% = (K 2i=e ) Yo = —Utyp.

 4r|ry — 1o

2We are looking for that part of the wave functional ¢ (or 1) that corresponds
to the zero-quantum state. (This is denoted symbolically by the factor 6o, where
j is the number of light quanta.) Only the retained operator a;‘)ao sends this zero-
quantum part again to a zero-quantum one, whereas the removed operators aoag,

ag)a;f) and aga either cancel it or transform it into a two-quantum state. (V. Fock)



Electromagnetism  Quantum Coulomb solution

QUANTUM THEORY OF WEAK GRAVITATIONAL
FIELDS!

By M. Bronstein.

(Received on 2. January 1936)

§1. General remarks. §2. Hamiltonian form and plane waves. §3. Commutation
relations and eigenvalues of the energy. §4. Let us undertake a little gedanken experiment!
85. Interaction with matter. §6. Energy transfer by gravitational waves. §7. Deduction
of Newton’s law of gravitation.
while in our case another commutation relation applies, namely (cf. (8))

h ;
[h(TU.?' h()()_gl] — —TO(E — ¢ )

Neither commutation relations are introduced ad hoec, but originated
quite naturally from the general quantum-mechanical formalism. As we shall
see this suffices to obtain the correct sign of the gravitational interactions.
Thus, the fundamental difference between Coulomb
and Newtonian forces is explained from quantum
mechanics.

Following the idea of Dirac, Fock and Podolsky 7 derived
Coulomb’s law. Our calculation proceeds exactly parallel to theirs. We start
from the equations

1 . m  hoy
<_pl2 -+ TI}I()()(Q)) Y+ —— =

2my i Oty

1, my  hoy
— —fyue —=h ; /) —— =0.

<2I712p2 + 5 100(9)) Y+ : Ot

The sign of the right-hand side is different than in the Fock - Podolsky
formula (42). When we go back to the configuration space we accordingly
obtain the Schrodinger equation with the potential energy

___ama
167[t; — ta|’

and thus we have recovered Newtonian gravitation as a necessary consequence
of the quantum theory of gravity.

The Physical-Technical Institute
and The Physical Institute of the University.
Leningrad, August 1935.



DoF

linearized GR = massless spin 2 gauge field on Minkowski background

Hamiltonian formulation  Spr[hmn, 7", ftm, 0] = fdt”d?’x (7™ B, — 0" Hoy, — nH) — HPF],

1 1
HPF [hﬂtnﬁ ﬂ-mn] - JdSZL ﬂ—mnﬂ—ﬁbn - _Wz + _arhmnarhrnn_
( 27 4 hoo = —2n  hg; = n;

1 mmn AT 1 m T 1 e
= 50mh™" O by + 50" RO hn — 70" W)

Hpm = —20"Tpmn, Hi =Ah—=0"0"hpmy

# of comp

D=4 D=3

_TT T L
orthogonal gbzm = P Pmn + P 6 3
decomposition of mn = OmW¥n + OnPm, 3 2
symmetric rank 2 tensor P % (G — 00) 7 1 1
717;77; = qun o 717/1,?7, o 777;,7?, 2 0
, ADM 1962, Dynamics of

Physical DoF: gravitational waves GR, gr-qc/0405109



Linearized Schwarzschild solution

canonical pairs (ham (@) 777 (7))s (M (@), 71 ()5 (B (), 77 ().
Hpy =0=H — WE‘EZOZh%n
Hf =0 D=3
]' T1L,Tnmn
HE — J o (rimhh + SORIERER ). Doy
coupling to a massive particle at rest

1 v
S = 16—7TSPF + Jd4x by T THY — 56‘55]\/_[5(3) ()

only Hamiltonian constraint is affected

(3) hgzn = M=z .

H, =—-16r Mo (z) = Y r all other variables 0
o o/ linearized Schwarzschild
after spatial diffeo hry = == = hoo solution, no TT variables

involved

Quantum version in linearized gravity:
M. Bronstein (1936)



Observable

T
observable =~ ADM mass only sees  h, .

surface charge 167 Pt = fﬁ Aoy, (Onh™ — 0™ hy) ~ M

S

related to G&H boundary term that gives non trivial value for Euclidean action

exactly like for electric charge Q= — 3[;dam7rf{”
S



Main claims

() Interesting edge dynamics in electromagnetism
(i) Related to non-proper gauge degrees of freedom

(Justified ?) hope: extendable to gravity to understand
microstates for black hole entropy



