# Generalized Yang-Baxter deformations in $d=11$ supergravity 

llya Bakhmatov

> Asia Pacific Centre for Theoretical Physics (Korea)
> \& Kazan Federal University (Russia)

Supersymmetries and Quantum Symmetries - SQS'19
Yerevan, 26/08/2019
[1811.09056 IB, E. Musaev] [1906.09052 IB, N.S. Deger, E. Musaev, E. Ó Colgáin, M. Sheikh-Jabbari]

## AdS/CFT and deformations

Strings/supergravity on $\mathrm{AdS}_{5} \times \mathbb{S}^{5}$



Field theory deformations

- deformations of CFT;
- non-commutative field theory;
- supergravity deformations: TsT, YB, generalization to $d=11$;
- moving beyond $\mathrm{AdS}_{5} \times \mathbb{S}^{5}$.


## TsT: a prototype deformation

$\mathrm{U}(1) \times \mathrm{U}(1)$ isometry: adapted coordinates $\left(x^{1}, x^{2}\right)$
[Lunin, Maldacena; Frolov'05]


$$
\begin{aligned}
d s^{2} & =\frac{-d t^{2}+d x_{3}^{2}+d r^{2}}{r^{2}}+\frac{r^{2}}{r^{4}+\eta^{2}}\left(d x_{1}^{2}+d x_{2}^{2}\right)+d s^{2}\left(\mathbb{S}^{5}\right) \\
B & =\frac{\eta}{r^{4}+\eta^{2}} d x_{1} \wedge d x_{2}, \quad e^{2\left(\Phi-\Phi_{0}\right)}=\frac{r^{4}}{r^{4}+\eta^{2}} .
\end{aligned}
$$

Dual to non-commutative deformations of SYM
[Hashimoto, Itzhaki; Maldacena, Russo'99]

## Yang-Baxter deformations: generalizing TsT

Yang-Baxter deformed $\operatorname{AdS}_{5} \sigma$-model in the coset formulation:
[Klimčík'02; Delduc, Magro, Vicedo'13]

$$
\begin{aligned}
& S=-\frac{1}{4}\left(\gamma^{a b}-\epsilon^{a b}\right) \int_{-\infty}^{\infty} d \tau \int_{0}^{2 \pi} d \sigma \operatorname{Str}\left[A_{a} \mathrm{~d} \circ \frac{1}{1-\eta R_{g} \circ \mathrm{~d}} A_{b}\right], \\
& A_{a}=g^{-1} \partial_{a} g, g \in S O(4,2) ; \quad \text { d projects onto } \mathfrak{s o}(4,2) / \mathfrak{s o}(4,1) .
\end{aligned}
$$

$\exists$ Lax pair $\Longrightarrow$ classical integrability $\kappa$-symmetry preserved by the deformation

$$
R_{g}(X)=g^{-1} R\left(g X g^{-1}\right) g, \quad X \in \mathfrak{s o}(4,2)
$$

$R$ satisfies the homogeneous classical Yang-Baxter equation,

$$
[R(X), R(Y)]-R([R(X), Y]+[X, R(Y)])=0, \quad X, Y \in \mathfrak{s o}(4,2)
$$

## $r$-matrix parameterisation of the YB deformation

Parameterise $R$ in terms of the $\mathbf{r}$-matrix:

$$
\begin{gathered}
R(X)=\operatorname{Tr}_{2}[r(1 \otimes X)]=\sum_{\alpha, \beta} r^{\alpha \beta} b_{\alpha} \operatorname{Tr}\left[b_{\beta} X\right] \\
r=\frac{1}{2} \sum_{\alpha, \beta} r^{\alpha \beta} b_{\alpha} \wedge b_{\beta}, \quad\left\{b_{\alpha}\right\}=\operatorname{bas} \mathfrak{s o}(4,2), \quad\left[b_{\alpha}, b_{\beta}\right]=f_{\alpha \beta}^{\gamma} b_{\gamma} .
\end{gathered}
$$

classical Yang-Baxter equation in terms of $r^{\alpha \beta}$ :

$$
f_{\delta \epsilon}{ }^{[\alpha} r^{\beta|\delta|} r^{\gamma] \epsilon}=f_{\delta \epsilon}{ }^{\alpha} r^{\beta \delta} r^{\gamma \epsilon}+f_{\delta \epsilon}{ }^{\gamma} r^{\alpha \delta} r^{\beta \epsilon}+f_{\delta \epsilon}{ }^{\beta} r^{\gamma \delta} r^{\alpha \epsilon}=0 .
$$

## Two views of Yang-Baxter deformations

Standard narration:

- $r$-matrix solving the CYBE is an input;
- $\sigma$-model in coset formalism is deformed by an ( $r$-matrix-dependent) operator;
- deformed background is a solution to (generalised) supergravity;
- deformed backgrounds can be obtained via TsT or nonabelian T-duality.
Our narration:
- Start with a bi-Killing $r \sim k \wedge k$; not fixing the CYBE;
- Deformation is the open-closed string map, essentially matrix inversion;
- CYBE is sufficient for the deformed background to solve supergravity;
- procedure works for non-coset geometries, no (obvious) relation to integrability;
- supergravity solution generation.


## Our approach for $d=10$

## Initial data:

- background $G_{m n}, \Phi$, RR fields
- isometry algebra $\left[k_{\alpha}, k_{\beta}\right]=f_{\alpha \beta}{ }^{\gamma} k_{\gamma}$


## Procedure:

- Specify a bi-vector deformation: $\beta^{m n}=r^{\alpha \beta} k_{\alpha}^{m} k_{\beta}^{n}$
- New metric and 2-form: $g_{m n}+b_{m n}=\left(G^{m n}+\beta^{m n}\right)^{-1}$
- Dilaton transformation $e^{-2 \phi}\left|\operatorname{det} g_{m n}\right|^{1 / 2}=e^{-2 \Phi}\left|\operatorname{det} G_{m n}\right|^{1 / 2}$

Note:

- Generalized supergravity criterion $I^{m}=\nabla_{k} \beta^{m k} \neq 0$
- Prescription for the RR fields exists (Page forms)
- Generalization for initial $B_{m n} \neq 0$ exists


## Statement for $d=10$ type II supergravity

Deformed background $g_{m n}, b_{m n}, \phi$, etc. is a solution if the $r$-matrix satisfies the Yang-Baxter equation:

$$
f_{\delta \epsilon}{ }^{[\alpha} r^{\beta|\delta|} r^{\gamma] \epsilon}=0 .
$$

For any supergravity solution there exists a deformation, such that the field equations reduce to the classical Yang-Baxter equation.

## Yang-Baxter deformations and DFT

Double Field Theory: manifestly T-duality covariant form of supergravity [Tseytlin'90; Siegel'93; Hohm, Hull, Zwiebach'10]

Doubled coordinates: $X^{M}=\left(x^{m}, \tilde{x}_{m}\right)$
Fundamental variable: generalized metric

$$
\left[\begin{array}{cc}
G & \beta G^{-1} \\
G^{-1} \beta & G^{-1}+\beta G \beta
\end{array}\right]=\mathcal{H}_{M N}=\left[\begin{array}{cc}
g+b g^{-1} b & g b \\
b g & g^{-1}
\end{array}\right]
$$

Action $\left(d=\phi+\frac{1}{4} \log g_{m n}\right)$ :

$$
\begin{aligned}
S=\int d x d \tilde{x} e^{-2 d} & \left(\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{K L} \partial_{L} \mathcal{H}^{M N} \partial_{N} \mathcal{H}_{K M-}\right. \\
& \left.-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d\right) .
\end{aligned}
$$

The open-closed string map $g_{m n}+b_{m n}=\left(G^{m n}+\beta^{m n}\right)^{-1}$ can be realized as a frame change in DFT.

## Yang-Baxter deformations and DFT



Equations of motion in the $\beta$-frame [Andriot, Betz'13]

$$
\begin{aligned}
\mathcal{R}-4(\partial \Phi)^{2}+4 \nabla^{2} \Phi-\frac{1}{2} R^{2}= & 4\left(\beta^{m r} \partial_{r} \Phi+I^{m}\right)^{2}-\hat{\mathcal{R}} \\
& +G_{m n} \hat{\nabla}^{m}\left(\beta^{n r} \partial_{r} \Phi+I^{n}\right) ; \\
\mathcal{R}_{p q}+2 \nabla_{p} \partial_{q} \Phi+\frac{1}{4} R_{p}^{m n} R_{q m n}= & \hat{\mathcal{R}}_{(p q)}-2 \hat{\nabla}_{(p}\left(\beta_{q) r} \nabla^{r} \Phi+I_{q)}\right) ; \\
e^{2 \Phi} \hat{\nabla}^{m}\left(e^{-2 \Phi} R_{m r p}\right)+2 I^{m} R_{m r p}= & 2 e^{-2 \Phi} \nabla^{q}\left(e^{2 \Phi} \nabla_{[p} \beta_{r] q}\right)-4 \mathcal{R}_{[p}{ }^{s} \beta_{r] s} \\
& -e^{2 \Phi} \nabla^{m}\left(e^{-2 \Phi} \nabla_{m} \beta_{r p}\right)+8 G_{n[p} \nabla_{r]}\left(\beta^{n q} \partial_{q} \Phi\right)
\end{aligned}
$$

Notation:

$$
\begin{aligned}
\hat{\mathcal{R}} & =G_{m n} \hat{\mathcal{R}}^{m n}, \quad \hat{\Gamma}_{p}^{m n}=\nabla^{(m} \beta^{n)}{ }_{p}-\frac{1}{2} \nabla_{p} \beta^{m n}+\beta^{m q} \Gamma_{p q}^{n}, \\
\hat{\mathcal{R}}^{m n} & =-\beta^{p q} \partial_{q} \hat{\Gamma}_{p}^{m n}+\beta^{m q} \partial_{q} \hat{\Gamma}_{p}^{p n}+\hat{\Gamma}_{p}^{m n} \hat{\Gamma}_{q}^{q p}-\hat{\Gamma}_{p} q m \hat{\Gamma}_{q}{ }^{p n}, \\
I^{m} & =\nabla_{k} \beta^{k m} \equiv-\hat{\Gamma}_{k}^{k m}, \quad R^{m n p}=3 \beta^{q[m} \nabla_{q} \beta^{n p]}, \\
\hat{\nabla}^{m} V^{p} & =-\beta^{m n} \partial_{n} V^{p}-\hat{\Gamma}_{n}^{m p} V^{n}, \quad \hat{\nabla}^{m} V_{p}=-\beta^{m n} \partial_{n} V_{p}+\hat{\Gamma}_{p}^{m n} V_{n} .
\end{aligned}
$$

## $d=11$ supergravity

$$
\begin{aligned}
\text { strings } & \rightarrow \text { membranes } \\
\left(g_{m n}, b_{m n}\right) & \rightarrow\left(g_{m n}, C_{m n k}\right)
\end{aligned}
$$

Obvious obstacles:

- no integrability in membrane worldvolume theory setup;
- no "open-closed membrane" map;


## However

- Exceptional field theory (ExFT) provides geometrical setup that parallels the $d=10$ DFT case;
- We propose a concrete $d=11$ solution deformation method based on a frame change in the $S L(5)$ ExFT.


## $S L(5)$ ExFT setup

Exceptional Field Theory: manifestly U-duality covariant form of $d=11$ supergravity [Hull'07; Berman, Perry'10]
Extended coordinates: $\left(x^{\mu}, Y^{M}\right), \mu \in\{1, \ldots, 7\}, M \in\{1, \ldots, 10\}$ SL(5) U-duality group: $11=7+4$ split.

The generalized metric in two frames:

$$
e^{-\frac{\phi}{2}}\left[\begin{array}{cc}
g^{-\frac{1}{2}} g_{a b} & V_{a} \\
V_{b} & g^{\frac{1}{2}}\left(1+V^{2}\right)
\end{array}\right]=m_{m n}=e^{-\frac{\Phi}{2}}\left[\begin{array}{cc}
G^{-\frac{1}{2}}\left(G_{a b}+W_{a} W_{b}\right) & W_{a} \\
W_{b} & G^{\frac{1}{2}}
\end{array}\right]
$$

encodes degrees of freedom

$$
V^{a}=\frac{1}{3!} \frac{1}{\sqrt{g}} \epsilon^{a b c d} C_{b c d}, \quad W_{a}=\frac{1}{3!} \sqrt{G} \epsilon_{a b c d} \Omega^{b c d}
$$

We propose a tri-vector deformation $\Omega^{a b c}=\rho^{\alpha \beta \gamma} k_{\alpha}{ }^{a} k_{\beta}{ }^{b} k_{\gamma}{ }^{c}$

## Deformation prescription in $d=11$

## Initial data:

- background fields $G_{\mu \nu}, G_{a b}, C_{\mu \nu \rho}, C_{a b c}(7+4$ split)
- isometry algebra $\left[k_{\alpha}, k_{\beta}\right]=f_{\alpha \beta}{ }^{\gamma} k_{\gamma}$


## Procedure:

- Specify a tri-vector deformation: $\Omega^{a b c}=\rho^{\alpha \beta \gamma} k_{\alpha}{ }^{a} k_{\beta}{ }^{b} k_{\gamma}{ }^{c}, W=\star_{4} \Omega$;
- New external metric $g_{\mu \nu}=\left(1+W_{a} W^{a}\right)^{1 / 3} G_{\mu \nu}$;
- New internal metric $g_{a b}=\left(1+W_{a} W^{a}\right)^{-2 / 3}\left(G_{a b}+W_{a} W_{b}\right)$;
- New 3-form $c_{a b c}=\left(1+W_{a} W^{a}\right)^{-1} \Omega_{a b c}$.

Note:

- This replaces the open-closed string map of $d=10$ theory;
- Powers of $1 / 3$ and $-2 / 3$ agree with uplift of a TsT.


## Examples

Deformation agrees with the sequence:
(reduction to $d=10)-(\mathrm{TsT})-($ uplift back to $d=11)$.
Geometry with a flat 3-torus:

$$
\begin{aligned}
\mathrm{d} s_{(11)}^{2} & =\mathrm{d} s^{2}\left(M_{7}\right)+G_{z z} \mathrm{~d} z^{2}+\delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}, \quad \Omega=\gamma \partial_{x^{1}} \wedge \partial_{x^{2}} \wedge \partial_{x^{3}}, \\
\mathrm{~d} \tilde{s}_{(11)}^{2} & =K^{-1 / 3}\left[\mathrm{ds}^{2}\left(M_{7}\right)+G_{z z} \mathrm{~d} z^{2}\right]+K^{2 / 3} \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} .
\end{aligned}
$$

Supersymmetry preserving deformation of $\mathrm{AdS}_{4} \times \mathbb{S}^{7}$
[Lunin, Maldacena'05]
deform along the $U(1)^{3}<U(1)^{4}<S O(8)$

## Recovering YB

Geometry with a Lorentzian 3-torus

$$
\mathrm{d} s_{(11)}^{2}=\eta_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b}+\mathrm{d} s^{2}\left(M_{7}\right), \quad \Omega=\left(\tau^{i} M_{i j} \wedge P^{j}\right) \wedge \partial_{3}
$$

Deformation $\left(\tau^{i}=(\alpha, \beta, \gamma)=\right.$ const $)$ :

$$
\begin{aligned}
\mathrm{d} \tilde{s}_{(11)}^{2} & =K^{2 / 3}\left[\eta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}+\mathrm{d} z^{2}-W^{2}\right]+K^{-1 / 3} \mathrm{~d} s^{2}\left(M_{7}\right), \\
K & =\left[1+\left(\gamma x^{1}-\beta x^{2}\right)^{2}-\left(\gamma x^{0}-\alpha x^{2}\right)^{2}-\left(\beta x^{0}-\alpha x^{1}\right)^{2}\right]^{-1} .
\end{aligned}
$$

This deformed background

- is not a solution in $d=11$ unless $\tau^{i}=0$ (trivial);
- naively reduces to a solution of generalized sugra if $\left(\tau^{0}\right)^{2}-\left(\tau^{1}\right)^{2}-\left(\tau^{2}\right)^{2}=0$ with $I^{i}=2 \tau^{i}$


## Conclusions

- T-duality covariant description of $d=10$ supergravity
- open-closed string map
- U-duality covariant description of $d=11$ supergravity
- frame change map for $d=11$

Supergravity knows about S-matrix symmetries in the string $\sigma$-model

Supergravity might know about symmetries of the membrane
worldsheet theory
? general form of constraints for $\Omega$ from ExFT equations of motion;
? algebraic picture of tri-vector deformations;
? the role of higher simplex equations;
? generalized $d=11$ supergravity and $\kappa$-symmetry of the membrane;
? study deformations that are not uplifts of YB or TsT from $d=10$


## Yang-Baxter equation

- algebra of functions $\left\{x^{m}, x^{n}\right\}=\beta^{m n}$

$$
\begin{align*}
& \{f, g\}=\beta^{m n} \partial_{m} f \partial_{n} g, \\
& \left\{x^{m},\left\{x^{n}, x^{k}\right\}\right\}+\text { cyclic }=0 \quad \Longrightarrow \quad R^{m n k}=0 \tag{1}
\end{align*}
$$

- quantum Yang-Baxter equation

$$
\begin{align*}
& R_{12}(u-v) R_{13}(u) R_{23}(v)=R_{23}(v) R_{13}(u) R_{12}(u-v) . \\
& R_{12}(u)=\mathrm{id}+\hbar r_{12}(u) . \\
& {\left[r_{12}(u-v), r_{13}(u)\right]+\left[r_{13}(u), r_{23}(v)\right]+\left[r_{12}(u-v), r_{23}(v)\right]=0 .}
\end{align*}
$$

## Generalizations of the Yang-Baxter equation

- 3-algebra associated with M2-branes $\left\{x^{a}, x^{b}, x^{c}\right\}=\Omega^{a b c}$ [Bagger,Lambert]

$$
\begin{align*}
& \{f, g, h\}=\Omega^{a b c} \partial_{a} f \partial_{b} g \partial_{c} h, \\
& \left\{x^{a}, x^{b},\left\{x^{c}, x^{d}, x^{e}\right\}\right\}+\text { cyclic }=0 \quad \nRightarrow \quad R^{a, b c d e}=0 \tag{3}
\end{align*}
$$

- quantum 3-simplex equation [Zamolodchikov, Frenkel, Moore]
$R_{123} R_{124} R_{134} R_{234}=R_{234} R_{134} R_{124} R_{123}$,
$\left[r_{123}, r_{124}\right]+\left[r_{123}, r_{134}\right]+\left[r_{124}, r_{134}\right]+\left[r_{123}, r_{234}\right]+\left[r_{134}, r_{234}\right]+\left[r_{124}, r_{23}\right.$
- scattering of membranes?..


## Yang-Baxter deformations

Coset formulation of the Yang-Baxter deformed $A d S_{5} \times S^{5} \sigma$-model:

$$
\begin{equation*}
\mathcal{L}=\operatorname{Tr}\left[A P^{(2)} \circ \frac{1}{1-2 \eta R_{g} \circ P^{(2)}} A\right], \quad A=-g^{-1} d g, \quad g \in S O(4,2) \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
P^{(2)}(X)=\eta^{m n} \operatorname{Tr}\left[X \mathbf{P}_{m}\right] \mathbf{P}_{n}, \quad X \in \mathfrak{s o}(4,2), \quad \mathbf{P}_{m} \in \operatorname{bas} \frac{\mathfrak{s o}(4,2)}{\mathfrak{s o}(4,1)}, \\
R_{g}(X)=g^{-1} R\left(g X g^{-1}\right) g,
\end{gathered}
$$

$R$ is an antisymmetric operator satisfying the homogeneous classical Yang-Baxter equation,

$$
\begin{equation*}
[R(X), R(Y)]-R([R(X), Y]+[X, R(Y)])=0, \quad X, Y \in \mathfrak{s o}(4,2) \tag{7}
\end{equation*}
$$

## Examples of YB deformed backgrounds: $r=\frac{1}{2} P_{1} \wedge P_{2}$

Starting from $A d S_{5} \times S^{5}$ :

$$
\begin{equation*}
d s_{\mathrm{open}}^{2}=\frac{1}{z^{2}}\left(-d t^{2}+d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d z^{2}\right)+d s^{2}\left(S^{5}\right) \tag{8}
\end{equation*}
$$

using the abelian $r$-matrix $r=\frac{1}{2} P_{1} \wedge P_{2}$ :

$$
\begin{align*}
d s^{2} & =\frac{-d t^{2}+d x_{3}^{2}+d z^{2}}{z^{2}}+\frac{z^{2}}{z^{4}+\eta^{2}}\left(d x_{1}^{2}+d x_{2}^{2}\right)+d s^{2}\left(S^{5}\right) \\
B & =\frac{\eta}{z^{4}+\eta^{2}} d x_{1} \wedge d x_{2}, \quad e^{2 \Phi}=g_{s}^{2} \frac{z^{4}}{z^{4}+\eta^{2}} \tag{9}
\end{align*}
$$

[Hashimoto, Itzhaki; Maldacena, Russo]

## Generalised IIB supergravity

[Arutyunov, Frolov, Hoare, Roiban, Tseytlin]

For less trivial $r$-matrices, deformed background is not a solution of supergravity.

$$
\begin{align*}
R_{\mu \nu} & =\frac{1}{4} H_{\mu \rho \sigma} H_{\nu}^{\rho \sigma}-\nabla_{\mu} X_{\nu}-\nabla_{\nu} X_{\mu}, \\
R & =\frac{1}{12} H^{2}-4 \nabla_{\mu} X^{\mu}+4 X_{\mu} X^{\mu},  \tag{10}\\
\frac{1}{2} \nabla^{\rho} H_{\rho \mu \nu} & =X^{\rho} H_{\rho \mu \nu}+\nabla_{\mu} X_{\nu}-\nabla_{\nu} X_{\mu} .
\end{align*}
$$

There are also deformed field equations for the RR sector.
$I^{\mu}$ is a Killing vector

$$
\begin{equation*}
X_{\mu}=\partial_{\mu} \Phi+I^{\nu}\left(G_{\nu \mu}+B_{\nu \mu}\right) \tag{11}
\end{equation*}
$$

## $A d S_{2} \times S^{2} \times T^{6}$ example

The original background:

$$
\begin{equation*}
d s^{2}=\frac{-d t^{2}+d r^{2}}{r^{2}}+d \theta^{2}+\sin ^{2} \theta d \phi^{2} \tag{12}
\end{equation*}
$$

Homogeneous Ansatz for the deformation parameter:

$$
\begin{equation*}
\Theta^{t r}=\Theta_{1}(t, r), \quad \Theta^{\theta \phi}=\Theta_{2}(\theta, \phi) \tag{13}
\end{equation*}
$$

Find the deformed metric $g_{\mu \nu}=\left(G^{-1}+\Theta\right)^{-1}(\mu \nu)$, solve the Einstein equations:

$$
\begin{gather*}
\Theta_{1}=c_{1} t r+c_{2} r\left(t^{2}-r^{2}\right)+c_{3} r+c_{4} r^{2} \\
\Theta_{2}=c_{5} \cos \phi+c_{6} \sin \phi+c_{7} \cot \theta+\frac{c_{8}}{\sin \theta} . \tag{14}
\end{gather*}
$$

CYBE emerges as the constraints

$$
\begin{equation*}
c_{1}^{2}-4 c_{2} c_{3}=0=c_{5}^{2}+c_{6}^{2}+c_{7}^{2}, \quad c_{4}=0=c_{8} \tag{15}
\end{equation*}
$$

## Lessons from the $A d S_{2} \times S^{2}$ example

- We have not assumed that $\Theta \sim K_{i} \wedge K_{j}$ from the beginning, rather this is enforced by the field equations.
- Denote $\mathrm{AdS}_{2}$ Killing vectors,

$$
\begin{equation*}
K_{1}=-t \partial_{t}-r \partial_{r}, \quad K_{2}=-\partial_{t}, \quad K_{3}=-\left(t^{2}+r^{2}\right) \partial_{t}-2 t r \partial_{r} \tag{16}
\end{equation*}
$$

- Then $\Theta=\left(c_{1} t r+c_{2} r\left(t^{2}-r^{2}\right)+c_{3} r\right) \partial_{t} \wedge \partial_{r}$ is fixed to be equal to the Killing bivector r-matrix:

$$
\begin{equation*}
r=-c_{3} K_{1} \wedge K_{2}+\frac{c_{1}}{2} K_{2} \wedge K_{3}-c_{2} K_{3} \wedge K_{1} \tag{17}
\end{equation*}
$$

- and the constraint on $c_{1}, c_{2}, c_{3}$ is nothing but the $\mathfrak{s l}(2)$ classical YB equation:

$$
\begin{equation*}
f_{i j}^{a} r^{i b} r^{j c}+f_{i j}^{c} r^{i a} r^{j b}+f_{i j} r^{b c} r^{j a}=0 . \tag{18}
\end{equation*}
$$

## Bianchi III spacetime

$$
\begin{align*}
d s^{2} & =-\left(a_{1} a_{2} a_{3} e^{-2 \Phi} d t\right)^{2}+\left(a_{1} d x\right)^{2}+\left(a_{2} d y\right)^{2}+\left(a_{3} e^{x} d z\right)^{2}, \quad \Phi=\lambda t, \\
a_{1} & =a_{3}=\frac{p_{1}}{\sinh \left(p_{1} t\right)} e^{-\frac{1}{2} p_{2} t+\lambda t}, \quad a_{2}=e^{\frac{1}{2} p_{2} t+\lambda t}, \quad 4 p_{1}^{2}=p_{2}^{2}+4 \lambda^{2} \tag{19}
\end{align*}
$$

Isometry algebra:

$$
\begin{equation*}
K_{1}=\partial_{x}-z \partial_{z}, \quad K_{2}=\partial_{y}, \quad K_{3}=\partial_{z}, \quad\left[K_{1}, K_{3}\right]=K_{3} \tag{20}
\end{equation*}
$$

The most general $r$-matrix

$$
\begin{equation*}
r=\alpha K_{1} \wedge K_{2}+\beta K_{2} \wedge K_{3}+\gamma K_{3} \wedge K_{1} \tag{21}
\end{equation*}
$$

is a solution to the CYBE provided $\alpha \gamma=0$.

## Bianchi III spacetime

When $\gamma=0$, it can be checked that the deformed geometry

$$
\begin{align*}
g_{\mu \nu} d x^{\mu} d x^{\nu} & =-\left(a_{1} a_{2} a_{3} e^{-2 \lambda t} d t\right)^{2}+\frac{1}{\left[1+\alpha^{2} a_{2}^{2}\left(a_{1}^{2}+z^{2} e^{2 x} a_{3}^{2}\right)\right]}\left[a_{1}^{2} d x^{2}\right. \\
& \left.+a_{2}^{2} d y^{2}+a_{3}^{2} e^{2 x} d z^{2}+\alpha^{2} e^{2 x} a_{1}^{2} a_{2}^{2} a_{3}^{2}(z d x+d z)^{2}\right] \\
b & =-\frac{\alpha a_{2}^{2}}{\left[1+\alpha^{2} a_{2}^{2}\left(a_{1}^{2}+z^{2} e^{2 x} a_{3}^{2}\right)\right]}\left(a_{1}^{2} d x \wedge d y+z e^{2 x} a_{3}^{2} d y \wedge d z\right), \\
\Phi & =\lambda t-\frac{1}{2} \log \left[1+\alpha^{2} a_{2}^{2}\left(a_{1}^{2}+z^{2} e^{2 x} a_{3}^{2}\right)\right] \tag{22}
\end{align*}
$$

is a solution to supergravity.

## Comments

- Our map is defined for any spacetimes (not only for cosets);
- The classical Yang-Baxter equation is an output rather than the input.
- Solving field equations for $\left(g_{\mu \nu}, b_{\mu \nu}\right)$ for an arbitrary $\Theta$ is intractable; for practical purposes we assumed that $\Theta=r^{i j} K_{i} K_{j}$.

The above examples seemed compelling to us, but they do not constitute a proof that CYBE always emerges.

## Perturbative proof

Assume that the NC parameter is an arbitrary Killing bivector,

$$
\begin{equation*}
\Theta^{\mu \nu}=r^{i j} K_{i}^{\mu} K_{j}^{\nu}, \quad r^{i j}=-r^{j i} \tag{23}
\end{equation*}
$$

Expand everything in powers of $\Theta$ :

$$
\begin{align*}
g_{\mu \nu} & =G_{\mu \nu}+\Theta_{\mu}{ }^{\alpha} \Theta_{\alpha \nu}+\mathcal{O}\left(\Theta^{4}\right) \\
B_{\mu \nu} & =-\Theta_{\mu \nu}-\Theta_{\mu \alpha} \Theta^{\alpha \beta} \Theta_{\beta \nu}+\mathcal{O}\left(\Theta^{5}\right),  \tag{24}\\
\phi & =\Phi+\frac{1}{4} \Theta_{\rho \sigma} \Theta^{\rho \sigma}+\mathcal{O}\left(\Theta^{4}\right) .
\end{align*}
$$

Write down the field equations.
First order: $I^{\mu}=\nabla_{\nu} \Theta^{\nu \mu}$. Second order: CYBE

$$
\begin{align*}
& K_{i}^{\alpha} K_{k}^{\beta} \nabla_{\alpha} K_{\beta m}\left(f_{l_{1} l_{2}}{ }^{m} r^{i l_{1}} r^{k l_{2}}+f_{l_{1} l_{2}}{ }^{k} r^{m l_{1}} r^{i l_{2}}+f_{l_{1}{ }^{2}}{ }^{i} r^{k l_{1}} r^{m l_{2}}\right) \\
&+\left(\Theta^{\beta \gamma} \Theta^{\alpha \lambda}+\Theta^{\alpha \beta} \Theta^{\gamma \lambda}+\Theta^{\gamma \alpha} \Theta^{\beta \lambda}\right) R_{\beta \gamma \alpha \lambda}=0 \tag{25}
\end{align*}
$$

## Divergence condition

Some YB deformations result in solutions of generalised supergravity, which are specified by a Killing vector field $I^{\mu}$
[Arutyunov, Frolov, Hoare, Roiban, Tseytlin]
The recipe for construction of the vector field $I$ :

$$
\begin{equation*}
I^{\mu}=\nabla_{\nu} \Theta^{\nu \mu} \tag{26}
\end{equation*}
$$

- Directly relates open and closed string pictures;
- The condition has been attributed to the preservation of the $\Lambda$-symmetry in the generalised supergravity;
- Initially observed for examples, but later has been proven perturbatively (i.e. also follows from the field equations).

Can also be viewed as a bulk-boundary relationship for the NC parameter (supporting the holographic NC idea).

## Schwarzschild

The previous example was a simple coset model.

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 m}{r}\right) d t^{2}+\frac{d r^{2}}{1-\frac{2 m}{r}}+r^{2}\left(d \zeta^{2}+\sin ^{2} \zeta d \chi^{2}\right) \tag{27}
\end{equation*}
$$

Fix $\Theta$ to be a Killing bivector (this involves $\partial_{t}$ and the three vectors on the sphere):

$$
\begin{align*}
& \Theta^{t \zeta}=-\epsilon \cos \chi+\lambda \sin \chi \\
& \Theta^{t \chi}=\delta+\cot \zeta(\epsilon \sin \chi+\lambda \cos \chi)  \tag{28}\\
& \Theta^{\zeta \chi}=\alpha \cos \chi-\beta \cot \zeta+\gamma \sin \chi
\end{align*}
$$

The field equations precisely match the CYBE.

